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1 Introduction

Definition 1.1. Let K be a field, and T a topology on K. We call T a field topology if the maps

K ×K → K : (x, y) 7→ x+ y,
K ×K → K : (x, y) 7→ x · y,
K∗ →K∗ : x 7→ x−1,

are continuous, in which K ×K is given the product topology and K∗ the subspace topology.

In this thesis, we will be using methods developed by Podewski [1] to prove that any infinite

countable field F admits exactly 22
ℵ0

field topologies. In the case of an algebraic closure of a finite
field Fq, we can ensure that all automorphisms are continuous with respect to these topologies.
Furthermore, we will show that there exists a field topology on this algebraic closure such that
the subspace topology on every infinite subfield is neither discrete nor antidiscrete. This raises
the question whether such a topology exists such that all automorphisms are continuous as well.

2 Approximations of local bases

This section largely reviews material from [1].

2.1 Definitions

Definition 2.1. Let K be a countably infinite field. Consider the following functions:

• ζ : P(K) → P(K) : X 7→ X −X = {x− y : x, y ∈ X};

• η : P(K) → P(K) : X 7→ X ·X;

• θ : P(K) → P(K) : X 7→ X
1−(X\{1}) ;

• ξA : P(K) → P(K) : X 7→ A ·X, one for every A ⊂ K∗.

A family in K is a subset A of [K]<ω such that every a ∈ K is in some A ∈ A, and for all A,B ∈ A,
the sets A∪B, ξB(A) and ϕ(A) are also in A, for all ϕ ∈ {ζ, η, θ}. Given a family A in K, as A is
countably infinite, we can choose a sequence (ϕn)n∈ω in {ζ, η, θ} ∪ {ξA : A ∈ A} such that every
element occurs infinitely often (we employ the set-theoretic notation ω = Z≥0). Occasionally, we
will extend ϕn to a function ϕn : P(K(X1, . . . , Xl)) → P(K(X1, . . . , Xl)), for some integer l. We
denote d(n) = |{k ≤ n : ϕk ∈ {ζ, η, θ}}|.

Example 2.2. For any field K, the collection of finite subsets of K is a family in K. Also, if
K ⊂ L is an extension and A is a family in L, then {A ∩K : A ∈ A} is a family in K.

Lemma 2.3. Let (Vn)n∈ω be a sequence of subsets of K such that, for every n ∈ ω:

• 0 ∈ Vn;

• 1 /∈ Vn;

• Vn+1 ⊂ Vn;

• ϕn(Vn+1) ⊂ Vn.

Then {x+ Vn : x ∈ K,n ∈ ω} is the base for a field topology on K.

We omit the straightforward proof.

Definition 2.4. An approximation of a local base at 0, or briefly an approximation, is a function
f : ω ∪ {−1} → [K]<ω (the set of finite subsets of K) such that the following conditions are
satisfied:
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1. 0 ∈ f(n) for all n ∈ ω;

2. 1 ∈ f(−1);

3. f(n) ∩ f(−1) = ∅ for all n ∈ ω;

4. f(n+ 1) ⊂ f(n) for all n ∈ ω;

5. ϕn(f(n+ 1)) ⊂ f(n) for all n ∈ ω.

The set of all approximations is denoted P. The set of all approximations whose image is in a
given family A is denoted PA.

For two approximations f and f ′ we define f ′ ≤ f if f ′(n) ⊂ f(n) for every n ∈ ω ∪{−1}; this
defines a partial order on P.

Lemma 2.5. Let C be a chain in P, and for n ∈ ω, define V C
n =

∪
f∈C f(n). Then

{x+ V C
n : x ∈ K,n ∈ ω} (2.6)

is the basis of a field topology on K.

Again, the proof is fairly straightforward, so we omit it.

2.2 Expanding approximations

In this section, we describe the conditions under which approximations may be expanded in a way
that will suit us in the coming sections.

