
POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK

DRAFT 1

DR. GAVIN WOOD
FOUNDER, ETHEREUM & PARITY

GAVIN@PARITY.IO

Abstract. Present-day blockchain architectures all suffer from a number of issues not least practical means of extensi-
bility and scalability. We believe this stems from tying two very important parts of the consensus architecture, namely
canonicality and validity, too closely together. This paper introduces an architecture, the heterogeneous multi-chain,
which fundamentally sets the two apart.

In compartmentalising these two parts, and by keeping the overall functionality provided to an absolute minimum
of security and transport, we introduce practical means of core extensibility in situ. Scalability is addressed through
a divide-and-conquer approach to these two functions, scaling out of its bonded core through the incentivisation of
untrusted public nodes.

The heterogeneous nature of this architecture enables many highly divergent types of consensus systems interop-
erating in a trustless, fully decentralised “federation”, allowing open and closed networks to have trust-free access to
each other.

We put forward a means of providing backwards compatibility with one or more pre-existing networks such as
Ethereum. We believe that such a system provides a useful base-level component in the overall search for a practically
implementable system capable of achieving global-commerce levels of scalability and privacy.

1. Preface

This is intended to be a technical “vision” summary
of one possible direction that may be taken in further de-
veloping the blockchain paradigm together with some ra-
tionale as to why this direction is sensible. It lays out in
as much detail as is possible at this stage of development
a system which may give a concrete improvement on a
number of aspects of blockchain technology.

It is not intended to be a specification, formal or oth-
erwise. It is not intended to be comprehensive nor to be a
final design. It is not intended to cover non-core aspects
of the framework such as APIs, bindings, languages and
usage. This is notably experimental; where parameters
are specified, they are likely to change. Mechanisms will
be added, refined and removed in response to community
ideas and critiques. Large portions of this paper will likely
be revised as experimental evidence and prototyping gives
us information about what will work and what not.

This document includes a core description of the pro-
tocol together with ideas for directions that may be taken
to improve various aspects. It is envisioned that the core
description will be used as the starting point for an initial
series of proofs-of-concept. A final “version 1.0” would be
based around this refined protocol together with the ad-
ditional ideas that become proven and are determined to
be required for the project to reach its goals.

1.1. History.

• 09/10/2016: 0.1.0-proof1
• 20/10/2016: 0.1.0-proof2
• 01/11/2016: 0.1.0-proof3
• 10/11/2016: 0.1.0

2. Introduction

Blockchains have demonstrated great promise of util-
ity over several fields including “Internet of Things”
(IoT), finance, governance, identity management, web-
decentralisation and asset-tracking. However, despite the

technological promise and grand talk, we have yet to see
significant real-world deployment of present technology.
We believe that this is down to five key failures of present
technology stacks:

Scalability: How much resources are spent globally
on processing, bandwidth and storage for the sys-
tem to process a single transaction and how many
transactions can be reasonably processed under
peak conditions?

Isolatability: Can the divergent needs of multiple
parties and applications be addressed to a near-
optimal degree under the same framework?

Developability: How well do the tools work? Do
the APIs address the developers’ needs? Are ed-
ucational materials available? Are the right inte-
grations there?

Governance: Can the network remain flexible to
evolve and adapt over time? Can decisions be
made with sufficient inclusivity, legitimacy and
transparency to provide effective leadership of a
decentralised system?

Applicability: Does the technology actually ad-
dress a burning need on its own? Is other “mid-
dleware” required in order to bridge the gap to
actual applications?

In the present work, we aim to address the first two
issues: scalability and isolatability. That said, we believe
the Polkadot framework can provide meaningful improve-
ments in each of these classes of problems.

Modern, efficient blockchain implementations such as
the Parity Ethereum client [17] can process in excess of
3,000 transactions per second when running on perfor-
mant consumer hardware. However, current real-world
blockchain networks are practically limited to around 30
transactions per second. This limitation mainly origi-
nates from the fact that the current synchronous consen-
sus mechanisms require wide timing margins of safety on
the expected processing time, which is exacerbated by the

1



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 2

desire to support slower implementations. This is due to
the underlying consensus architecture: the state transi-
tion mechanism, or the means by which parties collate
and execute transactions, has its logic fundamentally tied
into the consensus “canonicalisation” mechanism, or the
means by which parties agree upon one of a number of
possible, valid, histories.

This applies equally to both proof-of-work (PoW) sys-
tems such as Bitcoin [15] and Ethereum [5,23] and proof-
of-stake (PoS) systems such as NXT [8] and Bitshares [12]:
all ultimately suffer from the same handicap. It is a simple
strategy that helped make blockchains a success. However,
by tightly coupling these two mechanisms into a single unit
of the protocol, we also bundle together multiple different
actors and applications with different risk profiles, differ-
ent scalability requirements and different privacy needs.
One size does not fit all. Too often it is the case that in a
desire for broad appeal, a network adopts a degree of con-
servatism which results in a lowest-common-denominator
optimally serving few and ultimately leading to a failing
in the ability to innovate, perform and adapt, sometimes
dramatically so.

Some systems such as e.g. Factom [21] drop the state-
transition mechanism altogether. However, much of the
utility that we desire requires the ability to transition state
according to a shared state-machine. Dropping it solves
an alternative problem; it does not provide an alternative
solution.

It seems clear, therefore, that one reasonable direction
to explore as a route to a scalable decentralised compute
platform is to decouple the consensus architecture from
the state-transition mechanism. And, perhaps unsurpris-
ingly, this is the strategy that Polkadot adopts as a solu-
tion to scalability.

2.1. Protocol, Implementation and Network. Like
Bitcoin and Ethereum, Polkadot refers at once to a net-
work protocol and the (hitherto presupposed) primary
public network that runs this protocol. Polkadot is in-
tended to be a free and open project, the protocol speci-
fication being under a Creative Commons license and the
code being placed under a FLOSS license. The project is
developed in an open manner and accepts contributions
where ever they are useful. A system of RFCs, not unlike
the Python Enhancement Proposals, will allow a means of
publicly collaborating over protocol changes and upgrades.

Our initial implementation of the Polkadot protocol
will be known as the Parity Polkadot Platform and will
include a full protocol implementation together with API
bindings. Like other Parity blockchain implementations,
PPP is designed to be a general-purpose blockchain tech-
nology stack, neither uniquely for a public network nor for
private/consortium operation. The development of it thus
far has been funded by several parties including through
a grant from the British government.

This paper nonetheless describes Polkadot under the
context of a public network. The functionality we envi-
sion in a public network is a superset of that required in
alternative (e.g. private and/or consortium) settings. Fur-
thermore, in this context, the full scope of Polkadot can
be more clearly described and discussed. This does mean

the reader should be aware that certain mechanisms may
be described (for example interoperation with other pub-
lic networks) which are not directly relevant to Polkadot
when deployed under non-public (“permissioned”) situa-
tions.

2.2. Previous work. Decoupling the underlying consen-
sus from the state-transition has been informally proposed
in private for at least two years—Max Kaye was a pro-
ponent of such a strategy during the very early days of
Ethereum.

A more complex scalable solution known as Chain
fibers, dating back to June 2014 and first published later
that year1, made the case for a single relay-chain and mul-
tiple homogeneous chains providing a transparent inter-
chain execution mechanism. Decoherence was paid for
through transaction latency—transactions requiring the
coordination of disparate portions of the system would
take longer to process. Polkadot takes much of its ar-
chitecture from that and the follow-up conversations with
various people, though it differs greatly in much of its de-
sign and provisions.

While there are no systems comparable to Polkadot
actually in production, several systems of some relevance
have been proposed, though few in any substantial level of
detail. These proposals can be broken down into systems
which drop or reduce the notion of a globally coherent
state machine, those which attempt to provide a globally
coherent singleton machine through homogeneous shards
and those which target only heterogeneity.

2.2.1. Systems without Global State. Factom [21] is a sys-
tem that demonstrates canonicality without the according
validity, effectively allowing the chronicling of data. Be-
cause of the avoidance of global state and the difficulties
with scaling which this brings, it can be considered a scal-
able solution. However, as mentioned previously, the set
of problems it solves is strictly and substantially smaller.

Tangle [18] is a novel approach to consensus systems.
Rather than arranging transactions into blocks and form-
ing consensus over a strictly linked list to give a glob-
ally canonical ordering of state-changes, it largely aban-
dons the idea of a heavily structured ordering and instead
pushes for a directed acyclic graph of dependent trans-
actions with later items helping canonicalise earlier items
through explicit referencing. For arbitrary state-changes,
this dependency graph would quickly become intractable,
however for the much simpler UTXO model2 this becomes
quite reasonable. Because the system is only loosely co-
herent and transactions are generally independent of each
other, a large amount of global parallelism becomes quite
natural. Using the UTXO model does have the effect
of limiting Tangle to a purely value-transfer “currency”
system rather than anything more general or extensible.
Furthermore without the hard global coherency, interac-
tion with other systems—which tend to need an absolute
degree knowledge over the system state—becomes imprac-
tical.

1https://github.com/ethereum/wiki/wiki/Chain-Fibers-Redux
2unspent transaction output, the model that Bitcoin uses whereby the state is effectively the set of address associated with some value;

transactions collate such addresses and reform them into a new set of addresses whose sum total is equivalent



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 3

2.2.2. Heterogeneous Chain Systems. Side-chains [3] is a
proposed addition to the Bitcoin protocol which would al-
low trustless interaction between the main Bitcoin chain
and additional side-chains. There is no provision for any
degree of ‘rich’ interaction between side-chains: the in-
teraction would be limited to allowing side-chains to be
custodians of each other’s assets, effecting—in the local
jargon—a two-way peg3. The end vision is for a frame-
work where the Bitcoin currency could be provided with
additional, if peripheral, functionality through pegging it
onto some other chains with more exotic state transition
systems than the Bitcoin protocol allows. In this sense,
side-chains addresses extensibility rather than scalability.

Indeed, there is fundamentally no provision for the va-
lidity of side-chains; tokens from one chain (e.g. Bitcoin)
held on behalf of a side-chain are secured only by the
side-chain’s ability to incentivise miners to canonicalise
valid transitions. The security of the Bitcoin network
cannot easily be transitioned to work on behalf of other
blockchains. Furthermore, a protocol for ensuring Bitcoin
miners merge-mine (that is duplicate their canonicalisa-
tion power onto that of the side-chain) and, more impor-
tantly, validate the side-chain’s transitions is outside the
scope of this proposal.

Cosmos [10] is a proposed multi-chain system in the
same vein as side-chains, swapping the Nakamoto PoW
consensus method for Jae Kwon’s Tendermint algorithm.
Essentially, it describes multiple chains (operating in
zones) each using individual instances of Tendermint, to-
gether with a means for trust-free communication via a
master hub chain. This interchain communication is lim-
ited to the transfer of digital assets (“specifically about to-
kens”) rather than arbitrary information, however such in-
terchain communication does have a return path for data,
e.g. to report to the sender on the status of the transfer.

Validator sets for the zoned chains, and in particular
the means of incentivising them, are, like side-chains, left
as an unsolved problem. The general assumption is that
each zoned chain will itself hold a token of value whose in-
flation is used to pay for validators. Still in the early stages
of design, at present the proposal lacks comprehensive de-
tails over the economic means of achieving the scalable
certainty over global validity. However, the loose coher-
ence required between the zones and the hub will allow
for additional flexibility over the parameters of the zoned
chains compared to that of a system enforcing stronger
coherence.

2.2.3. Casper. As yet no comprehensive review or side-
by-side comparison between Casper [6] and Polkadot
have been made, though one can make a fairly sweeping
(and accordingly inaccurate) characterisation of the two.
Casper is a reimagining of how a PoS consensus algorithm
could be based around participants betting on which fork
would ultimately become canonical. Substantial consider-
ation was given to ensuring that it be robust to network
forks, even when prolonged, and have some additional de-
gree of scalability on top of the basic Ethereum model. As
such, Casper to date has tended to be a substantially more
complex protocol than Polkadot and its forebears, and a
substantial deviation from the basic blockchain format. It

remains unseen as to how Casper will iterate in the future
and what it will look like should it finally be deployed.

While Casper and Polkadot both represent interest-
ing new protocols and, in some sense, augmentations of
Ethereum, there are substantial differences between their
ultimate goals and paths to deployment. Casper is an
Ethereum Foundation-centered project originally designed
to be a PoS alteration to the protocol with no desire to
create a fundamentally scalable blockchain. Crucially, it is
designed to be a hard-fork, rather than anything more ex-
pansive and thus all Ethereum clients and users would be
required to upgrade or remain on a fork of uncertain adop-
tion. As such, deployment is made substantially more dif-
ficult as is inherent in a decentralised project where tight
coordination is necessary.

