Multi-skilled workforce management

Murat Firat

PhD., Discrete Mathematics Group, TU/e Post-doc, France Télécom Orange Labs., & francetelecom

July 25,2017

Seminar, Information Systems Group, TU/e

・ロト ・回ト ・ヨト

Outline

Scheduling problem description State-of-art approaches Further scheduling topics Scheduling and Information Systems

Scheduling problem description

Motivation Basic concepts Complexity

State-of-art approaches

ALNS approach Local search approach FMM approach Computational Results

Further scheduling topics

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Scheduling and Information Systems

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Motivation Basic concepts Complexity

Motivation for advanced scheduling

・ロン ・回と ・ヨン ・ヨン

Motivation Basic concepts Complexity

Advanced scheduling in France Télécom

Steadily increasing number of services.

イロン 不同と 不同と 不同と

Motivation Basic concepts Complexity

Advanced scheduling in France Télécom

- Steadily increasing number of services.
- Employing more than 10⁵ technicians.

イロト イポト イヨト イヨト

Motivation Basic concepts Complexity

Advanced scheduling in France Télécom

- Steadily increasing number of services.
- Employing more than 10⁵ technicians.
- End of the telecommunication monopoly in France.

イロト イポト イヨト イヨト

Motivation Basic concepts Complexity

Advanced scheduling in France Télécom

- Steadily increasing number of services.
- Employing more than 10⁵ technicians.
- End of the telecommunication monopoly in France.
- So, the *emerging* need is

イロト イポト イヨト イヨト

Motivation Basic concepts Complexity

Advanced scheduling in France Télécom

- Steadily increasing number of services.
- Employing more than 10⁵ technicians.
- End of the telecommunication monopoly in France.
- So, the *emerging* need is
 - to be more competitive

Motivation Basic concepts Complexity

Advanced scheduling in France Télécom

- Steadily increasing number of services.
- Employing more than 10⁵ technicians.
- End of the telecommunication monopoly in France.
- So, the *emerging* need is
 - to be more competitive
 - to limit the growth of the technician group

Motivation Basic concepts Complexity

Basic concepts in scheduling data

Murat Firat Multi-skilled workforce management

・ロン ・回と ・ヨン・

Motivation Basic concepts Complexity

Scheduling data of France Télécom

• Given a set $J = \{j_1, j_2, \dots\}$ of tasks with

・ロン ・回と ・ヨン ・ヨン

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options

・ロン ・回と ・ヨン・

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options
 - Skill requirements

イロト イヨト イヨト イヨト

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options
 - Skill requirements
- Also, a set $T = \{t_1, t_2, ...\}$ of technicians with

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options
 - Skill requirements
- Also, a set $T = \{t_1, t_2, ...\}$ of technicians with
 - Availabilities

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options
 - Skill requirements
- ▶ Also, a set $T = \{t_1, t_2, ...\}$ of technicians with
 - Availabilities
 - Skills with hierarchical levels

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options
 - Skill requirements
- Also, a set $T = \{t_1, t_2, ...\}$ of technicians with
 - Availabilities
 - Skills with hierarchical levels
- Our mission

・ロト ・回ト ・ヨト ・ヨト

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options
 - Skill requirements
- ▶ Also, a set $T = \{t_1, t_2, ...\}$ of technicians with
 - Availabilities
 - Skills with hierarchical levels
- Our mission
 - Outsource some tasks

イロン イヨン イヨン イヨン

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options
 - Skill requirements
- Also, a set $T = \{t_1, t_2, ...\}$ of technicians with
 - Availabilities
 - Skills with hierarchical levels
- Our mission
 - Outsource some tasks
 - Schedule all tasks on a day-to-day basis

Motivation Basic concepts Complexity

Scheduling data of France Télécom

- Given a set $J = \{j_1, j_2, \dots\}$ of tasks with
 - Precedence relations, *priority classes*, outsourcing options
 - Skill requirements
- Also, a set $T = \{t_1, t_2, ...\}$ of technicians with
 - Availabilities
 - Skills with hierarchical levels
- Our mission
 - Outsource some tasks
 - Schedule all tasks on a day-to-day basis
 - Minimize the weighted makespan

Motivation Basic concepts Complexity

Scheduling data of France Télécom

More on Skills:

・ロン ・回と ・ヨン・

Motivation Basic concepts Complexity

Scheduling data of France Télécom

More on Skills:

• Skill categories/domains: $D = \{d_1, d_2, \dots\}$.