Theorem 2.6. Let K ⊂ L be two fields, with A and (ϕk)k∈ω defined in L. Let f ∈ P{A:A∈A,A⊂K}
and let n ∈ ω ∪ {−1}, such that ϕk ∈ {ζ, η, θ} ∪ {ξA : A ∈ A, A ⊂ K} for k < n. Then there
exist l ∈ ω and a finite set G ⊂ K[X1, . . . , Xl] such for every finite subset A ∈ A the following are
equivalent:

1. There exists an approximation f ′ ∈ PA such that f ≤ f ′, and A ⊂ f ′(n), and f(m) = f ′(m)
for all m > n and for m = −1 if n ̸= −1.

2. none of the polynomials in G has a zero in Al.

Furthermore, if n ∈ ω, then l and G can be chosen to be such that l ≤ 2d(n) and every g ∈ G is of
degree ≤ 2d(n).

Proof. For n = −1, given f , let l = 1 and G = {X1 −α : α ∈ f(0)} ∈ K[X1]. Then every function
as in 1 must satisfy f ′ ≥ f ′′, where the function f ′′ : ω ∪ {−1} → [L]<ω given by

f ′′(m) :=

{
f(−1) ∪A, if m = −1;
f(m), else.

Then f(−1)∪A ∈ A, so f ′′ ∈ PA if and only if A∩ f(0) = ∅, which is true if and only if g has
no zeroes in A.

For n ∈ ω we use induction on n to prove the stronger statement that G and l can be found
with the properties in the lemma such that Xi−1 ∈ G for all 1 ≤ i ≤ l. The proof for n = 0 is the
same to that of n = −1, using l = 1 and G = {X1−α : α ∈ f(−1)}; then indeed l = 1 ≤ 2d(0) = 1,
and X1 − 1 ∈ G. Now assume the theorem holds for n, and let l ∈ ω be an integer and G a set of
polynomials, satisfying the conditions of the theorem. We find a l′ and G′ that work for n+ 1.

If ϕn = ξB for some B ⊂ K, then look at the set

G′ = {g(h1, . . . , hl) : g ∈ G, hi ∈ {Xi} ∪ f(n+ 1) ∪ ξB({Xi} ∪ f(n+ 1))} ⊂ K[X1, . . . , X2l].
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Then by the induction hypothesis, l ≤ 2d(n) = 2d(n+1), and every polynomial in G′ is of degree
at most 2d(n) = 2d(n+1); furthermore, for all 1 ≤ i ≤ l, Xi − 1 ∈ G ⊂ G′. Note that for a set
A ∈ A, no polynomial in G′ has a zero in Al if and only if no polynomial in G has a zero in
(A ∪ f(n+ 1) ∪ ξB(A ∪ f(n+ 1)))l.

If ϕn = ζ or ϕn = η, then we take

G′ = {g(h1, . . . , hl) : g ∈ G,hi ∈ {X2i−1, X2i} ∪ f(n+ 1) ∪ ϕn({X2i−1, X2i} ∪ f(n+ 1))}.

Note that G′ is a subset of K[X1, . . . , X2l], and that here we have polynomials in 2l ≤ 2d(n)+1 =
2d(n+1) variables of degree at most 2 · 2d(n) ≤ 2d(n+1); also, it is easy to see that for all 1 ≤ i ≤ 2l,
the polynomial Xi − 1 is in G′. Again, for a set A ⊂ K, no polynomial in G′ has a zero in Al if
and only if no polynomial in G has a zero in (A ∪ f(n+ 1) ∪ ϕn(A ∪ f(n+ 1)))l.

If ϕn = θ, then define

G′′ = {g(h1, . . . , hl) : g ∈ G,hi ∈ {X2i−1, X2i} ∪ f(n+ 1) ∪ θ({X2i−1, X2i} ∪ f(n+ 1))}.

Note that G′′ is a subset of K(X1, . . . , X2l). If we write the elements of G′′ in the form j/h, with
j, h ∈ K[X1, . . . , X2l] without common factors, we takeG′ = {j : ∃h ∈ K[X1, . . . , X2l] such that j/h ∈
G′′ and gcd(j, h) = 1}. We will show that for every (a1, . . . , a2l) ∈ K2l, one has j(a1, . . . , a2l) = 0
for some j ∈ G′ if and only if there is some g ∈ G′′ such that g(a1, . . . , a2l) is defined and equal to
0. The ‘if’ part of the statement is obvious; as for the ‘only if’ part, if j ∈ G′ and j(a1, . . . , a2l) = 0,
and h is such that j/h ∈ G′′ and gcd(j, h) = 1, then either h(a1, . . . , a2l) = 0, or (j/h)(a1, . . . , a2l)
is defined and equal to 0. If we write j/h = g(h1, . . . , h2l) for some g ∈ G′′ and h(a1, . . . , a2l) = 0,

then some hi(a1, . . . , a2l) must be undefined. This is possible only if hi = θ(X2i−1, X2i) =
X2i−1