Polkadot differs in several ways; first and foremost,
Polkadot is designed to be a fully extensible and scalable
blockchain development, deployment and interaction test
bed. It is built to be a largely future-proof harness able to
assimilate new blockchain technology as it becomes avail-
able without over-complicated decentralised coordination
or hard forks. We already envision several use cases such
as encrypted consortium chains and high-frequency chains
with very low block times that are unrealistic to do in
any future version of Ethereum currently envisioned. Fi-
nally, the coupling between it and Ethereum is extremely
loose; no action on the part of Ethereum is necessary to
enable trustless transaction forwarding between the two
networks.

In short, while Casper/Ethereum 2.0 and Polkadot
share some fleeting similarities we believe their end goal
is substantially different and that rather than competing,
the two protocols are likely to ultimately co-exist under a
mutually beneficial relationship for the foreseeable future.

3. Summary

Polkadot is a scalable heterogeneous multi-chain. This
means that unlike previous blockchain implementations
which have focused on providing a single chain of varying
degrees of generality over potential applications, Polkadot
itself is designed to provide no inherent application func-
tionality at all. Rather, Polkadot provides the bedrock
“relay-chain” upon which a large number of validatable,
globally-coherent dynamic data-structures may be hosted
side-by-side. We call these data-structures “parallelised”
chains or parachains, though there is no specific need for
them to be blockchain in nature.

In other words, Polkadot may be considered equiva-
lent to a set of independent chains (e.g. the set containing
Ethereum, Ethereum Classic, Namecoin and Bitcoin) ex-
cept for two very important points:

• Pooled security;
• trust-free interchain transactability.

These points are why we consider Polkadot to be “scal-
able”. In principle, a problem to be deployed on Polka-
dot may be substantially parallelised—scaled out—over
a large number of parachains. Since all aspects of each
parachain may be conducted in parallel by a different seg-
ment of the Polkadot network, the system has some ability
to scale. Polkadot provides a rather bare-bones piece of

3as opposed to a one-way peg which is essentially the action of destroying tokens in one chain to create tokens in another without the
mechanism to do the converse in order to recover the original tokens



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 4

infrastructure leaving much of the complexity to be ad-
dressed at the middleware level. This is a conscious de-
cision intended to reduce development risk, enabling the
requisite software to be developed within a short time span
and with a good level of confidence over its security and
robustness.

3.1. The Philosophy of Polkadot. Polkadot should
provide an absolute rock-solid foundation on which to
build the next wave of consensus systems, right through
the risk spectrum from production-capable mature designs
to nascent ideas. By providing strong guarantees over se-
curity, isolation and communication, Polkadot can allow
parachains to select from a range of properties themselves.
Indeed, we foresee various experimental blockchains push-
ing the properties of what could be considered sensible
today.

We see conservative, high-value chains similar to
Bitcoin or Z-cash [20] co-existing alongside lower-value
“theme-chains” (such marketing, so fun) and test-nets
with zero or near-zero fees. We see fully-encrypted,
“dark”, consortium chains operating alongside—and even
providing services to—highly functional and open chains
such as those like Ethereum. We see experimental new
VM-based chains such as a subjective time-charged wasm
chain being used as a means of outsourcing difficult com-
pute problems from a more mature Ethereum-like chain
or a more restricted Bitcoin-like chain.

To manage chain upgrades, Polkadot will inherently
support some sort of governance structure, likely based
on existing stable political systems and having a bicam-
eral aspect similar to the Yellow Paper Council [24]. As
the ultimate authority, the underlying stakable token hold-
ers would have “referendum” control. To reflect the users’
need for development but the developers’ need for legiti-
macy, we expect a reasonable direction would be to form
the two chambers from a “user” committee (made up of
bonded validators) and a “technical” committee made up
of major client developers and ecosystem players. The
body of token holders would maintain the ultimate legit-
imacy and form a supermajority to augment, reparam-
eterise, replace or dissolve this structure, something we
don’t doubt the eventual need for: in the words of Twain
“Governments and diapers must be changed often, and for
the same reason”.

Whereas reparameterisation is typically trivial to ar-
range within a larger consensus mechanism, more qualita-
tive changes such as replacement and augmentation would
likely need to be either non-automated “soft-decrees” (e.g.
through the canonicalisation of a block number and the
hash of a document formally specifying the new protocol)
or necessitate the core consensus mechanism to contain a
sufficiently rich language to describe any aspect of itself
which may need to change. The latter is an eventual aim,
however, the former more likely to be chosen in order to
facilitate a reasonable development timeline.

Polkadot’s primary tenets and the rules within which
we evaluate all design decisions are:

Minimal: Polkadot should have as little functional-
ity as possible.

Simple: no additional complexity should be present
in the base protocol than can reasonably be

offloaded into middleware, placed through a
parachain or introduced in a later optimisation.

General: no unnecessary requirement, constraint
or limitation should be placed on parachains;
Polkadot should be a test bed for consensus sys-
tem development which can be optimised through
making the model into which extensions fit as ab-
stract as possible.

Robust: Polkadot should provide a fundamentally
stable base-layer. In addition to economic sound-
ness, this also means decentralising to minimise
the vectors for high-reward attacks.

4. Participation in Polkadot

There are four basic roles in the upkeep of an Polkadot
network: collator, fisherman, nominator and validator. In
one possible implementation of Polkadot, the latter role
may actually be broken down into two roles: basic valida-
tor and availability guarantor; this is discussed in section
6.5.3.

Collator Fisherman

Validators
(this group)

Validators
(other groups)

approves

becomes

monitors
reports
bad
behaviour to

provides block
candidates
for

Nominator

Figure 1. The interaction between the
four roles of Polkadot.

4.1. Validators. A validator is the highest charge and
helps seal new blocks on the Polkadot network. The val-
idator’s role is contingent upon a sufficiently high bond
being deposited, though we allow other bonded parties to
nominate one or more validators to act for them and as
such some portion of the validator’s bond may not neces-
sarily be owned by the validator itself but rather by these
nominators.

A validator must run a relay-chain client implementa-
tion with high availability and bandwidth. At each block
the node must be ready to accept the role of ratifying
a new block on a nominated parachain. This process
involves receiving, validating and republishing candidate
blocks. The nomination is deterministic but virtually un-
predictable much in advance. Since the validator cannot
reasonably be expected to maintain a fully-synchronised
database of all parachains, it is expected that the valida-
tor will nominate the task of devising a suggested new
parachain block to a third-party, known as a collator.

Once all new parachain blocks have been properly rat-
ified by their appointed validator subgroups, validators
must then ratify the relay-chain block itself. This involves
updating the state of the transaction queues (essentially
moving data from a parachain’s output queue to another
parachain’s input queue), processing the transactions of
the ratified relay-chain transaction set and ratifying the
final block, including the final parachain changes.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 5

A validator not fulfilling their duty to find consensus
under the rules of our chosen consensus algorithm is pun-
ished. For initial, unintentional failures, this is through
withholding the validator’s reward. Repeated failures re-
sult in the reduction of their security bond (through burn-
ing). Provably malicious actions such as double-signing or
conspiring to provide an invalid block result in the loss of
the entire bond (which is partially burnt but mostly given
to the informant and the honest actors).

In some sense, validators are similar to the mining pools
of current PoW blockchains.

4.2. Nominators. A nominator is a stake-holding party
who contributes to the security bond of a validator. They
have no additional role except to place risk capital and as
such to signal that they trust a particular validator (or
set thereof) to act responsibly in their maintenance of the
network. They receive a pro-rata increase or reduction
in their deposit according to the bond’s growth to which
they contribute.

Together with collators, next, nominators are in some
sense similar to the miners of the present-day PoW net-
works.

4.3. Collators. Transaction collators (collators for short)
are parties who assist validators in producing valid
parachain blocks. They maintain a “full-node” for a par-
ticular parachain; meaning that they retain all necessary
information to be able to author new blocks and execute
transactions in much the same way as miners do on cur-
rent PoW blockchains. Under normal circumstances, they
will collate and execute transactions to create an unsealed
block, and provide it, together with a zero-knowledge
proof, to one or more validators presently responsible for
proposing a parachain block.

The precise nature of the relationship between colla-
tors, nominators and validators will likely change over
time. Initially, we expect collators to work very closely
with validators, since there will be only a few (perhaps
only one) parachain(s) with little transaction volume. The
initial client implementation will include RPCs to allow a
parachain collator node to unconditionally supply a (relay-
chain) validator node with a provably valid parachain
block. As the cost of maintaining a synced version of
all such parachains increases, we expect to see additional
infrastructure in place which will help separate out the
duties to independent, economically-motivated, parties.

Eventually, we expect to see collator pools who vie to
collect the most transaction fees. Such collators may be-
come contracted to serve particular validators over a pe-
riod of time for an on-going share in the reward proceeds.
Alternatively, “freelance” collators may simply create a
market offering valid parachain blocks in return for a com-
petitive share of the reward payable immediately. Simi-
larly, decentralised nominator pools would allow multiple
bonded participants to coordinate and share the duty of a
validator. This ability to pool ensures open participation
leading to a more decentralised system.

4.4. Fishermen. Unlike the other two active parties,
fishermen are not directly related to the block-authoring
process. Rather they are independent “bounty hunters”
motivated by a large one-off reward. Precisely due to

the existence of fishermen, we expect events of misbe-
haviour to happen seldom, and when they do only due to
the bonded party being careless with secret key security,
rather than through malicious intent. The name comes
from the expected frequency of reward, the minimal re-
quirements to take part and the eventual reward size.

Fishermen get their reward through a timely proof that
at least one bonded party acted illegally. Illegal actions
include signing two blocks each with the same ratified par-
ent or, in the case of parachains, helping ratify an invalid
block. To prevent over-rewarding or the compromise and
illicit use of a session’s secret key, the base reward for
providing a single validator’s illegally signed message is
minimal. This reward increases asymptotically as more
corroborating illegal signatures from other validators are
provided implying a genuine attack. The asymptote is set
at 66% following our base security assertion that at least
two-thirds of the validators act benevolently.

Fishermen are somewhat similar to “full nodes” in
present-day blockchain systems that the resources needed
are relatively small and the commitment of stable uptime
and bandwidth is not necessary. Fishermen differ in so
much as they must post a small bond. This bond prevents
sybil attacks from wasting validators’ time and compute
resources. It is immediately withdrawable, probably no
more than the equivalent of a few dollars and may lead
to reaping a hefty reward from spotting a misbehaving
validator.

5. Design Overview

This section is intended to give a brief overview of the
system as a whole. A more thorough exploration of the
system is given in the section following it.

5.1. Consensus. On the relay-chain, Polkadot achieves
low-level consensus over a set of mutually agreed valid
blocks through a modern asynchronous Byzantine fault-
tolerant (BFT) algorithm. The algorithm will be inspired
by the simple Tendermint [11] and the substantially more
involved HoneyBadgerBFT [14]. The latter provides an
efficient and fault-tolerant consensus over an arbitrarily
defective network infrastructure, given a set of mostly be-
nign authorities or validators.

For a proof-of-authority (PoA) style network, this alone
would be sufficient, however Polkadot is imagined to be
also deployable as a network in a fully open and public
situation without any particular organisation or trusted
authority required to maintain it. As such we need a
means of determining a set of validators and incentivising
them to be honest. For this we utilise PoS based selection
criteria.

5.2. Proving the Stake. We assume that the network
will have some means of measuring how much “stake”
any particular account has. For ease of comparison to
pre-existing systems, we will call the unit of measurement
“tokens”. Unfortunately the term is less than ideal for a
number of reasons, not least that being simply a scalar
value associated with an account, there is no notion of
individuality.

We imagine validators be elected, infrequently (at most
once per day but perhaps as seldom as once per quarter),
through a Nominated Proof-of-Stake (NPoS) scheme. In-
centivisation can happen through a pro-rata allocation of



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 6

Relay
chain

Validator swarm
(each coloured by its

designated parachain)

Transaction
(submitted by
external actor)

Parachain
bridge

Virtual parachain
(e.g. Ethereum)

Parachain Parachain
queues and I/O

Propagated transactions

Block candidate submission

2nd order
Relay-chain

Parachain community
Account

Inbound transaction

Outbound transaction

Interchain transactions
(managed by validators)

Collator

Propagated block

Fisherman

Figure 2. A summary schematic of the Polkadot system. This shows collators collecting and propa-
gating user-transactions, as well as propagating block candidates to fishermen and validators. It also
shows how an account can post a transaction which is carried out of its parachain, via the relay-chain
and on into another parachain where it can be interpreted as a transaction to an account there.

funds coming from a token base expansion (up to 100%
per year, though more likely around 10%) together with
any transaction fees collected. While monetary base ex-
pansion typically leads to inflation, since all token owners
would have a fair opportunity at participation, no token-
holder would need to suffer a reduction in value of their
holdings over time provided they were happy to take a
role in the consensus mechanism. A particular proportion
of tokens would be targeted for the staking process; the
effective token base expansion would be adjusted through
a market-based mechanism to reach this target.

