
Exercises 2IN60.2

Today we will start with programming the MC9S12XF512 micro-controller. In
particular, we will experiment with different variants of the cyclic executive.

2.1 As Fast As Possible (AFAP)

In this exercise you will implement two tasks and execute them using the AFAP ap-
proach. Each task senses a sensor connected via the ATD converter and actuates a led
in case the sensed value crosses a threshold. The CodeWarrior project for this exercise
is in the directory exercise2 1.

1. The main.c file contains a specification of the two tasks: Task1() and
Task2(). Implement these tasks, making use of the ATDReadChannel()

function introduced during the lecture.

Hint: you may like to look at the Led driver.h and Led driver.c files inside
the Drivers directory for functions to toggle and set the leds.

2. Implement the main() function, making sure that Task1() is executing
before Task2() according to the AFAP cyclic executive approach.

Deliver the modified main.c file as answers to steps 1 and 2.
Let Tmin

i and Tmax
i be the minimum and maximum inter-arrival time between two

consequtive jobs of task τi, respectively. Activation jitter for task τi is defined in
terms of the maximum and minimum inter-arrival time between its two consecutive
jobs: Ji = Tmax

i − Tmin
i .

3. Measure the minimum and maximum execution times (in cycles) of
Task1 and Task2.

Note that the simulated ATD converter always reads a value 0 from all the ports.

4. Give a formula for the inter-arrival time between two consecutive jobs
for Task1 and Task2.

5. Derive the formula for the activation jitter for Task1 and Task2.

2.2 Time-driven AFAP

In this exercise you will make the control loop periodic. The CodeWarrior project for
this exercise is in the directory exercise2 2.

1. Copy your task definitions and control loop from Exercise 2.1 into the main.c

file in this project.

2. The Freescale HCS12 instruction set provides instructions STOP and WAI which
can be used to suspend the processor. These instructions are described in Section
5.27 of the HCS12 manual (http://www.win.tue.nl/~mholende/automotive/
S12CPUV2.pdf). Use one of these instructions to implement Time-driven
AFAP, i.e. to activate the task sequence periodically. Check the im-
plementation of ATDReadChannel() in theATD driver.c file for the syntax for
writing assembly instructions in C code.

1

http://www.win.tue.nl/~mholende/automotive/S12CPUV2.pdf
http://www.win.tue.nl/~mholende/automotive/S12CPUV2.pdf


3. The Freescale MC9S12XF512 micro-controller can generate a Real-Time Inter-
rupt at a fixed frequency, which is derived from the main CPU clock by means
of a divider. The frequency of the timer is set in the CPUInitRTI() function in
the cpu.c file. It is currently set to 1KHz. Consult Section 2.3.2.8 in the
MC9S12XF512 manual (http://www.win.tue.nl/~mholende/automotive/
MC9S12XF512RMV1.pdf) and change the frequency to 2Hz.

2.3 Activation jitter and drift

In this exercise you will investigate drift. The CodeWarrior project for this exercise is
in the directory exercise2 3.

1. The main.c file contains a specification of the two tasks: Task1() and
Task2(). Implement these tasks.

2. The main() function contains a time-driven AFAP control loop, which iterates
over the task sequence 1000 times. Place brake points at the asm nop; in-
structions around the control loop and measure the activation jitter of the
1001st job of Task1().

3. Modify the main() function to implement a simple AFAP control loop, which
iterates over the task sequence 1000 times. Place brake points at the asm nop;

instructions around the control loop and measure the activation jitter of
the 1001st job of Task1().

4. Does the AFAP or the time-driven AFAP control loop suffer from
drift? Motivate your answer.

2

http://www.win.tue.nl/~mholende/automotive/MC9S12XF512RMV1.pdf
http://www.win.tue.nl/~mholende/automotive/MC9S12XF512RMV1.pdf

	As Fast As Possible (AFAP)
	Time-driven AFAP
	Activation jitter and drift