1−X2i

or hi =
x

1−X2i
for some x ∈ f(n+1). Either way, a2i must be equal to 1. As Xi − 1 ∈ G, our con-

struction ensures that X2i−1 ∈ G′, so (a1, . . . , a2l) is a zero of the defined X2i−1 ∈ G′. Note that
here we have polynomials in 2l ≤ 2d(n)+1 = 2d(n+1) variables of degree at most 2 · 2d(n) ≤ 2d(n+1).

Now we will show that for the set G′, the statements 1 and 2 are equivalent. Let A ∈ A
be such that no function in G′ has a zero in Al; hence no polynomial in G has any zeroes in
(A∪ f(n+1)∪ ϕn(A∪ f(n+1)))l. Since this set is in A, by the induction hypothesis there exists
an approximation f ′′ ∈ PA such that f ′′ ≥ f and A ∪ f(n+ 1) ∪ ϕn(A ∪ f(n+ 1)) ⊂ f ′′(n), and
f(m) = f ′′(m) for all m > n and for m = −1. Now consider the function f ′ : ω∪{−1} → A given
by

f ′(m) :=

{
f ′′(n+ 1) ∪A, if m = n+ 1;
f ′′(m), otherwise.

This is an approximation in PA which satisfies A ⊂ f ′(n+1) and f(m) = f ′(m) for all m > n+1
and for m = −1.

Now let A ∈ A be finite such that there exists an approximation f ′ ∈ PA such that f ≤ f ′

and A ⊂ f ′(n + 1) and f ′(m) = f(m) for all m > n and for m = −1. Consider the function
f ′′ : ω ∪ {−1} → A given by

f ′′(m) =

{
f(n+ 1), if m = n+ 1;
f ′(m), otherwise.

This is an approximation which satisfies A∪f(n+1)∪ϕn(A∪f(n+1)) ⊂ f ′′(n), and f ′′(m) = f(m)
for all m > n+1 and for m = −1. By the induction hypothesis no polynomial in G has any zeroes
in (A ∪ f(n+ 1) ∪ ϕn(A ∪ f(n+ 1)))l ⊂ (f ′′(n))l; but this means precisely that no polynomial in
G′ has any zeroes in Al.

Corollary 2.7. Let f , n, G be as in the previous theorem. If {0} ∈ A, then for all g ∈ G, the
value g(0, . . . , 0) is unequal to 0.

Proof. This follows from the previous theorem and the fact that there is an approximation f ′

satisfying 1 of the previous theorem for A = {0}, namely f ′ = f .
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2.3 Making topologies

Lemma 2.8. Using the family A = [K]<∞, let f be an approximation in K, and let n ∈ ω∪{−1}.
Then for almost all r ∈ K (that is, for all r ∈ K except for a finite subset), there exists an
approximation f ′ ≥ f such that r ∈ f ′(n) and f(m) = f ′(m) for all m > n and for m = −1 if
n ̸= −1.

Proof. By theorem 2.6, using L = K, there exists a finite set of polynomials G ⊂ K[X1, . . . , Xl]
such that there exists an approximation f ′ satisfying the theorem if and only if for all g ∈ G, g
has no zero in {r}l. This is true if and only if g(r, r, . . . , r) ̸= 0 for all g ∈ G. Because {0} ∈ A,
one has g(0, . . . , 0) ̸= 0, one has g(X, . . . ,X) ̸= 0, and hence every g(X, . . . ,X) has only a finite
number of zeroes.