・ロン ・回と ・ヨン・

2

Motivation Basic concepts Complexity

Scheduling data of France Télécom

More on Skills:

- Skill categories/domains: $D = \{d_1, d_2, \dots\}$.
- *Hierarchical* skill levels: $L = \{l_0, l_1, \dots\}$.

イロン イヨン イヨン イヨン

Motivation Basic concepts Complexity

Scheduling data of France Télécom

More on Skills:

- Skill categories/domains: $D = \{d_1, d_2, \dots\}$.
- *Hierarchical* skill levels: $L = \{l_0, l_1, ... \}$.
- Skills of technician t are denoted by $Sk_t \in \{0, 1\}^{|L| \times |D|}$

・ロン ・回と ・ヨン・

Motivation Basic concepts Complexity

Scheduling data of France Télécom

More on Skills:

- Skill categories/domains: $D = \{d_1, d_2, \dots\}$.
- *Hierarchical* skill levels: $L = \{l_0, l_1, ...\}$.
- Skills of technician t are denoted by $Sk_t \in \{0, 1\}^{|L| \times |D|}$
- ▶ Skill requirements of task *j* are denoted by $Rq_i \in \mathbb{Z}^{|L| \times |D|}$

Motivation Basic concepts Complexity

Scheduling data of France Télécom

Consider |D| = |L| = 3 such that

・ロン ・回と ・ヨン ・ヨン

Motivation Basic concepts Complexity

Scheduling data of France Télécom

Consider |D| = |L| = 3 such that • Technicians t_1 and t_2 with *skills* $d_1 \quad d_2 \quad d_3 \quad d_1 \quad d_2 \quad d_3$ $Sk_{t_1} = \begin{pmatrix} l_0 \\ l_1 \\ l_2 \end{pmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, Sk_{t_2} = \begin{pmatrix} l_0 \\ l_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

イロト イヨト イヨト イヨト

2

Motivation Basic concepts Complexity

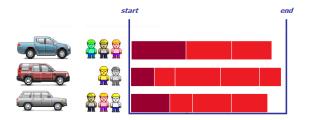
Scheduling data of France Télécom

Consider |D| = |L| = 3 such that Technicians t₁ and t₂ with skills d_1 d_2 d_3 $Sk_{t_{1}} = \begin{matrix} h_{0} \\ h_{1} \\ h_{2} \end{matrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{matrix} \end{bmatrix}, Sk_{t_{2}} = \begin{matrix} h_{0} \\ h_{1} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ Tasks j₁ and j₂ with skill requirements d_1 d_2 d_3 $Rq_{j_{1}} = \begin{matrix} h_{0} \\ h_{1} \\ h_{2} \end{matrix} \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{matrix} \end{bmatrix}, Rq_{j_{2}} = \begin{matrix} h_{0} \\ h_{1} \\ h_{2} \end{matrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{matrix} \end{bmatrix}$

