
Exercises 2IN62.1

Today you will get acquainted with the CodeWarrior development environ-
ment, which we will use throughout the course. It allows you to write code,
compile the code for the MC9S12XF512 controller and then run the executable
on either the EVB9S12XF512E development board or within the MC9S12XF512
simulator. Today we will work with the simulator and perform some measure-
ments.

1.1 Installing CodeWarrior

First let us setup CodeWarrior.

1. Download and install the CodeWarrior IDE from http://cache.freescale.

com/lgfiles/devsuites/HC12/CW_HC12_v5.1_SPECIAL.exe

1.2 Building and running a CodeWarrior project

To develop under CodeWarrior you first need to create a project.

1. Navigate to the exercises1 directory.

2. Open the project file EVB9S12XF.mcp.

First we need to compile the program (illustrated in Figure 1):

3. Open the main.c file, which resides in the Sources group. The main()

function contains the program. This is where you will be writing your
code in later exercises.

4. Select the Full Chip Simulation as target.

5. Build and run the project.

At this point the debugger window will appear, shown in Figure 2. It allows
you to control the execution of the program.

6. The MC9S12XF512 controller contains two cores: the main HC12 core,
and an auxiliary XGATE core. We will be working only on the HC12 core.

1

http://cache.freescale.com/lgfiles/devsuites/HC12/CW_HC12_v5.1_SPECIAL.exe
http://cache.freescale.com/lgfiles/devsuites/HC12/CW_HC12_v5.1_SPECIAL.exe


3

4

5

Figure 1: Building a project in CodeWarrior. The red numbers refer to the
corresponding steps.

2



7. The control bar allows to control the execution of the program. The green
arrow executes the program until the end, or until a breakpoint (more on
these later). The black arrow in a red circle stops and resets the execution.
The other buttons allow finer control, e.g. to execute a single instruction
or to step out of a function call.

8. In the Assembly window you can see the low-level processor instructions
which are currently executed.

9. In the status bar on the bottom of the window you can see the current
cycle count or the current elapsed time (clicking on the frequency field
next to the cycle count allows to switch between the two).

10. Start the execution by pressing the green arrow. The program will execute
and stop almost immediately, since this particular program does very little.
You will notice that the Assembly window is now pointing to a different
instruction. Also, the cycle count has changed.

11. Reset the simulation and run it again a few times to see how the instruction
pointer and the cycle count change.

1.3 Disassebly

CodeWarrior provides a handy view showing the disassembled C code, i.e. the
mapping of the C code to the assembly generated by the compiler. It is very
useful for analyzing the code to better understand which micro controller in-
structions will actually be executed. The assembly corresponding to the main()
function is illustrated in Figure 3.

1. Disassemble the main.c file by right-clicking within its Source window and
then choosing Disassemble.

1.4 Measuring the cycle count during runtime

Now that you are able to compile and run a program in the simulator, we will
measure the execution time of the outer loop in the program. We will measure
how long it takes to execute the outer loop by adding two breakpoints: one at
the int k = 0; instruction and one at the return (0); instruction. When the
execution reaches an instruction marked with a breakpoint it stops just before
executing the instruction, allowing us to read the cycle count.

Note that you have to add the breakpoints in the debugger window. Clicking
on a line in the CodeWarrior window does not add an actual breakpoint.

1. Make sure that the main.c file is shown in the Source:1 window. If this
is not the case, then right-click in the Source:1 window, click on Open

Source File..., and select main.c.

3



7

8

96
Figure 2: Debugging a program in the simulator.

4



Figure 3: Disassembly of the main.c file.

5



2. Right-click on the int k = 0; line and click on Set Breakpoint.

3. Right-click on the return (0); line and click on Set Breakpoint.

4. Run the simulation. You will notice that the execution stops at int k =

0;. Write down the cycle count.

5. Press the green arrow to continue executing until the next breakpoint (or
the end of the program). The execution stops at return (0);. Write
down the cycle count. How many cycles did it take to execute the
loop?

6. Why did we place the breakpoint at int k = 0; and not at while

(i < 20)? What are the consequences for the measurements?

7. Rather than writing down the cycle count at the first breakpoint and then
subtracting it from the cycle count at the second breakpoint, we can reset
the cycle count at the first breakpoint by double-clicking on the cycle
count.

1.5 Changing parameters

In this exercise we will modify the program.

1. Close the debugger.

2. Open the EVB9S12XF.mcp project (if it is not already open) and navigate
to main.c.

3. Inside the main() function, the outer while loop will iterate 20 times.
Change it so that it iterates only a single time.

4. Build and run the project.

5. Measure the cycle count of the execution of the outer loop for
different numbers of iterations, ranging from 1 to 100, in steps
of 20 (i.e. 1, 20, 40, 60, 80, 100)

1.6 Measuring the time during runtime

Next to measuring the cycle count, we can also measure the time.

1. In the status bar on the bottom of the debugger, click on the field on the
left of the cycle count showing a frequency in MHz. A window appears
in which you can select True Time rather than CPU cycles. The time is
shown in milliseconds.

As mentioned earlier, the debugger allows also to step through the simulation
by executing individual instructions.

6



2. Run the simulation and break at the first line of main.c.

3. You can perform a single step by clicking on the Step Over button (second
to the right of the green arrow).

4. Set the outer loop count to 2 and step through the entire pro-
gram, writing down the cycle count and the time for each step
(i.e. the execution of each instruction). When looking at your
collected data, what do you observe?

1.7 Inspecting variables during runtime

In this exercise we will inspect the values of variables during runtime.

1. Assume the outer loop iterates n times (initially we had n = 20).
Give an equation for the number of inner loop iterations in terms
of n.

2. You can inspect the value of any variable during runtime by setting a
breakpoint and reading it in the Data:1 window (for global variables) and
Data:2 window (for local variables).

Note that the compiler, which translates your program into machine code,
will try to optimize the generated code. In particular, if it observes that
the value assigned to a variable is not used anywhere, or if the value
of another variable can be reused, then assignments to that variable are
removed from the code. Consequently, you may find that some variables
are not visible in the Data:1 and Data:2 windows.

3. Which variable should you inspect to see the total number of
inner loop iterations?

4. Where should you place the breakpoint?

5. Compare your measured count of inner loop iteration with those
you obtain using your equation from step 1, for n ∈ {1, 20, 40, 60, 80, 100}

7


	Installing CodeWarrior
	Building and running a CodeWarrior project
	Disassebly
	Measuring the cycle count during runtime
	Changing parameters
	Measuring the time during runtime
	Inspecting variables during runtime

