Exploiting Harmonic Periods to Improve Linearly Approximated Response-time Upper Bounds
– Emerging Technologies and Factory Automation 2010 –

Chidiebere G.U. Okwudire, Martijn M.H.P. van den Heuvel, Reinder J. Bril and Johan J. Lukkien

System Architecture and Networking (SAN)
Department of Mathematics and Computer Science
Eindhoven University of Technology
The Netherlands

15 September 2010
Motivation and Problem

- Exact FPPS-based schedulability tests are pseudo-polynomial in complexity.
- A linear-time sufficient test has been developed to estimate response-time upper bounds:

Motivation and Problem

- Exact FPPS-based schedulability tests are pseudo-polynomial in complexity.
- A linear-time sufficient test has been developed to estimate response-time upper bounds:

We propose to

1. improve this test for task sets with harmonically related task periods;
2. apply this test to the EDP-model in hierarchically scheduled systems.
Linearly Computed Response-time Upper Bounds

The existing approach works as follows:

1. A (linear) approximation of the interference of each higher priority task, τ_i, is derived;
2. these linear approximations are summed up and the computation time of the task itself is added;
3. the intersection of the resulting equation with the processor supply is calculated.

![Graph showing linear approximations and processor supply](image)
Combine the workload of higher priority, harmonic tasks into one artificial task:

\[\tau_{1+2} \]

\[\tau_3 \]

\[y = t \]

Davis and Burns’ approach versus our approach
Conclusions and Future Work

- Improved response-time bounds for partially harmonic task sets.

- Extension to hierarchical FPPS:
 - model the unavailability an EDP-resource by two highest priority, harmonic (fictive) tasks.
Conclusions and Future Work

- Improved response-time bounds for partially harmonic task sets.

- Extension to hierarchical FPPS:
 - model the unavailability an EDP-resource by two highest priority, harmonic (fictive) tasks.

Open endings:

1. Extend our analysis for tasks with activation jitter;
2. Compare our approach with utilization-based schedulability tests;
3. Exploit harmonic periods to efficiently calculate EDP budget parameters.