Validators are bonded heavily by their stakes; exiting
validators’ bonds remain in place long after the valida-
tors’ duties cease (perhaps around 3 months). This long
bond-liquidation period allows future misbehaviour to be
punished up until the periodic checkpointing of the chain.
Misbehaviour results in punishment, such as reduction of
reward or, in cases which intentionally compromise the
network’s integrity, the validator losing some or all of its
stake to other validators, informants or the stakeholders
as a whole (through burning). For example, a validator
who attempts to ratify both branches of a fork (sometimes
known as a “short-range” attack) may be identified and
punished in the latter way.

Long-range “nothing-at-stake” attacks4 are circum-
vented through a simple “checkpoint” latch which pre-
vents a dangerous chain-reorganisation of more than a
particular chain-depth. To ensure newly-syncing clients
are not able to be fooled onto the wrong chain, regular
“hard forks” will occur (of at most the same period of the
validators’ bond liquidation) that hard-code recent check-
point block hashes into clients. This plays well with a fur-
ther footprint-reducing measure of “finite chain length” or
periodic reseting of the genesis-block.

5.3. Parachains and Collators. Each parachain gets
similar security affordances to the relay-chain: the
parachains’ headers are sealed within the relay-chain block
ensuring no reorganisation, or “double-spending”, is possi-
ble following confirmation. This is a similar security guar-
antee to that offered by Bitcoin’s side-chains and merge-
mining. Polkadot, however, also provides strong guaran-
tees that the parachains’ state transitions are valid. This
happens through the set of validators being cryptograph-
ically randomly segmented into subsets; one subset per
parachain, the subsets potentially differing per block. This
setup generally implies that parachains’ block times will
be at least as long as that of the relay-chain. The specific
means of determining the partitioning is outside the scope

4Such an attack is where the adversary forges an entirely new chain of history from the genesis block onwards. Through controlling a
relatively insignificant portion of stake at the offset, they are able to incrementally increase their portion of the stake relative to all other
stakeholders as they are the only active participants in their alternative history. Since no intrinsic physical limitation exists on the creation
of blocks (unlike PoW where quite real computational energy must be spent), they are able to craft a chain longer than the real chain in a
relatively short timespan and potentially make it the longest and best, taking over the canonical state of the network.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 7

of this document but would likely be based either around
a commit-reveal framework similar to the RanDAO [19] or
use data combined from previous blocks of each parachain
under a cryptographically secure hash.

Such subsets of validators are required to provide a
parachain block candidate which is guaranteed valid (on
pain of bond confiscation). Validity revolves around two
important points; firstly that it is intrinsically valid—that
all state transitions were executed faithfully and that all
external data referenced (i.e. transactions) is valid for in-
clusion. Secondly, that any data which is extrinsic to its
candidate, such as those external transactions, has suffi-
ciently high availability so that participants are able to
download it and execute the block manually.5 Valida-
tors may provide only a “null” block containing no ex-
ternal “transactions” data, but may run the risk of get-
ting a reduced reward if they do. They work alongside
a parachain gossip protocol with collators—individuals
who collate transactions into blocks and provide a non-
interactive, zero-knowledge proof that the block consti-
tutes a valid child of its parent (and taking any transaction
fees for their trouble).

It is left to parachain protocols to specify their own
means of spam-prevention: there is no fundamental no-
tion of “compute-resource metering” or “transaction fee”
imposed by the relay-chain. There is also no direct en-
forcement on this by the relay-chain protocol (though it
is unlikely that the stakeholders would choose to adopt
a parachain which didn’t provide a decent mechanism).
This is an explicit nod to the possibility of chains unlike
Ethereum, e.g. a Bitcoin-like chain which has a much sim-
pler fee model or some other, yet-to-be-proposed spam-
prevention model.

Polkadot’s relay-chain itself will probably exist as an
Ethereum-like accounts and state chain, possibly an EVM-
derivative. Since the relay-chain nodes will be required to
do substantial other processing, transaction throughput
will be minimised partly through large transaction fees
and, should our research models require, a block size limit.

5.4. Interchain Communication. The critical final in-
gredient of Polkadot is interchain communication. Since
parachains can have some sort of information channel be-
tween them, we allow ourselves to consider Polkadot a
scalable multi-chain. In the case of Polkadot, the commu-
nication is as simple as can be: transactions executing in a
parachain are (according to the logic of that chain) able to
effect the dispatch of a transaction into a second parachain
or, potentially, the relay-chain. Like external transactions
on production blockchains, they are fully asynchronous
and there is no intrinsic ability for them to return any
kind of information back to its origin.

Destination: gets
data from prior
block’s validators.

Account receives post: 
entry removed from
ingress Merkle tree

Account sends post: 
entry placed in
 egress Merkle tree
    for destination
          parachain

egressSource: shares
data with next block’s
validators

proof-of-post stored in
parachain egress Merkle
tree

routed reference placed
in destination parachain’s
ingress Merkle tree

ingress

Figure 3. A basic schematic showing
the main parts of routing for posted
transactions (”posts”).

To ensure minimal implementation complexity, min-
imal risk and minimal straight-jacketing of future
parachain architectures, these interchain transactions are
effectively indistinguishable from standard externally-
signed transactions. The transaction has an origin seg-
ment, providing the ability to identify a parachain, and
an address which may be of arbitrary size. Unlike com-
mon current systems such as Bitcoin and Ethereum, in-
terchain transactions do not come with any kind of “pay-
ment” of fee associated; any such payment must be man-
aged through negotiation logic on the source and desti-
nation parachains. A system such as that proposed for
Ethereum’s Serenity release [7] would be a simple means
of managing such a cross-chain resource payment, though
we assume others may come to the fore in due course.

Interchain transactions are resolved using a simple
queuing mechanism based around a Merkle tree to ensure
fidelity. It is the task of the relay-chain maintainers to
move transactions on the output queue of one parachain
into the input queue of the destination parachain. The
passed transactions get referenced on the relay-chain, how-
ever are not relay-chain transactions themselves. To pre-
vent a parachain from spamming another parachain with
transactions, for a transaction to be sent, it is required
that the destination’s input queue be not too large at
the time of the end of the previous block. If the input
queue is too large after block processing, then it is con-
sidered “saturated” and no transactions may be routed to
it within subsequent blocks until reduced back below the
limit. These queues are administered on the relay-chain
allowing parachains to determine each other’s saturation
status; this way a failed attempt to post a transaction
to a stalled destination may be reported synchronously.
(Though since no return path exists, if a secondary trans-
action failed for that reason, it could not be reported back
to the original caller and some other means of recovery
would have to take place.)

5.5. Polkadot and Ethereum. Due to Ethereum’s Tur-
ing completeness, we expect there is ample opportu-
nity for Polkadot and Ethereum to be interoperable with
each other, at least within some easily deducible secu-
rity bounds. In short, we envision that transactions from
Polkadot can be signed by validators and then fed into

5Such a task might be shared between validators or could become the designate task of a set of heavily bonded validators known as
availability guarantors.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 8

Ethereum where they can be interpreted and enacted by
a transaction-forwarding contract. In the other direction,
we foresee the usage of specially formatted logs (events)
coming from a “break-out contract” to allow a swift veri-
fication that a particular message should be forwarded.

5.5.1. Polkadot to Ethereum. Through the choice of a
BFT consensus mechanism with validators formed from a
set of stakeholders determined through an approval voting
mechanism, we are able to get a secure consensus with an
infrequently changing and modest number of validators.
In a system with a total of 144 validators, a block time of
4 seconds and a 900-block finality (allowing for malicious
behaviour such as double-votes to be reported, punished
and repaired), the validity of a block can reasonably be
considered proven through as little as 97 signatures (two-
thirds of 144 plus one) and a following 60-minute verifica-
tion period where no challenges are deposited.

Ethereum is able to host a “break-in contract” which
can maintain the 144 signatories and be controlled by
them. Since elliptic curve digital signature (ECDSA) re-
covery takes only 3,000 gas under the EVM, and since
we would likely only want the validation to happen on a
super-majority of validators (rather than full unanimity),
the base cost of Ethereum confirming that an instruction
was properly validated as coming from the Polkadot net-
work would be no more than 300,000 gas—a mere 6% of
the total block gas limit at 5.5M. Increasing the num-
ber of validators (as would be necessary for dealing with
dozens of chains) inevitably increases this cost, however
it is broadly expected for Ethereum’s transaction band-
width to grow over time as the technology matures and
infrastructure improves. Together with the fact that not
all validators need to be involved (e.g. only the highest
staked validators may be called upon for such a task) the
limits of this mechanism extend reasonably well.

Assuming a daily rotation of such validators (which is
fairly conservative—weekly or even monthly may be ac-
ceptable), then the cost to the network of maintaining
this Ethereum-forwarding bridge would be around 540,000
gas per day or, at present gas prices, $45 per year. A ba-
sic transaction forwarded alone over the bridge would cost
around $0.11; additional contract computation would cost
more, of course. By buffering and bundling transactions
together, the break-in authorisation costs can easily be
shared, reducing the cost per transaction substantially;
if 20 transactions were required before forwarding, then
the cost for forwarding a basic transaction would fall to
around $0.01.

One interesting, and cheaper, alternative to this multi-
signature contract model would be to use threshold sig-
natures in order to achieve the multi-lateral ownership se-
mantics. While threshold signature schemes for ECDSA
are computationally expensive, those for other schemes
such as Schnorr signatures are very reasonable. Ethereum
plans to introduce primitives which would make such
schemes cheap to use in the upcoming Metropolis hard-
fork. If such a means were able to be utilised, the gas costs
for forwarding a Polkadot transaction into the Ethereum
network would be dramatically reduced to a near zero
overhead over and above the basic costs for validating the
signature and executing the underlying transaction.

In this model, Polkadot’s validator nodes would have
to do little other than sign messages. To get the trans-
actions actually routed onto the Ethereum network, we
assume either validators themselves would also reside on
the Ethereum network or, more likely, that small bounties
be offered to the first actor who forwards the message on
to the network (the bounty could trivially be paid to the
transaction originator).

5.5.2. Ethereum to Polkadot. Getting transactions to be
forwarded from Ethereum to Polkadot uses the simple no-
tion of logs. When an Ethereum contract wishes to dis-
patch a transaction to a particular parachain of Polkadot,
it need simply call into a special “break-out contract”.
The break-out contract would take any payment that may
be required and issue a logging instruction so that its ex-
istence may be proven through a Merkle proof and an as-
sertion that the corresponding block’s header is valid and
canonical.

Of the latter two conditions, validity is perhaps the
most straightforward to prove. In principle, the only re-
quirement is for each Polkadot node needing the proof
(i.e. appointed validator nodes) to be running a fully syn-
chronised instance of a standard Ethereum node. Unfor-
tunately, this is itself a rather heavy dependency. A more
lightweight method would be to use a simple proof that the
header was evaluated correctly through supplying only the
part of Ethereum’s state trie needed to properly execute
the transactions in the block and check that the logs (con-
tained in the block receipt) are valid. Such “SPV-like”6

proofs may yet require a substantial amount of informa-
tion; conveniently, they would typically not be needed at
all: a bond system inside Polkadot would allow bonded
third-parties to submit headers at the risk of losing their
bond should some other third-party (such as a “fisher-
man”, see 6.2.3) provide a proof that the header is invalid
(specifically that the state root or receipt roots were im-
postors).

On a non-finalising PoW network like Ethereum, the
canonicality is impossible to proof conclusively. To ad-
dress this, applications that attempt to rely on any kind
of chain-dependent cause-effect wait for a number of “con-
firmations”, or until the dependent transaction is at some
particular depth within the chain. On Ethereum, this
depth varies from 1 block for the least valuable transac-
tions with no known network issues to 1200 blocks as was
the case during the initial Frontier release for exchanges.
On the stable “Homestead” network, this figure sits at
120 blocks for most exchanges, and we would likely take
a similar parameter.

So we can imagine our Polkadot-side Ethereum-
interface to have some simple functions: to be able to
accept a new header from the Ethereum network and val-
idate the PoW, to be able to accept some proof that a
particular log was emitted by the Ethereum-side break-
out contract for a header of sufficient depth (and forward
the corresponding message within Polkadot) and finally
to be able to accept proofs that a previously accepted but
not-yet-enacted header contains an invalid receipt root.

To actually get the Ethereum header data itself (and
any SPV proofs or validity/canonicality refutations) into
the Polkadot network, an incentivisation for forwarding

6SPV refers to Simplified Payment Verification in Bitcoin and describes a method for clients to verify transactions while keeping only
a copy of all blocks headers of the longest PoW chain.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 9

data is needed. This could be as simple as a payment
(funded from fees collected on the Ethereum side) paid
to anyone able to forward a useful block whose header is
valid. Validators would be called upon to retain informa-
tion relating to the last few thousand blocks in order to
be able to manage forks, either through some protocol-
intrinsic means or through a contract maintained on the
relay chain.