・ロン ・回 と ・ 回 と ・ 回 と

2

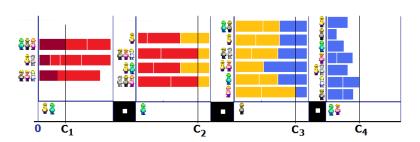
Motivation Basic concepts Complexity


Scheduling data of France Télécom

Consider |D| = |L| = 3 such that Technicians t₁ and t₂ with skills d_1 d_2 d_3 $Sk_{t_1} = \begin{array}{c} l_0 \\ l_1 \\ l_2 \end{array} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \end{bmatrix}, Sk_{t_2} = \begin{array}{c} l_0 \\ l_1 \\ l_2 \end{array} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{array} \end{bmatrix}$ Tasks j₁ and j₂ with skill requirements d_1 d_2 d_3 $Rq_{j_{1}} = \begin{matrix} l_{0} \\ l_{1} \\ l_{2} \end{matrix} \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{matrix} \end{bmatrix}, Rq_{j_{2}} = \begin{matrix} l_{0} \\ l_{1} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ • So, use the team $\tau = \{t_1, t_2\}!$

イロト イヨト イヨト イヨト

Motivation Basic concepts Complexity


A workday schedule

・ロン ・回と ・ヨン・

Motivation Basic concepts Complexity

A complete schedule

The schedule cost is the weighted makespan: $\sum_{i} w_i C_i$.

イロン イヨン イヨン イヨン

Э

Motivation Basic concepts Complexity

How hard is to solve our scheduling problem?

・ロン ・回と ・ヨン・

Motivation Basic concepts Complexity

Theoretical result

Theorem 1 Technician scheduling problem of France Télécom is NP-Hard in the strong sense.¹

¹Stable multi-skill workforce assignments, Fırat, M., Hurkens, C., Laugier, A., 2014, Annals of OR.

Motivation Basic concepts Complexity

Benchmark instances²

	Data set A				Data set B				Data set X			
Ins.	<i>T</i>	J	D	L	<i>T</i>	J	D	L	<i>T</i>	J	D	L
1	5	5	3	2	20	200	4	4	60	600	15	4
2	5	5	3	2	30	300	5	3	100	800	6	6
3	7	20	3	2	40	400	4	4	50	300	20	3
4	7	20	4	3	30	400	40	3	70	800	15	7
5	10	50	3	2	50	500	7	4	60	600	15	4
6	10	50	5	4	30	500	8	3	20	200	6	6
7	20	100	5	4	100	500	10	5	50	300	20	3
8	20	100	5	4	150	800	10	4	30	100	15	7
9	20	100	5	4	60	120	5	5	50	500	15	4
10	15	100	5	4	40	120	5	5	40	500	15	4

² Technicians and interventions scheduling for telecommunications, France Télécom R&D, Orange Labs.

Motivation Basic concepts Complexity

What about formulating as a MILP model?

An experimentation³ reports

After 24-hour computation time, instances A3 and A4 could not be solved by CPLEX 11, leaving optimality gaps 20% and 15% respectively.

³Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling = -??

ALNS approach Local search approach FMM approach Computational Results

State-of-art approaches to our scheduling problem

・ロン ・回 と ・ ヨ と ・ ヨ と

ALNS approach Local search approach FMM approach Computational Results

Adapted Large Neighborhood search ⁴

• A construction heuristic for initial schedule:

⁴Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling. → <

ALNS approach Local search approach FMM approach Computational Results

Adapted Large Neighborhood search ⁴

- A construction heuristic for initial schedule:
 - Construct teams for seed tasks..

⁴Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling. → A

ALNS approach Local search approach FMM approach Computational Results

Adapted Large Neighborhood search ⁴

- A construction heuristic for initial schedule:
 - Construct teams for seed tasks..
 - Criteria for seed tasks: Criticality, difficulty, similarity.

⁴Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling = ∽ ∘

ALNS approach Local search approach FMM approach Computational Results

Adapted Large Neighborhood search ⁴

- A construction heuristic for initial schedule:
 - Construct teams for seed tasks..
 - Criteria for seed tasks: Criticality, difficulty, similarity.
- Modifying the current schedule:

⁴Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling = ∽ ∘

ALNS approach Local search approach FMM approach Computational Results

Adapted Large Neighborhood search ⁴

- A construction heuristic for initial schedule:
 - Construct teams for seed tasks..
 - Criteria for seed tasks: Criticality, difficulty, similarity.
- Modifying the current schedule:
 - Choose a destroy and a repair method.