Now we can use the approximations to make field topologies onK. We regard every nonnegative
integer as the set of its predecessors: n = {0, 1, . . . , n − 1}. Furthermore, for two sets A and B
we use the notation AB for the set of functions from A to B, and <ωA =

∪
n∈ω

nA. For every
s ∈ <ω2 we recursively define an approximation fs such that for every n ≥ 1 and s ∈ n2,

fs�n−1 ≤ fs,

where s � n− 1 denotes the restriction of s to n− 1 = {0, 1, . . . , n− 2}, and

fs(−1) ∩
∩

t∈n2\{s}

f t(n) ̸= ∅. (2.2)

For ∅, the unique element of 02, we define f∅ : ω ∪ {−1} → [K]<ω by

f∅(m) =

{
{1}, if m = −1;
{0}, otherwise.

Now let n > 0, and assume we have defined fs for all s ∈ n−12. Let {s1, . . . , s2n} be an ordering
of n2. Because of lemma 2.8 there exists an element α ∈ K such that for every k ≤ 2n there exist
fsk
1 ∈ P such that

fsk�n−1 ≤ fsk
1 for all k ≤ 2n (2.3)

and
α ∈ fs1

1 (−1) ∩
∩

2≤k≤2n

fsk
1 (n).

Now analogously define recursively for every 2 ≤ m ≤ 2n, for every k ≤ 2n a function fsk
m ∈ P

such that
fsk
m−1 ≤ fsk

m for all k ≤ 2n

and
fsk
k (−1) ∩

∩
h̸=k

fsh
k (n) ̸= ∅.

Take fsk = fsk
2n ; then fs satisfies (2.2) for every s ∈ n2. For x ∈ ω2, define Cx = {fx�n : n ∈ ω}.

This is a chain of approximations, and hence defines a field topology Tx on K. For a subset
X ⊂ ω2, define the field topology TX =

∨
x∈X Tx, the coarsest topology such that all the open sets

of all the Tx are open; this is again a field topology. In any topology such that all the sets of Tg
are open for all g ∈ X, finite intersections of open sets from different Tg are also open. Therefore,
TX is the topology generated by elements of the form

∩n
i=1 Ui, with n some integer and every Ui

open in some Tg. Since the collection of these sets is closed under intersection, these elements
actually constitute a basis of TX .

Lemma 2.9. Let X,Y ⊂ ω2 be different. Then TX ̸= TY .
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Proof. Without loss of generality we may assume that we can choose h ∈ X\Y . Using the notation

of 2.5, V Ch
0 ∩ V Ch

−1 is empty, so one has 0 /∈ V Ch
−1 in TX . A basis element of TY is of the form∩m

i=1 gi(ni), with ni ∈ ω and gi ∈ Y . Let n ∈ ω be such that n ≥ ni for all i and such that h � n
differs from all gi � n. Then

∅ ( fh�n(−1) ∩
m∩
i=1

fgi�n(n)

⊂ fh�n(−1) ∩
m∩
i=1

fgi�n(ni)

⊂ V Ch
−1 ∩

m∩
i=1

V
Cgi
ni .

This implies that 0 ∈ V Ch
−1 in TY , and hence TX ̸= TY .

Theorem 2.10. Let K be a countable field. Then there exist exactly 22
ℵ0

field topologies on K.

Proof. By lemma 2.10, there exist at least 22
ℵ0

field topologies on K. Because a topology is a set
of subsets of K, this is also the maximum number.

3 Topologies with continuous automorphisms

3.1 Definition and basic properties

Definition 3.1. Let K be an algebraic extension of a countable field F , and A a subset of K. We
call A stable under AutF (K) if σ[A] ⊂ A for every σ ∈ AutF (K). If f is an approximation, then
f is said to be stable under AutF (K) if f(n) is stable under AutF (K) for every n ∈ ω ∪ {−1}.

The reason for looking at these approximations is stated without proof in the following lemma.

Lemma 3.2. Let C be a chain of approximations that are stable under AutF (K). Then the action
AutF (K)×K → K : (σ, x) 7→ σ(x) is continuous, where AutF (K) is given the Krull topology (see
[2], p21) and K the topology induced by C.

Again, we omit the simple proof.

Definition 3.3. Let Fq be a finite field, and let α ∈ F̄q, an algebraic closure of Fq. The degree
of α is defined by

degα = [Fq(α) : Fq].

Note that this is equal to min{n ∈ ω : α ∈ Fqn}, see [2], p98.