5.6. Polkadot and Bitcoin. Bitcoin interoperation
presents an interesting challenge for Polkadot: a so-called
“two-way peg” would be a useful piece of infrastructure
to have on the side of both networks. However, due to
the limitations of Bitcoin, providing such a peg securely is
a non-trivial undertaking. Delivering a transaction from
Bitcoin to Polkadot can in principle be done with a pro-
cess similar to that for Ethereum; a “break-out address”
controlled in some way by the Polkadot validators could
receive transferred tokens (and data sent alongside them).
SPV proofs could be provided by incentivised oracles and,
together with a confirmation period, a bounty given for
identifying non-canonical blocks implying the transaction
has been “double-spent”. Any tokens then owned in the
“break-out address” would then, in principle, be con-
trolled by those same validators for later dispersal.

The problem however is how the deposits can be se-
curely controlled from a rotating validator set. Unlike
Ethereum which is able to make arbitrary decisions based
upon combinations of signatures, Bitcoin is substantially
more limited, with most clients accepting only multi-
signature transactions with a maximum of 3 parties. Ex-
tending this to 36, or indeed thousands as might ulti-
mately be desired, is impossible under the current proto-
col. One option is to alter the Bitcoin protocol to enable
such functionality, however so-called “hard forks” in the
Bitcoin world are difficult to arrange judging by recent at-
tempts. One possibility is the use of threshold signatures,
cryptographic schemes to allow a singly identifiable public
key to be effectively controlled by multiple secret “parts”,
some or all of which must be utilised to create a valid sig-
nature. Unfortunately, threshold signatures compatible
with Bitcoin’s ECDSA are computationally expensive to
create and of polynomial complexity. Other schemes such
a Schnorr signatures provide far lower costs, however the
timeline on which they may be introduced into the Bitcoin
protocol is uncertain.

Since the ultimate security of the deposits rests with
a number of bonded validators, one other option is to
reduce the multi-signature key-holders to only a heavily
bonded subset of the total validators such that threshold
signatures become feasible (or, at worst, Bitcoin’s native
multi-signature is possible). This of course reduces the
total amount of bonds that could be deducted in repara-
tions should the validators behave illegally, however this
is a graceful degradation, simply setting an upper limit of
the amount of funds that can securely run between the
two networks (or indeed, on the % losses should an attack
from the validators succeed).

As such we believe it not unrealistic to place a reason-
ably secure Bitcoin interoperability “virtual parachain”

between the two networks, though nonetheless a substan-
tial effort with an uncertain timeline and quite possibly
requiring the cooperation of the stakeholders within that
network.

6. Protocol in Depth

The protocol can be roughly broken down into three
parts: the consensus mechanism, the parachain interface
and interchain transaction routing.

6.1. Relay-chain Operation. The relay-chain will
likely be a chain broadly similar to Ethereum in that it
is state-based with the state mapping address to account
information, mainly balances and (to prevent replays) a
transaction counter. Placing accounts here fulfils one pur-
pose: to provide accounting for which identity possesses
what amount of stake in the system.7 There will be no-
table differences, though:

• Contracts cannot be deployed through transac-
tions; following from the desire to avoid applica-
tion functionality on the relay-chain, it will not
support public deployment of contracts.

• Compute resource usage (“gas”) is not accounted;
since the only functions available for public usage
will be fixed, the rationale behind gas accounting
no longer holds. As such, a flat fee will apply in
all cases, allowing for more performance from any
dynamic code execution that may need to be done
and a simpler transaction format.

• Special functionality is supported for listed con-
tracts that allows for auto-execution and network-
message outputs.

In the event that the relay-chain has a VM and it be
based around the EVM, it would have a number of mod-
ifications to ensure maximal simplicity. It would likely
have a number of built-in contracts (similar to those at
addresses 1-4 in Ethereum) to allow for platform-specific
duties to be managed including a consensus contract, a
validator contract and a parachain contract.

If not the EVM, then a WebAssembly [2] (wasm) back-
end is the most likely alternative; in this case the overall
structure would be similar, but there would be no need
for the built-in contracts with Wasm being a viable target
for general purpose languages rather than the immature
and limited languages for the EVM.

Other likely deviations from the present Ethereum pro-
tocol are quite possible, for example a simplification of the
transaction-receipt format allowing for the parallel execu-
tion of non-conflicting transactions within the same block,
as proposed for the Serenity series of changes.

It is possible, though unlikely, that a Serenity-like
“pure” chain be deployed as the relay-chain, allowing for a
particular contract to manage things like the staking token
balances rather than making that a fundamental part of
the chain’s protocol. At present, we feel it is unlikely this
will offer a sufficiently great protocol simplification to be
worth the additional complexity and uncertainty involved
in developing it.

7As a means of representing the amount a given holder is responsible for the overall security of the system, these stake accounts will
inevitably encode some economic value. However, it should be understood that since there is no intention that such values be used in
any way for the purpose of exchanging for real-world goods and services, it should be accordingly noted that the tokens not be likened to
currency and as such the relay-chain retain its nihilistic philosophy regarding applications.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 10

There are a number of small pieces of functionality re-
quired for administrating the consensus mechanism, val-
idator set, validation mechanism and parachains. These
could be implemented together under a monolithic proto-
col. However, for reasons of auguring modularity, we de-
scribe these as “contracts” of the relay-chain. This should
be taken to mean that they are objects (in the sense of
object-orientated programming) managed by the relay-
chain’s consensus mechanism, but not necessarily that
they are defined as programs in EVM-like opcodes, nor
even that they be individually addressable through the
account-system.

6.2. Staking Contract. This contract maintains the val-
idator set. It manages:

• which accounts are currently validators;
• which are available to become validators at short

notice;
• which accounts have placed stake nominating to

a validator;
• properties of each including staking volume, ac-

ceptable payout-rates and addresses and short-
term (session) identities.

It allows an account to register a desire to become a
bonded validator (along with its requirements), to nom-
inate to some identity, and for preexisting bonded val-
idators to register their desire to exit this status. It also
includes the machinery itself for the validation and canon-
icalisation mechanism.

6.2.1. Stake-token Liquidity. It is generally desirable to
have as much of the total staking tokens as possible to be
staked within the network maintenance operations since
this directly ties the network security to the overall “mar-
ket capitalisation” of the staking token. This can easily
be incentivised through inflating the currency and hand-
ing out the proceeds to those who participate as valida-
tors. However, to do so presents a problem: if the token
is locked in the Staking Contract under punishment of re-
duction, how can a substantial portion remain sufficiently
liquid in order to allow price discovery?

One answer to this is allowing a straight-forward de-
rivative contract, securing fungible tokens on an underly-
ing staked token. This is difficult to arrange in a trust-
free manner. Furthermore, these derivative tokens can-
not be treated equally for the same reason that differ-
ent Eurozone government’s bonds are not fungible: there
is a chance of the underlying asset failing and becoming
worthless. With Eurozone governments, there could be a
default. With validator-staked tokens, the validator may
act maliciously and be punished.

Keeping with our tenets, we elect for the simplest so-
lution: not all tokens be staked. This would mean that
some proportion (perhaps 20%) of tokens will forcibly re-
main liquid. Though this is imperfect from a security per-
spective, it is unlikely to make a fundamental difference in
the security of the network; 80% of the reparations possi-
ble from bond-confiscations would still be able to be made
compared to the “perfect case” of 100% staking.

The ratio between staked and liquid tokens can be tar-
geted fairly simply through a reverse auction mechanism.
Essentially, token holders interested in being a validator
would each post an offer to the staking contract stating
the minimum payout-rate that they would require to take

part. At the beginning of each session (sessions would
happen regularly, perhaps as often as once per hour) the
validator slots would be filled according to each would-be
validator’s stake and payout rate. One possible algorithm
for this would be to take those with the lowest offers who
represent a stake no higher than the total stake targeted
divided by the number of slots and no lower than a lower-
bound of half that amount. If the slots cannot be filled,
the lower bound could be repeatedly reduced by some fac-
tor in order to satisfy.

6.2.2. Nominating. It is possible to trustlessly nominate
ones staking tokens to an active validator, giving them
the responsibility of validators duties. Nominating works
through an approval-voting system. Each would-be nomi-
nator is able to post an instruction to the staking contract
expressing one or more validator identities under whose
responsibility they are prepared to entrust their bond.

Each session, nominators’ bonds are dispersed to be
represented by one or more validators. The dispersal al-
gorithm optimises for a set of validators of equivalent total
bonds. Nominators’ bonds become under the effective re-
sponsibility of the validator and gain interest or suffer a
punishment-reduction accordingly.

6.2.3. Bond Confiscation/Burning. Certain validator be-
haviour results in a punitive reduction of their bond. If
the bond is reduced below the allowable minimum, the
session is prematurely ended and another started. A non-
exhaustive list of punishable validator misbehaviour in-
cludes:

• Being part of a parachain group unable to provide
consensus over the validity of a parachain block;

• actively signing for the validity of an invalid
parachain block;

• inability to supply egress payloads previously
voted as available;

• inactivity during the consensus process;
• validating relay-chain blocks on competing forks.

Some cases of misbehaviour threaten the network’s in-
tegrity (such as signing invalid parachain blocks and val-
idating multiple sides of a fork) and as such result in ef-
fective exile through the total reduction of the bond. In
other, less serious cases (e.g. inactivity in the consensus
process) or cases where blame cannot be precisely allot-
ted (being part of an ineffective group), a small portion
of the bond may instead be fined. In the latter case, this
works well with sub-group churn to ensure that malicious
nodes suffer substantially more loss than the collaterally-
damaged benevolent nodes.

In some cases (e.g. multi-fork validation and invalid
sub-block signing) validators cannot themselves easily de-
tect each others’ misbehaviour since constant verification
of each parachain block would be too arduous a task. Here
it is necessary to enlist the support of parties external to
the validation process to verify and report such misbe-
haviour. The parties get a reward for reporting such ac-
tivity; their term, “fishermen” stems from the unlikeliness
of such a reward.

Since these cases are typically very serious, we envi-
sion that any rewards can easily be paid from the con-
fiscated bond. In general we prefer to balance burning
(i.e. reduction to nothing) with reallocation, rather than
attempting wholesale reallocation. This has the effect of



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 11

increasing the overall value of the token, compensating the
network in general to some degree rather than the specific
party involved in discovery. This is mainly as a safety
mechanism: the large amounts involved could lead to ex-
treme and acute behaviour incentivisation were they all
bestowed on a single target.

In general, it is important that the reward is suffi-
ciently large to make verification worthwhile for the net-
work, yet not so large as to offset the costs of fronting a
well-financed, well-orchestrated ”industrial-level” criminal
hacking attack on some unlucky validator to force misbe-
haviour.

In this way, the amount claimed should generally be no
greater than the direct bond of the errant validator, lest a
perverse incentive arise of misbehaving and reporting one-
self for the bounty. This can be combated either explicitly
through a minimum direct bond requirement for being a
validator or implicitly by educating nominators that val-
idators with little bonds deposited have no great incentive
to behave well.

6.3. Parachain Registry. Each parachain is defined in
this registry. It is a relatively simple database-like con-
struct and holds both static and dynamic information on
each chain.

Static information includes the chain index (a simple
integer), along with the validation protocol identity, a
means of distinguishing between the different classes of
parachain so that the correct validation algorithm can be
run by validators consigned to putting forward a valid can-
didate. An initial proof-of-concept would focus on placing
the new validation algorithms into clients themselves, ef-
fectively requiring a hard fork of the protocol each time an
additional class of chain were added. Ultimately, though,
it may be possible to specify the validation algorithm in
a way both rigorous and efficient enough that clients are
able to effectively work with new parachains without a
hard-fork. One possible avenue to this would be to specify
the parachain validation algorithm in a well-established,
natively-compiled, platform-neutral language such as We-
bAssembly. Additional research is necessary to determine
whether this is truly feasible, however if so, it could bring
with it the tremendous advantage of banishing hard-forks
for good.

Dynamic information includes aspects of the transac-
tion routing system that must have global agreement such
as the parachain’s ingress queue (described in section 6.6).

The registry is able to have parachains added only
through full referendum voting; this could be managed
internally but would more likely be placed in an external
referendum contract in order to facilitate re-usage under
more general governance components. The parameters to
voting requirements (e.g. any quorum required, majority
required) for registration of additional chains and other,
less formal system upgrades will be set out in a “master
constitution” but are likely to follow a fairly traditional
path, at least initially. The precise formulation is out of
scope for the present work, but e.g. a two thirds super-
majority to pass with more than one third of total system
stake voting positively may be a sensible starting point.

Additional operations include the suspension and re-
moval of parachains. Suspension would hopefully never

happen, however it is designed to be a safeguard least
there be some intractable problem in a parachain’s vali-
dation system. The most obvious instance where it might
be needed is a consensus-critical difference between im-
plementations leading validators to be unable to agree on
validity or blocks. Validators would be encouraged to use
multiple client implementations in order that they are able
to spot such a problem prior to bond confiscation.

Since suspension is an emergency measure, it would be
under the auspices of the dynamic validator-voting rather
than a referendum. Re-instating would be possible both
from the validators or a referendum.