⁴Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling. → ○ <

ALNS approach Local search approach FMM approach Computational Results

Adapted Large Neighborhood search ⁴

- A construction heuristic for initial schedule:
 - Construct teams for seed tasks..
 - Criteria for seed tasks: Criticality, difficulty, similarity.
- Modifying the current schedule:
 - Choose a destroy and a repair method.
 - ► Accepting a new schedule: Use simulated annealing criterion.

⁴Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling = ∽ ∘

ALNS approach Local search approach FMM approach Computational Results

Adapted Large Neighborhood search ⁴

- A construction heuristic for initial schedule:
 - Construct teams for seed tasks..
 - Criteria for seed tasks: Criticality, difficulty, similarity.
- Modifying the current schedule:
 - Choose a destroy and a repair method.
 - Accepting a new schedule: Use simulated annealing criterion.
 - Update scores of destroy and repair methods.

⁴Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling a solution of the second second

ALNS approach Local search approach FMM approach Computational Results

Adapted Large Neighborhood search ⁴

- A construction heuristic for initial schedule:
 - Construct teams for seed tasks..
 - Criteria for seed tasks: Criticality, difficulty, similarity.
- Modifying the current schedule:
 - Choose a destroy and a repair method.
 - Accepting a new schedule: Use simulated annealing criterion.
 - Update scores of destroy and repair methods.
- Within timelimit: Make restarts of the schedule modification.

⁴Scheduling technicians and tasks in a telecommunication company, Cordeau, J. F., Laporte, G., Pasin F., Ropke, S., 2010, Journal of Scheduling **a**

ALNS approach Local search approach FMM approach Computational Results

High-Performance local search heuristic⁵

Obtain an initial schedule using a greedy algorithm

ALNS approach Local search approach FMM approach Computational Results

High-Performance local search heuristic⁵

- Obtain an initial schedule using a greedy algorithm
- Modify the schedule with 31 predefined moves:

ALNS approach Local search approach FMM approach Computational Results

High-Performance local search heuristic⁵

- Obtain an initial schedule using a greedy algorithm
- Modify the schedule with 31 predefined moves:
 - Swapping technicians randomly.

ALNS approach Local search approach FMM approach Computational Results

High-Performance local search heuristic⁵

- Obtain an initial schedule using a greedy algorithm
- Modify the schedule with 31 predefined moves:
 - Swapping technicians randomly.
 - Swapping tasks randomly within a day, between days.

ALNS approach Local search approach FMM approach Computational Results

High-Performance local search heuristic⁵

- Obtain an initial schedule using a greedy algorithm
- Modify the schedule with 31 predefined moves:
 - Swapping technicians randomly.
 - Swapping tasks randomly within a day, between days.
 - Other 28 sophisticated moves.

ALNS approach Local search approach FMM approach Computational Results

High-Performance local search heuristic⁵

- Obtain an initial schedule using a greedy algorithm
- Modify the schedule with 31 predefined moves:
 - Swapping technicians randomly.
 - Swapping tasks randomly within a day, between days.
 - Other 28 sophisticated moves.
- Some bookkeeping for maintaining precedence relations.

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM) Approach⁶

General properties:

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM) Approach⁶

General properties:

Constructing day schedules one by one.

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM) Approach⁶

General properties:

- Constructing day schedules one by one.
- Initializing a day schedule with one-task team loads.