Lemma 3.4. Let xn = #{α ∈ Fqn : degα = n}. Then

lim
n→∞

xn

qn
= 1.

Proof. Because Fqn has, by definition, qn elements, we have xn ≤ qn. Furthermore,
∑

d|n xd = qn.
Therefore,

xn = qn −
∑

d|n,d<n

xd

≥ qn −
⌊n

2 ⌋∑
d=1

qd

= qn − q

q − 1

(
q⌊

n
2 ⌋ − 1

)
,

from which the lemma follows easily.
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Lemma 3.5. Let K be an infinite algebraic extension of a finite field F , and A the family in K
consisting of all finite subsets of K stable under AutF (K). Given A, let (ϕn)n∈ω be a sequence as
in Definition 2.1, and f an approximation stable under AutF (K), and n ∈ ω ∪ {−1}. Then there
exists l ∈ ω and a finite G ⊂ F [X1, . . . , Xl] such that for every A ∈ A, the following statements
are equivalent:

• There exists an approximation f ′ ≥ f such that f ′ is stable under AutFq (K), A ⊂ f ′(n),
and f(m) = f ′(m) for all m > n and for m = −1 if n ̸= −1.

• For every g ∈ G, the polynomial g has no zeroes in Al.

Proof. By Theorem 2.6 there exist l ∈ ω and G ⊂ K[X1, . . . , Xl] such that for every A ∈ A:

1. There exists an approximation f ′ ≥ f such that f ′ is stable under AutF (K), A ⊂ f ′(n), and
f(m) = f ′(m) for all m > n and for m = −1 if n ̸= −1.

2. Every g′ ∈ G′ has no zeroes in Al.

Let G = {g : g is the product of the conjugates of g′ for some g′ ∈ G′}. Then, because A is closed
under AutFq (K), some g ∈ G has a zero in Al if and only if there is some g′ ∈ G′ with a zero in
Al; this proves our lemma.

3.2 Expanding approximations

Lemma 3.6. Let t and n be integers greater than or equal to 2, and G be the directed graph having
the set Z/nZ as vertices and {(k, k + 1) : k ∈ Z/nZ} as edges, and let a1, . . . , at ∈ Z/nZ. Then
there is a k ∈ A = {a1, . . . , at} such that the distance in G from k to any other point in A is at
most ⌊ t−1

t n⌋.

Proof. Note that for a, b ∈ Z/nZ, the distance from a to b is [b−a], where [x] denotes x considered
modulo n and taken between 0 and n − 1. Let a′1, a

′
2, . . . , a

′
t be an enumeration of the ai in

ascending order (from 0 to n − 1), and a′t+1 = a′1, and let fi = a′i+1 − a′i for i ≤ t − 1, and
ft = n+ a′1 − a′t. Then the fi sum to n, so there must be some m such that fm ≥ ⌈n

t ⌉. For this m
we have [a′1−a′m+1], . . . , [a

′
t−a′m+1] ≤ ⌊ t−1

t n⌋; to see this, note that [a′j−a′m+1] = n+a′j−a′m+1 ≤
n + a′m − a′m+1 ≤ ⌊ t−1

t n⌋ for j ≤ m, and for j > m, it holds that [a′j − a′m+1] = a′j − e′m+1 =∑j
i=m+1 fi ≤ n− fm ≤ ⌊ t−1

t n⌋, as the fi are nonnegative. Hence a′m+1 satisfies the conditions of
the lemma.

Theorem 3.7. Let K be an infinite algebraic extension of a finite field Fq, and let f be an
approximation stable under AutFq (K), and m ∈ ω ∪ {−1}. Let xn be as in lemma 3.4, and for
n ∈ Z≥0 such that Fqn ⊂ K, let Bn be the set of α ∈ K such that degα = n and there exists
f ′ ∈ P stable under AutFq (K) such that f ′ ≥ f , α ∈ f ′(m) and f ′(k) = f(k) for k > m or k = −1

if m ̸= −1. Then limn→∞
|Bn|
xn

= 1, where n ranges over the integers such that Fqn ⊂ K.