The removal of parachains altogether would come only
after a referendum and with which would be required a
substantial grace period to allow an orderly transition to
either a standalone chain or to become part of some other
consensus-system. The grace period would likely be of
the order of months and is likely to be set out on a per-
chain basis in the parachain registry in order that different
parachains can enjoy different grace periods according to
their need.

6.4. Sealing Relay Blocks. Sealing refers, in essence,
to the process of canonicalisation; that is, a basic data
transform which maps the original into something funda-
mentally singular and meaningful. Under a PoW chain,
sealing is effectively a synonym for mining. In our case,
it involves the collection of signed statements from val-
idators over the validity, availability and canonicality of a
particular relay-chain block and the parachain blocks that
it represents.

The mechanics of the underlying BFT consensus al-
gorithm is out of scope for the present work. We will
instead describe it using a primitive which assumes a
consensus-creating state-machine. Ultimately we expect
to be inspired by a number of promising BFT consensus
algorithms in the core; Tangaora [9] (a BFT variant of
Raft [16]), Tendermint [11] and HoneyBadgerBFT [14].
The algorithm will have to reach an agreement on mul-
tiple parachains in parallel, thus differing from the usual
blockchain consensus mechanisms. We assume that once
consensus is reached, we are able to record the consensus
in an irrefutable proof which can be provided by any of
the participants to it. We also assume that misbehaviour
within the protocol can be generally reduced to a small
group containing misbehaving participants to minimise
the collateral damage when dealing out punishment.8

The proof, which takes the form of our signed state-
ments, is placed in the relay-chain block’s header together
with certain other fields not least the relay-chain’s state-
trie root and transaction-trie root.

The sealing process takes place under a single
consensus-generating mechanism addressing both the
relay-chain’s block and the parachains’ blocks which make
up part of the relay’s content: parachains are not sepa-
rately “committed” by their sub-groups and then collated
later. This results in a more complex process for the relay-
chain, but allows us to complete the entire system’s con-
sensus in a single stage, minimising latency and allowing
for quite complex data-availability requirements which are
helpful for the routing process below.

8Existing PoS-based BFT consensus schemes such as Tendermint BFT and the original Slasher fulfill these assertions.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 12

The state of each participant’s consensus machine may
be modelled as a simple (2-dimensional) table. Each par-
ticipant (validator) has a set of information, in the form
of signed-statements (“votes”) from other participants, re-
garding each parachain block candidate as well the relay-
chain block candidate. The set of information is two pieces
of data:

Availability: does this validator have egress
transaction-post information from this block so
they are able to properly validate parachain can-
didates on the following block? They may vote
either 1(known) or 0 (not yet known). Once they
vote 1, they are committed to voting similarly for
the rest of this process. Later votes that do not
respect this are grounds for punishment.

Validity: is the parachain block valid and is all
externally-referenced data (e.g. transactions)
available? This is only relevant for validators as-
signed to the parachain on which they are voting.
They may vote either 1 (valid), -1 (invalid) or 0
(not yet known). Once they vote non-zero, they
are committed to voting this way for the rest of
the process. Later votes that do not respect this
are grounds for punishment.

All validators must submit votes; votes may be resub-
mitted, qualified by the rules above. The progression of
consensus may be modelled as multiple standard BFT con-
sensus algorithms over each parachain happening in par-
allel. Since these are potentially thwarted by a relatively
small minority of malicious actors being concentrated in
a single parachain group, the overall consensus exists to
establish a backstop, limiting the worst-case scenario from
deadlock to merely one or more void parachain blocks (and
a round of punishment for those responsible).

The basic rules for validity of the individual blocks
(that allow the total set of validators as a whole to come to
consensus on it becoming the unique parachain candidate
to be referenced from the canonical relay):

• must have at least two thirds of its validators vot-
ing positively and none voting negatively;

• must have over one third validators voting posi-
tively to the availability of egress queue informa-
tion.

If there is at least one positive and at least one nega-
tive vote on validity, an exceptional condition is created
and the whole set of validators must vote to determine
if there are malicious parties or if there is an accidental
fork. Aside from valid and invalid, a third kind of votes
are allowed, equivalent to voting for both, meaning that
the node has conflicting opinions. This could be due to the
node’s owner running multiple implementations which do
not agree, indicating a possible ambiguity in the protocol.

After all votes are counted from the full validator set, if
the losing opinion has at least some small proportion (to
be parameterised; at most half, perhaps significantly less)
of the votes of the winning opinion, then it is assumed to
be an accidental parachain fork and the parachain is au-
tomatically suspended from the consensus process. Oth-
erwise, we assume it is a malicious act and punish the
minority who were voting for the dissenting opinion.

The conclusion is a set of signatures demonstrating
canonicality. The relay-chain block may then be sealed
and the process of sealing the next block begun.

6.5. Improvements for Sealing Relay Blocks. While
this sealing method gives strong guarantees over the sys-
tem’s operation, it does not scale out particularly well
since every parachain’s key information must have its
availability guaranteed by over one-third of all validators.
This means that every validator’s responsibility footprint
grows as more chains are added.

While data availability within open consensus networks
is essentially an unsolved problem, there are ways of miti-
gating the overhead placed on validator nodes. One simple
solution is to realise that while validators must shoulder
the responsibility for data availability, they need not actu-
ally store, communicate or replicate the data themselves.
Secondary data silos, possibly related to (or even the very
same) collators who compile this data, may manage the
task of guaranteeing availability with the validators pro-
viding a portion of their interest/income in payment.

However, while this might buy some intermediate scal-
ability, it still doesn’t help the underlying problem; since
adding more chains will in general require additional val-
idators, the ongoing network resource consumption (par-
ticularly in terms of bandwidth) grows with the square of
the chains, an untenable property in the long-term.

Ultimately, we are likely to keep bashing our heads
against the fundamental limitation which states that for
a consensus network to be considered available safe, the
ongoing bandwidth requirements are of the order of total
validators times total input information. This is due to
the inability of an untrusted network to properly distrib-
ute the task of data storage across many nodes, which sits
apart from the eminently distributable task of processing.

6.5.1. Introducing Latency. One means of softening this
rule is to relax the notion of immediacy. By requir-
ing 33%+1 validators voting for availability only eventu-
ally, and not immediately, we can better utilise exponen-
tial data propagation and help even out peaks in data-
interchange. A reasonable equality (though unproven)
may be:

(1) latency = participants× chains

Under the current model, the size of the system scales
with the number of chains to ensure that processing is
distributed; since each chain will require at least one val-
idator and we fix the availability attestation to a constant
proportion of validators, then participants similarly grows
with the number of chains. We end up with:

(2) latency = size2

Meaning that as the system grows, the bandwidth re-
quired and latency until availability is known across the
network, which might also be characterised as the number
of blocks before finality, increases with its square. This is
a substantial growth factor and may turn out to be a no-
table road blocker and force us into “non-flat” paradigms
such as composing several “Polkadotes” into a hierarchy
for multi-level routing of posts through a tree of relay-
chains.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 13

6.5.2. Public Participation. One more possible direction
is to enlist public participation in the process through a
micro-complaints system. Similar to the fishermen, there
could be external parties to police the validators who claim
availability. Their task is to find one who appears un-
able to demonstrate such availability. In doing so they
can lodge a micro-complaint to other validators. PoW or
a staked bond may be used to mitigate the sybil attack
which would render the system largely useless.

6.5.3. Availability Guarantors. A final route would be to
nominate a second set of bonded validators as “availability
guarantors”. These would be bonded just as with the nor-
mal validators, and may even be taken from the same set
(though if so, they would be chosen over a long-term pe-
riod, at least per session). Unlike normal validators, they
would not switch between parachains but rather would
form a single group to attest to the availability of all im-
portant interchain data.

This has the advantage of relaxing the equivalence be-
tween participants and chains. Essentially, chains can
grow (along with the original chain validator set), whereas
the participants, and specifically those taking part in data-
availability testament, can remain at the least sub-linear
and quite possibly constant.

6.5.4. Collator Preferences. One important aspect of this
system is to ensure that there is a healthy selection of
collators creating the blocks in any given parachain. If a
single collator dominated a parachain then some attacks
become more feasible since the likelihood of the lack of
availability of external data would be less obvious.

One option is to artificially weight parachain blocks in
a pseudo-random mechanism in order to favour a wide va-
riety of collators. In the first instance, we would require
as part of the consensus mechanism that validators favour
parachain block candidates determined to be “heavier”.
Similarly, we must incentivise validators to attempt to
suggest the weightiest block they can find—this could be
done through making a portion of their reward propor-
tional to the weight of their candidate.

To ensure that collators are given a reasonable fair
chance of their candidate being chosen as the winning
candidate in consensus, we make the specific weight of a
parachain block candidate determinate on a random func-
tion connected with each collator. For example, taking
the XOR distance measure between the collator’s address
and some cryptographically-secure pseudorandom number
determined close to the point of the block being created
(a notional “winning ticket”). This effectively gives each
collator (or, more specifically, each collator’s address) a
random chance of their candidate block “winning” over
all others.

To mitigate the sybil attack of a single collator “min-
ing” an address close to the winning ticket and thus being
a favourite each block, we would add some inertia to a col-
lator’s address. This may be as simple as requiring them
to have a baseline amount of funds in the address. A more
elegant approach would be to weight the proximity to the
winning ticket with the amount of funds parked at the
address in question. While modelling has yet to be done,
it is quite possible that this mechanism enables even very
small stakeholders to contribute as a collator.

6.5.5. Overweight Blocks. If a validator set is compro-
mised, they may create and propose a block which though
valid, takes an inordinate amount of time to execute and
validate. This is a problem since a validator group could
reasonably form a block which takes a very long time to
execute unless some particular piece of information is al-
ready known allowing a short cut, e.g. factoring a large
prime. If a single collator knew that information, then
they would have a clear advantage in getting their own
candidates accepted as long as the others were busy pro-
cessing the old block. We call these blocks overweight.

Protection against validators submitting and validat-
ing these blocks largely falls under the same guise as for
invalid blocks, though with an additional caveat: Since
the time taken to execute a block (and thus its status as
overweight) is subjective, the final outcome of a vote on
misbehaviour will fall into essentially three camps. One
possibility is that the block is definitely not overweight—
in this case more than two-thirds declare that they could
execute the block within some limit (e.g. 50% of the to-
tal time allowed between blocks). Another is that the
block is definitely overweight—this would be if more than
two-thirds declare that they could not execute the block
within said limit. One final possibility is a fairly equal
split of opinion between validators. In this case, we may
choose to do some proportionate punishment.

To ensure validators can predict when they may be
proposing an overweight block, it may be sensible to re-
quire them to publish information on their own perfor-
mance for each block. Over a sufficient period of time,
this should allow them to profile their processing speed
relative to the peers that would be judging them.

6.5.6. Collator Insurance. One issue remains for valida-
tors: unlike with PoW networks, to check a collator’s
block for validity, they must actually execute the trans-
actions in it. Malicious collators can feed invalid or over-
weight blocks to validators causing them grief (wasting
their resources) and exacting a potentially substantial op-
portunity cost.

To mitigate this, we propose a simple strategy on the
part of validators. Firstly, parachain block candidates sent
to validators must be signed from a relay chain account
with funds; if they are not, then the validator should drop
it immediately. Secondly, such candidates should be or-
dered in priority by a combination (e.g. multiplication) of
the amount of funds in the account up to some cap, the
number of previous blocks that the collator has success-
fully proposed in the past (not to mention any previous
punishments), and the proximity factor to the winning
ticket as discussed previously. The cap should be the same
as the punitive damages paid to the validator in the case
of them sending an invalid block.

To disincentivise collators from sending invalid or over-
weight block candidates to validators, any validator may
place in the next block a transaction including the offend-
ing block alleging misbehaviour with the effect of transfer-
ring some or all of the funds in the misbehaving collator’s
account to the aggrieved validator. This type of trans-
action front-runs any others to ensure the collator cannot
remove the funds prior to the punishment. The amount of
funds transferred as damages is a dynamic parameter yet



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 14

to be modelled but will likely be a proportion of the val-
idator block reward to reflect the level of grief caused. To
prevent malicious validators arbitrarily confiscating colla-
tors’ funds, the collator may appeal the validator’s deci-
sion with a jury of randomly chosen validators in return
for placing a small deposit. If they find in the valida-
tor’s favour, the deposit is consumed by them. If not, the
deposit is returned and the validator is fined (since the
validator is in a much more vaulted position, the fine will
likely be rather hefty).

6.6. Interchain Transaction Routing. Interchain
transaction routing is one of the essential maintenance
tasks of the relay-chain and its validators. This is the
logic which governs how a posted transaction (often short-
ened to simply “post”) gets from being a desired output
from one source parachain to being a non-negotiable in-
put of another destination parachain without any trust
requirements.

We choose the wording above carefully; notably we
don’t require there to have been a transaction in the source
parachain to have explicitly sanctioned this post. The only
constraints we place upon our model is that parachains
must provide, packaged as a part of their overall block
processing output, the posts which are the result of the
block’s execution.