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM) Approach⁶

General properties:

- Constructing day schedules one by one.
- Initializing a day schedule with one-task team loads.
- Inserting more tasks into day schedule possibly by

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM) Approach⁶

General properties:

- Constructing day schedules one by one.
- Initializing a day schedule with one-task team loads.
- Inserting more tasks into day schedule possibly by
 - extending teamloads

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM) Approach⁶

General properties:

- Constructing day schedules one by one.
- Initializing a day schedule with one-task team loads.
- Inserting more tasks into day schedule possibly by
 - extending teamloads
 - merging teamloads

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM) Approach⁶

General properties:

- Constructing day schedules one by one.
- Initializing a day schedule with one-task team loads.
- Inserting more tasks into day schedule possibly by
 - extending teamloads
 - merging teamloads
 - reshuffling technicians of a team

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM) Approach⁶

General properties:

- Constructing day schedules one by one.
- Initializing a day schedule with one-task team loads.
- Inserting more tasks into day schedule possibly by
 - extending teamloads
 - merging teamloads
 - reshuffling technicians of a team
 - initializing a new team

ALNS approach Local search approach FMM approach Computational Results

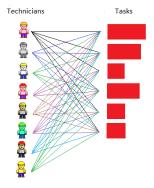
Flexible Matching Model (FMM) Approach⁶

General properties:

- Constructing day schedules one by one.
- Initializing a day schedule with one-task team loads.
- Inserting more tasks into day schedule possibly by
 - extending teamloads
 - merging teamloads
 - reshuffling technicians of a team
 - initializing a new team
- The above decisions are simultaneously made by a flexible Matching model!

⁶An improved MIP-based approach for a multi-skill workforce scheduling problem, Fırat., M., Hurkens, C., 2012, Journal of Scheduling.

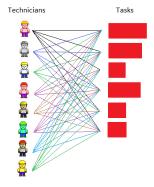
ALNS approach Local search approach FMM approach Computational Results


Initial Matching Model (IMM)

Murat Firat Multi-skilled workforce management

・ロン ・回と ・ヨン・

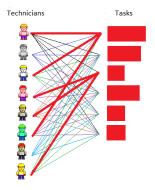
ALNS approach Local search approach FMM approach Computational Results


IMM: Bipartite Graph

イロン イヨン イヨン イヨン

ALNS approach Local search approach FMM approach Computational Results

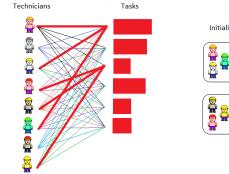
IMM: Matching constraints



- Technicians match to at most one task.
- Tasks can be matched to any #technicians
- Technicians matched to one task should cumulatively meet skill requirements
- Objective: Maximize weighted sum of matched tasks.

イロン イヨン イヨン イヨン

ALNS approach Local search approach FMM approach Computational Results


IMM: Matching solution

・ロト ・回ト ・ヨト ・ヨト

ALNS approach Local search approach FMM approach Computational Results

IMM: Initialized teams

Initialized Teams

・ロン ・四 と ・ ヨ と ・ モ と

Э

ALNS approach Local search approach FMM approach Computational Results

FMM Approach

Matching weights of tasks are sum of the following criteria

・ロン ・回と ・ヨン ・ヨン

ALNS approach Local search approach FMM approach Computational Results

FMM Approach

Matching weights of tasks are sum of the following criteria

processing time

・ロン ・回と ・ヨン ・ヨン

ALNS approach Local search approach FMM approach Computational Results

FMM Approach

Matching weights of tasks are sum of the following criteria

- processing time
- coverage

・ロン ・回と ・ヨン ・ヨン

ALNS approach Local search approach FMM approach Computational Results

FMM Approach

Matching weights of tasks are sum of the following criteria

- processing time
- coverage
- min-tech

・ロン ・回と ・ヨン ・ヨン

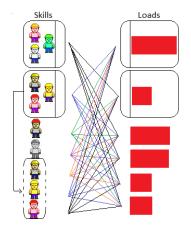
ALNS approach Local search approach FMM approach Computational Results