Proof. For α ∈ K, the set of conjugates of α is the set {α, αp, αp2

, . . . , αpdeg α−1} (see [2], p25).
By lemma 3.5, there exists a finite set of polynomials G ⊂ Fq[X1, . . . , Xl] such that there ex-
ists an approximation f ′ satisfying the above conditions if and only if no g ∈ G has any ze-

roes in {α, αp, αp2

, . . . , αpdeg α−1}l; let k =
∏

g∈G g. For α of a fixed degree n, this implies
that such an approximation exists if and only if α is not a zero of any polynomial of the form
k(Xqe1 , Xqe2 , . . . , Xqel ), where 0 ≤ e1, . . . , el < n. By Lemma 3.6, there is an em such that all
the values [ei − em] are lesser than or equal to ⌊ l−1

l n⌋. Now αem is a zero of the polynomial

k
(
Xq[e1−em]

, Xq[e2−em]

, . . . , Xq[el−em]
)
∈ Fq[X].

Now α is a zero of this polynomial as well; hence, for every x ∈ K of degree n, one has x ∈ Bn if
and only if there are no 0 ≤ e1, e2, . . . , el ≤ ⌊ l−1

l n⌋ such that x is a zero of k(Xqe1 , Xqe2 , . . . , Xqel ).
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Because k(0, . . . , 0) ̸= 0 by Corollary 2.7, polynomials of this form are not the zero polynomial,
and of degree at most deg(k) ·maxi{qei} , so they cannot have more than deg(k) ·maxi{qei} zeroes.
This implies that

|Bn| ≥ qn −
⌊ l−1

l n⌋∑
e1=0

· · ·
⌊ l−1

l n⌋∑
et=0

deg(k) ·max
i

{qei}

≥ qn −
(
⌊ l − 1

l
n⌋+ 1

)l

· q⌊
l−1
l n⌋ · deg(k).

Hence limn→∞
|Bn|
xn

= limn→∞
|Bn|
qn

qn

xn
= 1.

Theorem 3.8. Let F be a finite field, and let K be an infinite algebraic extension of F . Then

there exist 22
ℵ0

field topologies on K such that the action of AutF (K) on K is continuous.

Proof. This can be proven similarly to theorem 2.10. Analogously, for every l ∈ <ω2 we define an
approximation f l stable under AutF (K) such that (2.2) holds, starting with f∅ : ω∪{−1} → [K]<ω

defined as in section 2.3. Because of theorem 3.7, we can expand the approximations. Now we
can make topologies, which analogously to lemma 2.9 are all different.

4 A field topology with nontrivial subfield topologies

In this section, we refine the methods in section 2.3 to construct a Hausdorff field topology on
an algebraic closure of a finite field F such that for every infinite algebraic extension F ⊂ L, the
induced topology on L is not discrete. We start off with some definitions:

Definition 4.1. Let F = Fq be a finite field, and F̄ an algebraic closure of F . Then we define
the following subfields of F̄ , where p is a prime and P an infinite set of primes:

Fp = {x ∈ F̄ : [F (x) : F ] is a power of p}
FP = {x ∈ F̄ : [F (x) : F ] is squarefree, and its prime divisors are elements of P}
F<p = {x ∈ F̄ : all primes dividing [F (x) : F ] are smaller than p}

To make this topology, we desire further constraints on (ϕn)n∈ω: for n ≤ 2k − 3, ϕn must be
an element of {ζ, η, θ} ∪ {ξA : A ⊂ F<pk

, A finite} (we use A = [L]<∞), where pi denots the i-th
prime. Furthermore, 2d(n) must be smaller than pn. Also, let (qi)i∈ω be a sequence of primes such
that qi ≤ pi for all i, and every prime occurs in (qi)i∈ω an infinite number of times.

Theorem 4.2. Let F be a finite field. Then there exists a field topology on F̄ such that for any
infinite subfield L ⊂ F̄ the induced topology is nontrivial, i.e., neither discrete nor antidiscrete.

For the proof of this theorem, we need two lemmas, which we will prove later on.

Lemma 4.3. Let F = Fq be a finite field. Then for any infinite algebraic extension F ⊂ L, the
field L must contain a subfield either of the form Fp for some prime p, or FP for some infinite
set of primes P.