These posts are structured as several FIFO queues; the
number of lists is known as the routing base and may be
around 16. Notably, this number represents the quantity
of parachains we can support without having to resort to
multi-phase routing. Initially, Polkadot will support this
kind of direct routing, however we will outline one possible
multi-phase routing process (“hyper-routing”) as a means
of scaling out well past the initial set of parachains.

We assume that all participants know the sub-
groupings for next two blocks n, n + 1. In summary, the
routing system follows these stages:

• CollatorS : Contact members of V alidators[n][S]
• CollatorS : FOR EACH subgroup s: ensure at

least 1 member of V alidators[n][s] in contact
• CollatorS : FOR EACH subgroup s: assume

egress[n− 1][s][S] is available (all incoming post
data to ‘S‘ from last block)

• CollatorS : Compose block candidate b for S:
(b.header, b.ext, b.proof, b.receipt, b.egress)

• CollatorS : Send proof information
proof [S] = (b.header, b.ext, b.proof, b.receipt) to
V alidators[n][S]

• CollatorS : Ensure external transaction data b.ext
is made available to other collators and validators

• CollatorS : FOR EACH subgroup s:
Send egress information egress[n][S][s] =
(b.header, b.receipt, b.egress[s]) to the re-
ceiving sub-group’s members of next block
V alidators[n + 1][s]

• V alidatorV : Pre-connect all same-set members
for next block: let N = Chain[n + 1][V ]; connect
all validators v such that Chain[n + 1][v] = N

• V alidatorV : Collate all data ingress for this
block: FOR EACH subgroup s: Retrieve
egress[n− 1][s][Chain[n][V ]], get from other val-
idators v such that Chain[n][v] = Chain[n][V ].

Possibly going via randomly selected other val-
idators for proof of attempt.

• V alidatorV : Accept candidate proofs for this
block proof [Chain[n][V ]]. Vote block validity

• V alidatorV : Accept candidate egress data for
next block: FOR EACH subgroup s, accept
egress[n][s][N ]. Vote block egress availability; re-
publish among interested validators v such that
Chain[n + 1][v] = Chain[n + 1][V ].

• V alidatorV : UNTIL CONSENSUS

Where: egress[n][from][to] is the current egress queue
information for posts going from parachain ‘from‘, to
parachain ‘to‘ in block number ‘n‘. CollatorS is a col-
lator for parachain S. V alidators[n][s] is the set of val-
idators for parachain s at block number n. Conversely,
Chain[n][v] is the parachain to which validator v is as-
signed on block number n. block.egress[to] is the egress
queue of posts from some parachain block block whose
destination parachain is to.

Since collators collect (transaction) fees based upon
their blocks becoming canonical they are incentivised to
ensure that for each next-block destination, the subgroup’s
members are informed of the egress queue from the present
block. Validators are incentivised only to form a consen-
sus on a (parachain) block, as such they care little about
which collator’s block ultimately becomes canonical. In
principle, a validator could form an allegiance with a col-
lator and conspire to reduce the chances of other collators’
blocks becoming canonical, however this is both difficult
to arrange due to the random selection of validators for
parachains and could be defended against with a reduc-
tion in fees payable for parachain blocks which hold up
the consensus process.

6.6.1. External Data Availability. Ensuring a parachain’s
external data is actually available is a perennial issue with
decentralised systems aiming to distribute workload across
the network. At the heart of the issue is the availability
problem which states that since it is neither possible to
make a non-interactive proof of availability nor any sort
of proof of non-availability, for a BFT system to properly
validate any transition whose correctness relies upon the
availability of some external data, the maximum number
of acceptably Byzantine nodes, plus one, of the system
must attest to the data being available.

For a system to scale out properly, like Polkadot, this
invites a problem: if a constant proportion of validators
must attest to the availability of the data, and assuming
that validators will want to actually store the data be-
fore asserting it is available, then how do we avoid the
problem of the bandwidth/storage requirements increas-
ing with the system size (and therefore number of valida-
tors)? One possible answer would be to have a separate set
of validators (availability guarantors), whose order grows
sublinearly with the size of Polkadot as a whole. This is
described in 6.5.3.

We also have a secondary trick. As a group, colla-
tors have an intrinsic incentive to ensure that all data is
available for their chosen parachain since without it they
are unable to author further blocks from which they can
collect transaction fees. Collators also form a group, mem-
bership of which is varied (due to the random nature of
parachain validator groups) non-trivial to enter and easy



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 15

to prove. Recent collators (perhaps of the last few thou-
sand blocks) are therefore allowed to issue challenges to
the availability of external data for a particular parachain
block to validators for a small bond.

Validators must contact those from the apparently of-
fending validator sub-group who testified and either ac-
quire and return the data to the collator or escalate the
matter by testifying to the lack of availability (direct re-
fusal to provide the data counts as a bond-confiscating of-
fence, therefore the misbehaving validator will likely just
drop the connection) and contacting additional validators
to run the same test. In the latter case, the collator’s bond
is returned.

Once a quorum of validators who can make such non-
availability testimonials is reached, they are released, the
misbehaving sub-group is punished, and the block re-
verted.

6.6.2. Posts Routing. Each parachain header includes an
egress-trie-root; this is the root of a trie containing the
routing-base bins, each bin being a concatenated list
of egress posts. Merkle proofs may be provided across
parachain validators to prove that a particular parachain’s
block had a particular egress queue for a particular desti-
nation parachain.

At the beginning of processing a parachain block, each
other parachain’s egress queue bound for said block is
merged into our block’s ingress queue. We assume strong,
probably CSPR9, sub-block ordering to achieve a deter-
ministic operation that offers no favouritism between any
parachain block pairing. Collators calculate the new queue
and drain the egress queues according to the parachain’s
logic.

The contents of the ingress queue is written explicitly
into the parachain block. This has two main purposes:
firstly, it means that the parachain can be trustlessly syn-
chronised in isolation from the other parachains. Secondly,
it simplifies the data logistics should the entire ingress
queue not be able to be processed in a single block; val-
idators and collators are able to process following blocks
without having to source the queue’s data specially.

If the parachain’s ingress queue is above a threshold
amount at the end of block processing, then it is marked
saturated on the relay-chain and no further messages may
be delivered to it until it is cleared. Merkle proofs are
used to demonstrate fidelity of the collator’s operation in
the parachain block’s proof.

6.6.3. Critique. One minor flaw relating to this basic
mechanism is the post-bomb attack. This is where all
parachains send the maximum amount of posts possible
to a particular parachain. While this ties up the target’s
ingress queue at once, no damage is done over and above
a standard transaction DoS attack.

Operating normally, with a set of well-synchronised and
non-malicious collators and validators, for N parachains,
N ×M total validators and L collators per parachain, we
can break down the total data pathways per block to:

Validator: M−1+L+L: M−1 for the other validators
in the parachain set, L for each collator providing a can-
didate parachain block and a second L for each collator
of the next block requiring the egress payloads of the pre-
vious block. (The latter is actually more like worst-case

operation since it is likely that collators will share such
data.)

Collator: M +kN : M for a connection to each relevant
parachain block validator, kN for seeding the egress pay-
loads to some subset of each parachain validator group for
the next block (and possibly some favoured collator(s)).

As such, the data path ways per node grow linearly
with the overall complexity of the system. While this is
reasonable, as the system scales into hundreds or thou-
sands of parachains, some communication latency may be
absorbed in exchange for a lower complexity growth rate.
In this case, a multi-phase routing algorithm may be used
in order to reduce the number of instantaneous pathways
at a cost of introducing storage buffers and latency.

6.6.4. Hyper-cube Routing. Hyper-cube routing is a mech-
anism which can mostly be build as an extension to the
basic routing mechanism described above. Essentially,
rather than growing the node connectivity with the num-
ber of parachains and sub-group nodes, we grow only with
the logarithm of parachains. Posts may transit between
several parachains’ queues on their way to final delivery.

Routing itself is deterministic and simple. We begin by
limiting the number of bins in the ingress/egress queues;
rather than being the total number of parachains, they
are the routing-base (b) . This will be fixed as the number
of parachains changes, with the routing-exponent (e) in-
stead being raised. Under this model, our message volume
grows with O(be), with the pathways remaining constant
and the latency (or number of blocks required for delivery)
with O(e).

Our model of routing is a hypercube of e dimensions,
with each side of the cube having b possible locations.
Each block, we route messages along a single axis. We
alternate the axis in a round-robin fashion, thus guaran-
teeing worst-case delivery time of e blocks.

As part of the parachain processing, foreign-bound
messages found in the ingress queue are routed imme-
diately to the appropriate egress queue’s bin, given the
current block number (and thus routing dimension). This
process necessitates additional data transfer for each hop
on the delivery route, however this is a problem itself
which may be mitigated by using some alternative means
of data payload delivery and including only a reference,
rather than the full payload of the post in the post-trie.

An example of such a hyper-cube routing for a system
with 4 parachains, b = 2 and e = 2 might be:

Phase 0, on each message M :

• sub0: if Mdest ∈ {2, 3} then sendTo(2) else keep
• sub1: if Mdest ∈ {2, 3} then sendTo(3) else keep
• sub2: if Mdest ∈ {0, 1} then sendTo(0) else keep
• sub3: if Mdest ∈ {0, 1} then sendTo(1) else keep

Phase 1, on each message M :

• sub0: if Mdest ∈ {1, 3} then sendTo(1) else keep
• sub1: if Mdest ∈ {0, 2} then sendTo(0) else keep
• sub2: if Mdest ∈ {1, 3} then sendTo(3) else keep
• sub3: if Mdest ∈ {0, 2} then sendTo(2) else keep

The two dimensions here are easy to see as the first
two bits of the destination index; for the first block, the
higher-order bit alone is used. The second block deals
with the low-order bit. Once both happen (in arbitrary
order) then the post will be routed.

9cryptographically secure pseudo-random



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 16

6.6.5. Maximising Serendipity. One alteration of the basic
proposal would see a fixed total of c2 − c validators, with
c−1 validators in each sub-group. Each block, rather than
there being an unstructured repartitioning of validators
among parachains, instead for each parachain sub-group,
each validator would be assigned to a unique and different
parachain sub-group on the following block. This would
lead to the invariant that between any two blocks, for any
two pairings of parachain, there exists two validators who
have swapped parachain responsibilities. While this can-
not be used to gain absolute guarantees on availability
(a single validator will occasionally drop offline, even if
benevolent), it can nonetheless optimise the general case.

This approach is not without complications. The addi-
tion of a parachain would also necessitate a reorganisation
of the validator set. Furthermore the number of valida-
tors, being tied to the square of the number of parachains,
would start initially very small and eventually grow far
too fast, becoming untenable after around 50 parachains.
None of these are fundamental problems. In the first case,
reorganisation of validator sets is something that must be
done regularly anyway. Regarding the size of the validator
set, when too small, multiple validators may be assigned
to the same parachain, applying an integer factor to the
overall total of validators. A multi-phase routing mecha-
nism such as Hypercube Routing, discussed in 6.6.4 would
alleviate the requirement for large number of validators
when there is a large number of chains.

6.7. Parachain Validation. A validator’s main purpose
is to testify, as a well-bonded actor, that a parachain’s
block is valid, including but not limited to any state tran-
sition, any external transactions included, the execution of
any waiting posts in the ingress queue and the final state
of the egress queue. The process itself is fairly simple.
Once the validator sealed the previous block they are free
to begin working to provide a candidate parachain block
candidate for the next round of consensus.

Initially, the validator finds a parachain block candi-
date through a parachain collator (described next) or one
of its co-validators. The parachain block candidate data
includes the block’s header, the previous block’s header,
any external input data included (for Ethereum and Bit-
coin, such data would be referred to as transactions, how-
ever in principle they may include arbitrary data struc-
tures for arbitrary purposes), egress queue data and inter-
nal data to prove state-transition validity (for Ethereum
this would be the various state/storage trie nodes re-
quired to execute each transaction). Experimental evi-
dence shows this full dataset for a recent Ethereum block
to be at the most a few hundred KiB.

Simultaneously, if not yet done, the validator will be
attempting to retrieve information pertaining to the pre-
vious block’s transition, initially from the previous block’s
validators and later from all validators signing for the
availability of the data.

Once the validator has received such a candidate block,
they then validate it locally. The validation process is con-
tained within the parachain class’s validator module, a
consensus-sensitive software module that must be written
for any implementation of Polkadot (though in principle
a library with a C ABI could enable a single library to
be shared between implementations with the appropriate

reduction in safety coming from having only a single “ref-
erence” implementation).

The process takes the previous block’s header and ver-
ifies its identity through the recently agreed relay-chain
block in which its hash should be recorded. Once the par-
ent header’s validity is ascertained, the specific parachain
class’s validation function may be called. This is a sin-
gle function accepting a number of data fields (roughly
those given previously) and returning a simple Boolean
proclaiming the validity of the block.