FMM Approach

Matching weights of tasks are sum of the following criteria

- processing time
- coverage
- min-tech
- hardness

・ロン ・回と ・ヨン ・ヨン

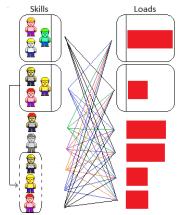

ALNS approach Local search approach FMM approach Computational Results

Flexible Matching Model (FMM)

・ロン ・回と ・ヨン・

ALNS approach Local search approach FMM approach Computational Results

FMM: Bipartite Graph



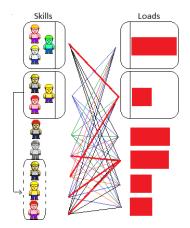
・ロン ・回と ・ヨン・

Э

ALNS approach Local search approach FMM approach Computational Results

FMM: Matching skills or loads of teams

- Either the skill or the load of a team can be matched in a solution.

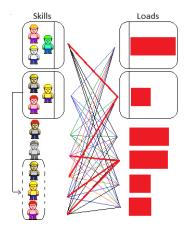

- Matching of the skill of a team results in extension of the load of that team.

- Matching of the load of a team results in releasing the conditionally available technicians of that team.

イロト イヨト イヨト イヨト

ALNS approach Local search approach FMM approach Computational Results

FMM: Matching solution



イロン 不同と 不同と 不同と

æ

ALNS approach Local search approach FMM approach Computational Results

FMM: Extended day schedule

Extended day schedule

イロン 不同と 不同と 不同と

æ

ALNS approach Local search approach FMM approach Computational Results

Computational Results: Set A

Instance	FMM	(%)	Cordeau	(%)	EsGaNo	(%)	BEST*	LB
A1	2340	0.0	2340	0.0	2340	0.0	2340	2310
A2	4755	0.0	4755	0.0	4755	0.0	4755	2100
A3	11880	0.0	11880	0.0	11880	0.0	11880	11340
A4	13452	0.0	13452	0.0	14040	4.4	13452	10680
A5	29355	1.8	29355	1.8	29400	1.9	28845	26940
A6	20055	6.7	18795	0.0	18795	0.0	18795	17640
A7	30960	1.4	30540	0.0	30540	0.0	30540	28672
A8	17355	2.6	17700	4.6	20100	18.8	16920	16216
A9	28280	3.4	27692	1.3	27440	0.3	27348	25558
A10	39300	2.6	38636	0.9	38460	0.4	38296	36992
Average		1.8		0.9		2.6		

・ロン ・回 と ・ヨン ・ヨン

Э

ALNS approach Local search approach FMM approach Computational Results

Computational Results: Set B

Instance	FMM	(%)	Cordeau	(%)	EsGaNo	(%)	BEST*	LB
B1	34575	2.0	37200	9.7	33900	0.0	33900	31875
B2	16755	5.6	17070	7.6	16260	2.5	15870	14280
B3	16275	1.7	18015	12.6	16005	0.0	16005	13965
B4	23925	0.6	23775	0.0	24330	2.3	23775	16800
B5	88920	0.3	117540	32.5	88680	0.0	88680	79530
B6	28785	5.1	27390	0.0	27675	1.0	26955	24180
B7	31620	0.0	33900	7.2	36900	16.7	31620	25290
B 8	35520	10.4	33240	3.4	36840	14.6	32160	31890
B9	28080	0.0	29760	6.0	32700	16.5	28080	25680
B10	35040	1.0	35640	1.7	41280	19.0	34680	32370
Average		2.7		8.1		7.3		

