Real-time Systems Development
-- Verified Committee Meeting --

10 September 2010

Martijn van den Heuvel and Reinder J. Bril
Technische Universiteit Eindhoven
Mathematics and Computer Science
System Architecture and Networking
{m.m.h.p.v.d.heuvel, r.j.bril}@tue.nl
http://www.win.tue.nl/~mheuvel, ~rbril/
Contents

- Achieved Milestones
- Roadmap
Achieved Milestones (1/2)
(period May 2010 – Sep. 2010)

• Extension of COTS RTOS
 – μC/OS-II, currently available:
 • simulation environment
 • 2-level FPPS scheduling
 • Global EDF scheduling
 • Two-level Synchronization based on SRP
 – i.e. local level: SRP;
 – global level SIRAP, HSRP, BROE
 • More: http://www.win.tue.nl/~mholende/ucos/
 – Accepted paper (co-authored):
 • Tracing, Visualizing and Measuring the Behavior of Real-Time Systems,
 Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS), July 2010
Achieved Milestones (2/2)
(period May 2010 – May 2010)

• Inter-application Synchronization:
 – Accepted papers:
 • *Extending an HSF-enabled Open Source Real-Time Operating System with Resource Sharing*,
 Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT), July 2010
 • *Protocol Transparent Resource Sharing in Hierarchically Scheduled Real-Time Systems*,
 IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), September 2010
 (awarded with a IEEE-IES scholarship)
 • Efficient HSF-analysis techniques:
 – Accepted paper (co-authored):
 • *Exploiting Harmonic Periods to Improve Linearly Approximated Response-Time Upper Bounds*,
 ETFA (WiP), September 2010

Dependability in Automotive Systems

- AUTOSAR: an OS should prevent timing faults to propagate to other applications.
- Reservations have been studied in AUTOSAR
- Synchronization between components via SRP
 - our protocols are SRP compliant
- Current research topic:
 - How to guarantee temporal isolation in the presence of interacting components?
Main Roadmap
(period May 2010 – May 2011)

• Hierarchical Scheduling:
 – Integration of Time-triggered approaches
 – Design and analysis of application interfaces
 • Capture application’s timing requirements
 • Capture application’s resource requirements
 – Integration of (legacy) COTS applications
 – Multi-resource management:
 • E.g. include Flexray scheduling
Roadmap - Continued

- Multi-resource scheduling
 - E.g. multi-processors, memory, bus, network

- Modes of operation
 - Inter- and intra-application
 - Redistribution of resources

- Criticality versus optimal resource usage

- Multi-level Hierarchical Scheduling