Most such validation functions will first check the
header-fields which are able to be derived directly from
the parent block (e.g. parent hash, number). Following
this, they will populate any internal data structures as
necessary in order to process transactions and/or posts.
For an Ethereum-like chain this amounts to populating a
trie database with the nodes that will be needed for the
full execution of transactions. Other chain types may have
other preparatory mechanisms.

Once done, the ingress posts and external transac-
tions (or whatever the external data represents) will be
enacted, balanced according to chain’s specification. (A
sensible default might be to require all ingress posts be
processed before external transactions be serviced, how-
ever this should be for the parachain’s logic to decide.)
Through this enactment, a series of egress posts will be
created and it will be verified that these do indeed match
the collator’s candidate. Finally, the properly populated
header will be checked against the candidate’s header.

With a fully validated candidate block, the validator
can then vote for the hash of its header and send all requi-
site validation information to the co-validators in its sub-
group.

6.7.1. Parachain Collators. Parachain collators are un-
bonded operators who fulfill much of the task of miners
on the present-day blockchain networks. They are specific
to a particular parachain. In order to operate they must
maintain both the relay-chain and the fully synchronised
parachain.

The precise meaning of “fully synchronised” will de-
pend on the class of parachain, though will always in-
clude the present state of the parachain’s ingress queue.
In Ethereum’s case it also involves at least maintaining
a Merkle-tree database of the last few blocks, but might
also include various other data structures including Bloom
filters for account existence, familial information, logging
outputs and reverse lookup tables for block number.

In addition to keeping the two chains synchronised, it
must also “fish” for transactions by maintaining a transac-
tion queue and accepting properly validated transactions
from the public network. With the queue and chain, it is
able to create new candidate blocks for the validators cho-
sen at each block (whose identity is known since the relay-
chain is synchronised) and submit them, together with the
various ancillary information such as proof-of-validity, via
the peer network.

For its trouble, it collects all fees relating to the trans-
actions it includes. Various economics float around this
arrangement. In a heavily competitive market where there
is a surplus of collators, it is possible that the transaction
fees be shared with the parachain validators to incentivise
the inclusion of a particular collator’s block. Similarly,



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 17

some collators may even raise the required fees that need
to be paid in order to make the block more attractive to
validators. In this case, a natural market should form
with transactions paying higher fees skipping the queue
and having faster inclusion in the chain.

6.8. Networking. Networking on traditional blockchains
like Ethereum and Bitcoin has rather simple requirements.
All transactions and blocks are broadcast in a simple undi-
rected gossip. Synchronisation is more involved, especially
with Ethereum but in reality this logic was contained in
the peer strategy rather than the protocol itself which re-
solved around a few request and answer message types.

While Ethereum made progress on current protocol of-
ferings with the devp2p protocol, which allowed for many
subprotocols to be multiplexed over a single peer connec-
tion and thus have the same peer overlay support many
p2p protocols simultaneously, the Ethereum portion of
the protocol still remained relatively simple and the p2p
protocol as a while remains unfinished with important
functionality missing such as QoS support. Sadly, a de-
sire to create a more ubiquitous “web 3” protocol largely
failed, with the only projects using it being those explicitly
funded from the Ethereum crowd-sale.

The requirements for Polkadot are rather more sub-
stantial. Rather then a wholly uniform network, Polkadot
has several types of participants each with different re-
quirements over their peer makeup and several network
“avenues” whose participants will tend to converse about
particular data. This means a substantially more struc-
tured network overlay—and a protocol supporting that—
will likely be necessary. Furthermore, extensibility to fa-
cilitate future additions such as new kinds of “chain” may
themselves require a novel overlay structure.

While an in-depth discussion of how the networking
protocol may look is outside of the scope of this docu-
ment, some requirements analysis is reasonable. We can
roughly break down our network participants into two sets
(relay-chain, parachains) each of three subsets. We can
also state that each of the parachain participants are only
interested in conversing between themselves as opposed to
participants in other parachains:

• Relay-chain participants:
• Validators: P, split into subsets P[s] for each

parachain
• Availability Guarantors: A (this may be repre-

sented by Validators in the basic form of the pro-
tocol)

• Relay-chain clients: M (note members of each
parachain set will also tend to be members of M)

• Parachain participants:
• Parachain Collators: C[0], C[1], . . .
• Parachain Fishermen: F[0], F[1], . . .
• Parachain clients: S[0], S[1], . . .
• Parachain light-clients: L[0], L[1], . . .

In general we name particular classes of communication
will tend to take place between members of these sets:

• P | A <-> P | A: The full set of valida-
tors/guarantors must be well-connected to
achieve consensus.

• P[s] <-> C[s] | P[s]: Each validator as a mem-
ber of a given parachain group will tend to gossip
with other such members as well as the collators

of that parachain to discover and share block can-
didates.

• A <-> P[s] | C | A: Each availability guarantor
will need to collect consensus-sensitive cross-chain
data from the validators assigned to it; collators
may also optimise the chance of consensus on their
block by advertising it to availability guarantors.
Once they have it, the data will be disbursed to
other such guarantor to facilitate consensus.

• P[s] <-> A | P[s']: Parachain validators will
need to collect additional input data from the pre-
vious set of validators or the availability guaran-
tors.

• F[s]<-> P: When reporting, fishermen may place
a claim with any participant.

• M <-> M | P | A: General relay-chain clients dis-
burse data from validators and guarantors.

• S[s] <-> S[s] | P[s] | A: Parachain clients dis-
burse data from the validator/guarantors.

• L[s] <-> L[s] | S[s]: Parachain light clients
disburse data from the full clients.

To ensure an efficient transport mechanism, a “flat”
overlay network—like Ethereum’s devp2p—where each
node does not (non-arbitrarily) differentiate fitness of its
peers is unlikely to be suitable. A reasonably extensible
peer selection and discovery mechanism will likely need
to be included within the protocol as well as aggressive
planning an lookahead to ensure the right sort of peers
are “serendipitously” connected at the right time.

The precise strategy of peer make-up will be differ-
ent for each class of participant: for a properly scaled-out
multi-chain, collators will either need to be continuously
reconnecting to the accordingly elected validators, or will
need on-going agreements with a subset of the validators
to ensure they are not disconnected during the vast ma-
jority of the time that they are useless for that valida-
tor. Collators will also naturally attempt to maintain one
or more stable connections into the availability guarantor
set to ensure swift propagation of their consensus-sensitive
data.

Availability guarantors will mostly aim to maintain a
stable connection to each other and to validators (for con-
sensus and the consensus-critical parachain data to which
they attest), as well as to some collators (for the parachain
data) and some fishermen and full clients (for dispersing
information). Validators will tend to look for other val-
idators, especially those in the same sub-group and any
collators that can supply them with parachain block can-
didates.

Fishermen, as well as general relay-chain and parachain
clients will generally aim to keep a connection open to a
validator or guarantor, but plenty of other nodes similar
to themselves otherwise. Parachain light clients will simi-
larly aim to be connected to a full client of the parachain,
if not just other parachain light-clients.

6.8.1. The Problem of Peer Churn. In the basic proto-
col proposal, each of these subsets constantly alter ran-
domly with each block as the validators assigned to verify
the parachain transitions are randomly elected. This can
be a problem should disparate (non-peer) nodes need to
pass data between each other. One must either rely on
a fairly-distributed and well-connected peer network to



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 18

ensure that the hop-distance (and therefore worst-case la-
tency) only grows with the logarithm of the network size
(a Kademlia-like protocol [13] may help here), or one must
introduce longer block times to allow the necessary con-
nection negotiation to take place to keep a peer-set that
reflects the node’s current communication needs.

Neither of these are great solutions: long block times
being forced upon the network may render it useless for
particular applications and chains. Even a perfectly fair
and connected network will result in substantial wastage
of bandwidth as it scales due to uninterested nodes having
to forward data useless to them.

While both directions may form part of the solution,
a reasonable optimisation to help minimise latency would
be to restrict the volatility of these parachain validator
sets, either reassigning the membership only between se-
ries of blocks (e.g. in groups of 15, which at a 4 second
block time would mean altering connections only once per
minute) or by rotating membership in an incremental fash-
ion, e.g. changing by one member at a time (e.g. if there
are 15 validators assigned to each parachain, then on av-
erage it would be a full minute between completely unique
sets). By limiting the amount of peer churn, and ensur-
ing that advantageous peer connections are made well in
advance through the partial predictability of parachain
sets, we can help ensure each node keep a permanently
serendipitous selection of peers.

6.8.2. Path to an Effective Network Protocol. Likely the
most effective and reasonable development effort will fo-
cus on utilising a pre-existing protocol rather than rolling
our own. Several peer-to-peer base protocols exist that
we may use or augment including Ethereum’s own devp2p
[22], IPFS’s libp2p [1] and GNU’s GNUnet [4]. A full re-
view of these protocols and their relevance for building a
modular peer network supporting certain structural guar-
antees, dynamic peer steering and extensible sub-protocols
is well beyond the scope of this document but will be an
important step in the implementation of Polkadot.

7. Practicalities of the Protocol

7.1. Interchain Transaction Payment. While a great
amount of freedom and simplicity is gained through drop-
ping the need for a holistic computation resource account-
ing framework like Ethereum’s gas, this does raise an im-
portant question: without gas, how does one parachain
avoid another parachain from forcing it to do computa-
tion? While we can rely on transaction-post ingress queue
buffers to prevent one chain from spamming another with
transaction data, there is no equivalent mechanism pro-
vided by the protocol to prevent the spamming of trans-
action processing.

This is a problem left to the higher level. Since chains
are free to attach arbitrary semantics on to the incoming
transaction-post data, we can ensure that computation
must be paid-for before started. In a similar vein to the
model espoused by Ethereum Serenity, we can imagine
a “break-in” contract within a parachain which allows a
validator to be guaranteed payment in exchange for the
provision of a particular volume of processing resources.
These resources may be measured in something like gas,
but could also be some entirely novel model such as sub-
jective time-to-execute or a Bitcoin-like flat-fee model.

On its own this isn’t so useful since we cannot read-
ily assume that the off-chain caller has available to them
whatever value mechanism is recognised by the break-in
contract. However, we can imagine a secondary “break-
out” contract in the source chain. The two contracts to-
gether would form a bridge, recognising each other and
providing value-equivalence. (Staking-tokens, available to
each, could be used to settle up the balance-of-payments.)
Calling into another such chain would mean proxying
through this bridge, which would provide the means of
negotiating the value transfer between chains in order to
pay for the computation resources required on the desti-
nation parachain.

7.2. Additional Chains. While the addition of a
parachain is a relatively cheap operation, it is not free.
More parachains means fewer validators per parachain
and, eventually, a larger number of validators each with a
reduced average bond. While the issue of a smaller coer-
cion cost for attacking a parachain is mitigated through
fishermen, the growing validator set essentially forces a
higher degree of latency due to the mechanics of the un-
derlying consensus method. Furthermore each parachain
brings with it the potential to grief validators with an
over-burdensome validation algorithm.

As such, there will be some “price” that validators
and/or the stake-holding community will extract for the
addition of a new parachain. This market for chains will
possibly see the addition of either:

• Chains that likely have zero net contribution pay-
ing (in terms of locking up or burning staking to-
kens) to be made a part (e.g. consortium chains,
Doge-chains, app-specific chains);

• chains that deliver intrinsic value to the network
through adding particular functionality difficult
to get elsewhere (e.g. confidentiality, internal scal-
ability, service tie-ins).

Essentially, the community of stakeholders will need to
be incentivized to add child chains—either financially or
through the desire to add featureful chains to the relay.

It is envisioned that new chains added will have a very
short notice period for removal, allowing for new chains to
be experimented with without any risk of compromising
the medium or long-term value proposition.

8. Conclusion

We have outlined a direction one may take to author a
scalable, heterogeneous multi-chain protocol with the po-
tential to be backwards compatible to certain, pre-existing
blockchain networks. Under such a protocol, participants
work in enlightened self-interest to create an overall sys-
tem which can be extended in an exceptionally free man-
ner and without the typical cost for existing users that
comes from a standard blockchain design. We have given
a rough outline of the architecture it would take including
the nature of the participants, their economic incentives
and the processes under which they must engage. We have
identified a basic design and discussed its strengths and
limitations; accordingly we have further directions which
may ease those limitations and yield further ground to-
wards a fully scalable blockchain solution.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 19

8.1. Missing Material and Open Questions. Net-
work forking is always a possibility from divergent im-
plementations of the protocol. The recovery from such an
exceptional condition was not discussed. Given the net-
work will necessarily have a non-zero period of finalisation,
it should not be a large issue to recover from the relay-
chain forking, however will require careful integration into
the consensus protocol.

Bond-confiscation and conversely reward provision has
not been deeply explored. At present we assume rewards
are provided under a winner-takes-all basis: this may not
give the best incentivisation model for fishermen. A short-
period commit-reveal process would allow many fishermen
to claim the prize giving a fairer distribution of rewards,
however the process could lead to additional latency in the
discovery of misbehaviour.