・ロン ・回 と ・ヨン ・ヨン

Э

ALNS approach Local search approach FMM approach Computational Results

Computational Results: Set X

Instance	FMM	(%)	Cordeau	(%)	EsGaNo	(%)	BEST*	LB
X1	146220	0.0	159300	8.9	180240	23.3	146220	136680
X2	7740	6.6	8280	14.0	8370	15.3	7260	5700
X3	48720	0.0	50400	3.4	50760	4.2	48720	36060
X4	64600	0.0	66780	3.4	68960	6.7	64600	58230
X5	144750	0.0	157800	9.0	178560	23.4	144750	130995
X6	9690	2.2	9900	4.4	10440	10.1	9480	6150
X7	32040	0.0	47760	49.1	38400	19.9	32040	25410
X8	23220	0.0	24060	3.6	23800	2.5	23220	17600
X9	122700	0.0	152400	24.2	154920	26.3	122700	98805
X10	120300	0.0	140520	16.8	152280	26.6	120300	87210
Average		0.9		13.7		15.8		

・ロン ・回 と ・ヨン ・ヨン

Э

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Further scheduling topics

Murat Firat Multi-skilled workforce management

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Stability in multi-skilled workforce assignments

The notion of stability in workforce assignments is defined⁷.

⁷Stable multi-skill workforce assignments, Fırat, M., Hurkens, C., Laugier, A., 2014, Annals of OR.

⁸A Branch-and-Price algorithm for stable multi-skill workforce assignments with hierarchical skills, Fırat, M., Briskorn, D., Laugier, A., 2016, EJOR

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Stability in multi-skilled workforce assignments

- The notion of stability in workforce assignments is defined⁷.
- Special case analysis is conducted.

⁷Stable multi-skill workforce assignments, Fırat, M., Hurkens, C., Laugier, A., 2014, Annals of OR.

⁸A Branch-and-Price algorithm for stable multi-skill workforce assignments with hierarchical skills, Fırat, M., Briskorn, D., Laugier, A., 2016, EJOR

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Stability in multi-skilled workforce assignments

- The notion of stability in workforce assignments is defined⁷.
- Special case analysis is conducted.
- Problem complexity is established.

⁷Stable multi-skill workforce assignments, Fırat, M., Hurkens, C., Laugier, A., 2014, Annals of OR.

⁸A Branch-and-Price algorithm for stable multi-skill workforce assignments with hierarchical skills, Fırat, M., Briskorn, D., Laugier, A., 2016, EJOR ≥ ≥

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Stability in multi-skilled workforce assignments

- The notion of stability in workforce assignments is defined⁷.
- Special case analysis is conducted.
- Problem complexity is established.
- The problem is formulated as an IP model.

⁷Stable multi-skill workforce assignments, Fırat, M., Hurkens, C., Laugier, A., 2014, Annals of OR.

⁸A Branch-and-Price algorithm for stable multi-skill workforce assignments with hierarchical skills, Fırat, M., Briskorn, D., Laugier, A., 2016, EJOR ≥ ≥

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Stability in multi-skilled workforce assignments

- The notion of stability in workforce assignments is defined⁷.
- Special case analysis is conducted.
- Problem complexity is established.
- The problem is formulated as an IP model.
- A Branch-and-Price algorithm is developed⁸.

⁷Stable multi-skill workforce assignments, Fırat, M., Hurkens, C., Laugier, A., 2014, Annals of OR.

⁸A Branch-and-Price algorithm for stable multi-skill workforce assignments with hierarchical skills, Fırat, M., Briskorn, D., Laugier, A., 2016, EJOR

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Scheduling multi-skilled workforce with varying performances⁹

Scheduling by taking a dynamic view of human performance.

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Scheduling multi-skilled workforce with varying performances⁹

- Scheduling by taking a dynamic view of human performance.
- It is shown how the scheduling problem can be constructed from business process knowledge.

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Scheduling multi-skilled workforce with varying performances⁹

- Scheduling by taking a dynamic view of human performance.
- It is shown how the scheduling problem can be constructed from business process knowledge.
- The types of nodes in process trees matched with the notion of scheduling concepts.

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

Scheduling multi-skilled workforce with varying performances 9

- Scheduling by taking a dynamic view of human performance.
- It is shown how the scheduling problem can be constructed from business process knowledge.
- The types of nodes in process trees matched with the notion of scheduling concepts.
- The problem is formulated as an MIP model to conduct computational experimentation.