Lemma 4.4. There exists an increasing sequence of approximations (fn)n∈ω satisfying the fol-
lowing conditions:

• for every k ≥ 2, the image of f2k−2 is contained in F<pk
;

• for every k ≥ 3, the image of f2k−3 is contained in F<pk
;

• for every n and every m > n, the set fn(m) is equal to {0};

• for every n, the set fn(−1) is equal to {−1};
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• for every k ≥ 1, the set f2k(2k) is of the form {x} for some x ∈ Fqk ;

• for every k ≥ 1, the set f2k−1(2k − 1) is of the form {x} for some x of degree pk.

Proof of Theorem 4.2 from 4.3 and 4.4. By Lemma 4.3, it is sufficient to construct a topology
such that the induced topology on every Fp and FP is nontrivial. This is true if and only if 0 is not
an isolated point in any of those fields and the topology is not antidiscrete. Take the field topology
induced by the sequence (fn)n∈ω of Lemma 4.4. As our construction gives neighbourhoods of 0
not containing 1, the topology will not be antidiscrete. For any prime p, elements of Fp occur in
f2k(2k) for arbitrarily large k, so 0 will not be an isolated point in Fp. Also, for any infinite set of
primes P, elements of FP occur in f2k−1(2k − 1) for arbitrarily large k, so 0 will not be discrete
in FP ; hence this topology is nontrivial on any infinite subfield of F̄ .

Proof of Lemma 4.3. Define A ⊂ Z≥1 as A = {n ∈ Z≥1 : Fqn ⊂ L}. Then A is infinite and
L =

∪
n∈A Fqn . Furthermore, if m and n are elements of A, then so are any of their divisors, as

well as their least common multiple. This means that A is defined by the prime powers occuring
in it. As A is infinite, either an unlimited number of primes must occur in A, or arbitrarily large
powers of a certain prime must occur in A; so L either has a subfield of the form FP for a certain
infinite set of primes P, or a subfield of the form Fp for a certain prime p.

Proof of Lemma 4.4. We recursively define our approximations by setting f0 = f∅ as defined in
section 2.3; indeed the image of f0 is contained F<2 = F . For n = 2k given an approximation
f2k−1 satisfying the conditions in the lemma, we want to choose an approximation f2k such that:

• the image of f2k is contained in F<pk+1
;

• f2k−1 ≤ f2k;

• f2k−1(m) = f2k(m) for m = −1 and m > 2k;

• f2k(2k) = {x} for some x ∈ Fqk .

As f2k−1(m) equals {0} for all m > 2k − 1, condition 5 from 2.2 is implied by condition 1 for
n ≥ 2k − 1; hence for n ≥ 2k − 1, we may assume without loss of generality that ϕn = ξ0 for
those n; as ϕn ∈ {ζ, η, θ} ∪ {ξa : a ∈ F<pk+1

} for n < 2k − 1, we may assume that ϕn is defined
within F<pk+1

. As the image of f2k−1(m) is contained in F<pk+1
, we may apply lemma 2.8 with

K = F<pk+1
, f = f2k−1 and n = 2k. As Fqk is an infinite subfield of F<pk+1

, there is an x ∈ Fqk

such that f2k satisfies the above conditions.
For n = 2k − 1, given f2k−2 satisfying the conditions in the lemma, we wish to make f2k−1

such that:

• the image of f2k−1 is contained in F<pk+1
;

• f2k−2 ≤ f2k−1;

• f2k−2 ≤ f2k−1, f2k−2(m) = f2k−1(m) for m > 2k − 1;

• f2k−1(2k − 1) = {x} for some x of degree pk.

To see this is possible, note that, as above, we assume without loss of generality that ϕn is defined
within F<pk+1. Then we may apply theorem 2.6 for K = F<pk

, L = F<pk+1
and A = [L]<∞, to

show that there exists a set of polynomials G ⊂ F<p[X1, . . . , Xl] of degree at most 2d(n) such that
we can add x in the manner described above if and only if g(x, x, . . . , x) ̸= 0 for all g ∈ G. But
any x ∈ Fqpk satisfies [F<pk

(x) : F<pk
] = pk > 2d(n), but the degree of any g ∈ G is at most 2d(n),

so g(x, x, . . . , x) ̸= 0, and such an approximation exists.
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