8.2. Acknowledgments. Many thanks to all of the
proof-readers who have helped get this in to a vaguely
presentable shape. In particular, Peter Czaban, Björn
Wagner, Ken Kappler, Robert Habermeier, Vitalik Bu-
terin, Reto Trinkler and Jack Petersson. Thanks to all
the people who have contributed ideas or the beginnings
thereof, Marek Kotewicz and Aeron Buchanan deserve es-
pecial mention. And thanks to everyone else for their help
along the way. All errors are my own.

Portions of this work, including initial research into
consensus algorithms, was funded in part by the British
Government under the Innovate UK programme.

References

[1] The specs for libp2p and associated submodules. https://
github.com/libp2p/specs.

[2] Webassembly. http://webassembly.org/, 2016.
[3] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach,

Gregory Maxwell, Andrew Miller, Andrew Poelstra, Jorge Ti-
mon, and Pieter Wuille. Enabling blockchain innovations with
pegged sidechains. 2014.

[4] Krista Bennett, Christian Grothoff, Tzvetan Horozov, Ioana
Patrascu, and Tiberiu Stef. Gnunet-a truly anonymous net-
working infrastructure. In In: Proc. Privacy Enhancing Tech-
nologies Workshop (PET. Citeseer, 2002.

[5] Vitalik Buterin. Ethereum: A next-generation smart contract
and decentralized application platform. https://github.com/
ethereum/wiki/wiki/White-Paper, 2013.

[6] Vitalik Buterin. Ethereum 2.0 mauve paper. 2016.
[7] Vitalik Buterin. Serenity poc2. 2016.
[8] Nxt community. Whitepaper: Nxt. http://wiki.nxtcrypto.

org/wiki/Whitepaper:Nxt, 2013.
[9] Christopher Copeland and Hongxia Zhong. Tangaroa: a

byzantine fault tolerant raft. http://www.scs.stanford.edu/
14au-cs244b/labs/projects/copeland_zhong.pdf, 2016.

[10] Ethan Buchman Jae Kwon. Cosmos: A network of
distributed ledgers. https://github.com/cosmos/cosmos/blob/
master/WHITEPAPER.md, 2016.

[11] Jae Kwon. Tendermint: Consensus without mining. http:
//tendermint.com/docs/tendermint.pdf, 2014.

[12] Daniel Larimer. Bitshares. http://docs.bitshares.org/
bitshares/history.html, 2013.

[13] Petar Maymounkov and David Mazières. Kademlia: A peer-
to-peer information system based on the xor metric. In IPTPS
’01 Revised Papers from the First International Workshop
on Peer-to-Peer Systems, pages 53–65, 2002.

[14] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn
Song. The honey badger of bft protocols. Technical report,
Cryptology ePrint Archive 2016/199, 2016.

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem. https://bitcoin.org/bitcoin.pdf, 2008.

[16] Diego Ongaro and John Ousterhout. In search of an un-
derstandable consensus algorithm. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pages 305–319,
2014.

[17] Parity. Parity ethereum client. https://parity.io, 2016.
[18] Serguei Popov. The tangle. https://www.iotatoken.com/IOTA_

Whitepaper.pdf, 2016.
[19] Youcai Qian. Randao. https://github.com/randao/randao,

2015.
[20] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,

Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from bitcoin.
In 2014 IEEE Symposium on Security and Privacy, pages
459–474. IEEE, 2014.

[21] Paul Snow, Brian Deery, Jack Lu, David Johnston, and Peter
Kirb. Factom: Business processes secured by immutable audit
trails on the blockchain. https://raw.githubusercontent.
com/FactomProject/FactomDocs/master/Factom_Whitepaper.pdf,
2014.

[22] Gavin Wood. Devp2p wire protocol. https://github.com/
ethereum/wiki/wiki/libp2p-Whitepaper, 2014.

[23] Gavin Wood. Ethereum: a secure decentralised generalised
transaction ledger. http://gavwood.com/paper.pdf, 2014.

[24] Gavin Wood. Yellow paper committee. https://github.com/
gavofyork/curly-engine, 2016.

Appendix A. Functional Components

Seen from a high-level, the Parity Polkadot Platform stack has a number of functional components and any develop-
ment of it will require a substantial amount of research and development prior to it being completed.

Some components are dependent on others existing, others are independent. Some are very important for the platform
to function properly, others are nice-to-haves. Some are of indeterminate complexity and have not yet been deemed
feasible, others are relatively straight-forward.

Here we’ll try to list as many such components as possible along with where they would fit into our development
roadmap.

Networking subsystem: This is the means by which a peer network is formed and maintained. Simple alterations
of existing peer-to-peer networking libraries (devp2p most likely) will be sufficient for an initial system. However,
additional research and development will be necessary to ensure that as the network grows, the network topology
becomes increasingly structured allowing for optimal data logistics. For the final deployment, adaptations of
libp2p, devp2p and GNUnet should be first considered. If requirements are not likely to be met then a new
protocol should be considered.

Consensus mechanism: Proof-of-authority consensus mechanism supporting rich validator statements and al-
lowing multiple independent items to be agreed upon under a single series based upon subjective reception of
the partial set of validator statements. The mechanism should allow the proof of misbehaviour for the dismissal
of malicious validators but need not involve any staking mechanism. A substantial amount of research and
prototyping will precede the development of this component.

Proof-of-stake chain: Extending the consensus mechanism into proof-of-stake territory; this module includes
staking tokens, managing entry and exit from the validator pool, a market mechanism for determining validator
rewards, finalising the approval-voting nomination mechanism and managing bond-confiscation and dismissal.
It includes a substantial amount of research and prototyping prior to final development.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 20

Parachain implementation: A first parachain implementation, likely to be based heavily on an existing blockchain
protocol such as Bitcoin or (more likely, since it provides for rich transactions) Ethereum. This will include an
integration with the proof-of-stake chain, allowing the parachain to gain consensus without its own internal
consensus mechanism.

Transaction processing subsystem: An evolution of the parachain and relay-chain, this will allow for trans-
actions to be sent, received and propagated. It includes the designs of transaction queuing and optimised
transaction routing on the network layer.

Transaction-routing subsystem: This introduces more specifics into the relay-chain’s behaviour. Initially,
adding transactability into parachains will be needed. Following that, with two parachains hard-coded into
the relay-chain, it will include the management of the ingress/egress queues. Eventually this will develop along
with the network protocol into a means of directed transaction propagation, ensuring independent parachain
collators are not overly exposed to transactions that are not of interest.

Relay chain: This is the final stage of the relay-chain, allowing the dynamic addition, removal and emergency
pausing of parachains, the reporting of bad behaviour and includes implementation of the “fisherman” function-
ality.

Independent collators: This is the delivery of an alternative chain-specific collator functionality. It includes
proof creation (for collators), parachain misbehaviour detection (for fishermen) and the validation function (for
validators). It also includes any additional networking required to allow the two to discover and communicate.

Network dynamics modelling and research: The overall dynamics of this protocol should be researched thor-
oughly. This can happen both through offline network modelling and through empirical evidence through simu-
lated nodes. The latter is dependent on the relay-chain and will include the development of a structured logging
protocol allowing nodes to submit detailed reports on their actions to a central hub for collation.

Network intelligence: As a complex decentralised multi-party network, a network intelligence hub similar to
http://ethstats.net is needed to monitor the life-signs of the network as a whole and flag potentially disruptive
behaviour. Structured logging should be used to generate and visualise this data in real-time for maximum
efficiency. It is dependent on the relay-chain being in a reasonably complete state.

Information publication platform: This is a mechanism for publishing data relating to the blockchain, and
effectively means a decentralised content-discovery network. Initially it can be handled by basic peer-to-peer
lookups but for deployment will likely require a more structured and robust solution since availability will become
a critical piece of information. IPFS integration may be the most sensible means of achieving these goals.

Javascript interaction bindings: The main means of interacting with the network will likely follow the example
of Ethereum and as such high-quality Javascript bindings are critical to have. Our bindings will cover interactions
with the relay-chain and the initial parachain and as such depends on them.

Governance: Initially, this will be a meta-protocol on the relay-chain for managing exceptional events such as
hard-forks, soft-forks and protocol reparameterisation. It will include a modern structure to help manage conflict
and prevent live-lock. Ultimately, this may become a full meta-protocol layer able to enact changes normally
reserved for hard-forks. Requires the relay chain.

Interaction platform: A platform by which “typical” users are able to interact with the system, along with
minimal functionality to facilitate common tasks such as entering the bond process, voting, nomination, becoming
a validator, fisherman or collator and staking token transfer. Depends upon having a functional relay-chain.

Light clients: Light-client technology for both the relay-chain and any parachains developed. This will allow
clients to be able to gain information regarding activity on the chains with a high degree of trust-freedom and
without any substantial requirement of storage or bandwidth. Depends upon the relay-chain.

Parachain UI: A multi-chain, multi-token wallet and identity management system. It requires light-client tech-
nology and the interaction platform. This is not needed for any initial network deployment.

On-chain Dapp services: There may be various services that will need to be deployed on any initial parachains
such as registration hubs for APIs, names, natural-language specifications and code. This depends on the
parachain but is not strictly needed for any initial network deployment.

Application development tools: This includes various bits of software required to help developers. Examples
include compilers, key management tools, data archivers and VM simulators. Many others exist. These will
need to be developed as required. Technologies will be chosen partly to minimise the need for such tools. Many
will not be strictly required.

Ethereum-as-a-parachain: Trust-free bridge to Ethereum and back again, allowing posted transactions to be
routed from parachains into Ethereum (and treated like any other transaction of external origin) and allow
Ethereum contracts to be able to post transactions to parachains and the accounts therein. Initially, this will
be modelled to ascertain feasibility and get any structural limitations based around the number of validators
required by the consensus process, a component on which it is dependent. A proof-of-concept can be built
following this and final development will be dependent on the relay-chain itself.

Bitcoin-RPC compatibility layer: A simple RPC compatibility layer for the relay-chain allowing infrastructure
already built using that protocol to be interoperable with Polkadot and as such minimise effort for support. A
stretch goal requiring the relay-chain.



POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 21

Web 2.0 bindings: Bindings into common Web 2.0 technology stacks to facilitate the usage of Polkadot infras-
tructure with legacy systems. A stretch goal dependent on the initial parachains and any on-chain infrastructure
to be exposed.

zk-SNARK parachain example: A parachain utilising the properties of zk-SNARKs in order to ensure identities
of transactors on it are kept private. A stretch goal dependent on the relay-chain.

Encrypted parachain example: A parachain that keeps each item of state encrypted and signed. These ensure
the enforcement of access controls over inspection and modification of the data therein allowing commercial
regulated operations to conform as necessary. Would include proof-of-authority mechanisms to allow Polkadot
validators to guarantee some degree of correctness of state transitions without gaining exposure to the underlying
information. A stretch goal depending on the relay-chain.

Trust-free Bitcoin bridge: Trust-free Bitcoin “two-way-peg” functionality. This would possibly use threshold
signatures or alternatively an n of m multi-signature Bitcoin account together with SPV proofs & specialised
fishermen. Development is predicated on an initial feasibility analysis giving a favourable result. Some additional
functionality may need to be added to (or unlocked from) the Bitcoin protocol to support this functionality.

Abstract/low-level decentralised applications: Trust-free token exchange, asset-tracking infrastructure, crowd-
sale infrastructure.

Contract language: Certainly not an integral part of the project, but a nice stretch-goal nonetheless. Would
include a safe contract language together with tutorials, guidelines and educational tools. It may include means
of making formal proofs as per the original Solidity language vision or could be based around some other
programming paradigm which helps minimise critical process errors such as functional programming or condition-
orientated programming.

IDE: Based on the contract language, this would facilitate editing, collaboration, publication and debugging of
contracts on the parachains. A far stretch goal.

Appendix B. Frequently Asked Questions

Is Polkadot designed to replace (insert blockchain here): No. The goal of Polkadot is to provide a frame-
work under which new blockchains may be created and to which existing blockchains can, if their communities
desire, be transitioned.

Is Polkadot designed to replace (insert crypto-currency here): No. Polkadot tokens are neither intended
nor designed to be used as a currency. They would make a bad currency: most will remain illiquid in the staking
system and those that are liquid will face substantial fees for transfer of ownership. Rather, the purpose of
Polkadot tokens is to be a direct representation of stake in the Polkadot network.

What is the inflation rate for Polkadot staking tokens: The Polkadot staking token base expansion is un-
limited. It rises and lowers according to market effects in order to target a particular proportion of tokens held
under long-term bond in the validation process.

Why does staking token ownership reflect stakeholding: This is a mechanism realised by the fact that they
underpin the network’s security. As such their value is tied to the overall economic value that Polkadot provides.
Any actors who gain overall value from Polkadot operating correctly are incentivised to ensure it continues to
do so. The best means of doing so is to take part in the validation process. This generally implies ownership of
staking tokens.