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

イロト イポト イヨト イヨト

Pilot workforce planning of an airline company in Turkey

An aggregated planning problem of pilot in a one-year horizon.

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

・ロン ・回 と ・ ヨ と ・ ヨ と

Pilot workforce planning of an airline company in Turkey

- An aggregated planning problem of pilot in a one-year horizon.
- Demands for every aircraft type are to be met.

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

・ロン ・回 と ・ ヨ と ・ ヨ と

Pilot workforce planning of an airline company in Turkey

- An aggregated planning problem of pilot in a one-year horizon.
- Demands for every aircraft type are to be met.
- Dynamic skills of pilots with trainings.

Stability in multi-skilled workforce assignments Scheduling multi-skilled workforce with varying performances Pilot workforce planning of an airline company in Turkey

イロト イポト イヨト イヨト

Pilot workforce planning of an airline company in Turkey

- An aggregated planning problem of pilot in a one-year horizon.
- Demands for every aircraft type are to be met.
- Dynamic skills of pilots with trainings.
- Advise a pilot employment plan to human resource department.

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Scheduling and Information Systems

Murat Firat Multi-skilled workforce management

・ロン ・回と ・ヨン・

æ

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Precision in scheduling data

Setup times

Murat Firat Multi-skilled workforce management

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Precision in scheduling data

Setup times

▶ are the components of scheduling data due to real-life issue.

・ロン ・回 と ・ ヨ と ・ ヨ と

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Precision in scheduling data

Setup times

- are the components of scheduling data due to real-life issue.
- usually obtained by rough approximations.

イロン 不同と 不同と 不同と

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Precision in scheduling data

Setup times

- are the components of scheduling data due to real-life issue.
- usually obtained by rough approximations.
- can be extracted using some historical data of companies.

イロト イポト イヨト イヨト

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Precision in scheduling data

Setup times

- are the components of scheduling data due to real-life issue.
- usually obtained by rough approximations.
- can be extracted using some historical data of companies.
- possibly one topic that may integrate Scheduling and Business Process Analysis

イロト イポト イヨト イヨト

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Scheduling and Artificial Intelligence

Exact algorithms

Murat Firat Multi-skilled workforce management

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Scheduling and Artificial Intelligence

Exact algorithms

are smart enumerations methods

イロン 不同と 不同と 不同と

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Scheduling and Artificial Intelligence

Exact algorithms

- are smart enumerations methods
- provide us optimality gaps

イロン イヨン イヨン イヨン

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Scheduling and Artificial Intelligence

Exact algorithms

- are smart enumerations methods
- provide us optimality gaps
- usually decomposes scheduling problem into sub-problems

イロト イポト イヨト イヨト

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Scheduling and Artificial Intelligence

Exact algorithms

- are smart enumerations methods
- provide us optimality gaps
- usually decomposes scheduling problem into sub-problems
- there are more than one criteria to deal with

イロン イヨン イヨン イヨン

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Scheduling and Artificial Intelligence

Exact algorithms

- are smart enumerations methods
- provide us optimality gaps
- usually decomposes scheduling problem into sub-problems
- there are more than one criteria to deal with
- the sub-problems are usually finding "good" objects

イロン イヨン イヨン イヨン

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Scheduling and Artificial Intelligence

Exact algorithms

- are smart enumerations methods
- provide us optimality gaps
- usually decomposes scheduling problem into sub-problems
- there are more than one criteria to deal with
- the sub-problems are usually finding "good" objects
- defining adaptively how an object is "good" is crucial

イロト イポト イヨト イヨト

Scheduling and Business Process Analysis Scheduling and Artificial Intelligence

Thanks

Murat Firat Multi-skilled workforce management

・ロン ・回 と ・ ヨン ・ モン

æ