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ABSTRACT
We propose the Rule-Based Emission Model (RBEM) al-
gorithm for polarity detection. RBEM uses several kinds
of heuristic rules to create an emissive model on polarity
patterns. We extensively experiment with our approach on
English and Dutch messages extracted from Twitter. Thus
we also illustrate that RBEM can be used in multilingual
settings and is applicable to social media characterized by
use of not always regular language constructs. We demon-
strate that designing such an algorithm instead of applying
the state-of-the art general purpose classification techniques
is a reasonable choice for the automated sentiment classifica-
tion in practice. Using RBEM we can design a competitive
multilingual sentiment classification system showing promis-
ing accuracy results of 78.8% on the considered datasets.
We provide some further evidence that RBEM-based sys-
tems are easy to debug, improve over time and adapt to
new application domains.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern
Recognition]: Design Methodology

General Terms
Design, Algorithms, Performance

Keywords
rule-based polarity detection, emission model, multi-lingual
sentiment analysis

1. INTRODUCTION
Sentiment analysis can be performed at different levels of

granularity; the document level [19, 11], word level [7] or
the sentence or phrase level [17], and with different levels
of detail; determining the polarity of a message or the emo-
tion expressed [14]. We perform sentiment analysis on social
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media in which a single message typically consists of one or
two sentences. Supported by this observation, the type of
granularity we study is the sentence level. We mainly focus
on the polarity detection.

Thus, the problem we investigate is how to learn a func-
tional mapping p = f(m) such that given a new message m
as input we can output a polarity indication p ∈ {−,+,=}
(being negative, positive and neutral respectively) with a
high accuracy.

We propose the Rule-Based Emission Model (RBEM) al-
gorithm for polarity detection and study it in the context
of (multilingual) sentiment analysis on social media. The
name of the algorithm indicates the concepts it carries as it
uses rules to define an emissive model. Each entity in a mes-
sage can emit positive or negative sentiment. The rules to
determine the polarity of a text are defined on nine different
types of patterns.

To show the performance of RBEM in real settings, we
consider a three-step approach for designing the automated
sentiment analysis. The steps include language identifica-
tion, part-of-speech tagging and polarity detection, as shown
in Figure 1. For language identification we employ LIGA [20].
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Figure 1: Multilingual sentiment analysis.

For POS-tagging we use publicly available models for differ-
ent languages [18].

This approach is generic in a sense that sentiment analysis
can be performed on any data source. But it is also easily
extensible, allowing to include domain specific knowledge of
the particular source, e.g. Twitter hashtags.

We extensively experiment with RBEM for polarity de-
tection as an isolated task and as part of the three-step
approach to multi-lingual sentiment classification, showing
the utility of RBEM and each preceding step by quantifying
the importance of having accurate models in the processing
pipeline.

Using RBEM we can design a competitive multilingual
sentiment classification system showing promising accuracy
results of 78.8% on the considered datasets.

We focus on highlighting the peculiarities of sentiment
classification on social media data and argue that design-
ing a focused ruled-based approach instead of applying a
state-of-the art general purpose classification techniques is
a reasonable choice for this application. Besides benchmark-



ing, we conduct a case study illustrating the practical utility
of RBEM and possibility to continuously improve the per-
formance of polarity detection based on user feedback.

The rest of the paper is organized as follows. We introduce
RBEM heuristics, training and classification procedures in
Section 2. In Section 3 we summarize the results of the dif-
ferent lines of the experimental evaluation. Section 4 con-
cludes.

2. POLARITY DETECTION WITH RBEM
The rules used in the RBEM algorithm directly stem from

nine different pattern groups, defined as follows.1

• Positive patterns are positive when taken out of con-
text. English examples hereof are good, well done.

• Negative patterns are negative when taken out of con-
text, e.g. bad, terrible.

• Amplifier patterns strengthen polarity of n entities
to their left and right, either positive or negative, e.g.
very much, a lot.

• Attenuator patterns weaken polarity of n entities to
their left and right, either positive or negative, e.g. a
little, a tiny bit.

• Right Flip patterns flip the polarity of n entities to
their right, e.g. not, no.

• Left Flip patterns flip the polarity of n entities to
their left, e.g. but, however.

• Continuator patterns continue the emission of polar-
ity, e.g. and, and also.

• Stop patterns interrupt the emission of polarity. Stop
patterns usually are punctuation signs such as a dot or
an exclamation mark, expressing the general case that
polarity does not cross sentence boundaries.

• Neutral patterns do not have any particular meaning
but may eliminate the existence of other patterns in a
given context.

The need for positive, negative and negation patterns is evi-
dent. The need for continuators and left flips has been indi-
cated in [7]: conjunctive words such as and usually connect
adjectives of the same polarity whereas conjunctive words
such as but usually connect words of opposing polarity. It is
easily seen that certain words strengthen or weaken polar-
ity, these are covered by the amplifier and attenuator pat-
terns. The stop patterns are especially useful in determining
sentence-based sentiment as these patterns block polarity
emission and typically consist of sentence delimiters such as
punctuation. The neutral pattern group does not have a
specific logic or rule associated with it but is merely there
to eliminate the presence of other patterns when a neutral
pattern subsumes a pattern of a different pattern group.

Combining these nine pattern groups using some simple
rules allows us to define an emissive model. We next describe
how a model is constructed and then define how to classify
previously unseen data.
1Note that the examples only list words but a pattern can
consist of any combination of words and POS-tags. This
concept is further explained when we describe how to learn
a model.

2.1 Learning RBEM
Each message m of length n is represented as a list m =

[(w1, t1), .., (wn, tn)] of tuples of a word wi with its respective
POS-tag ti. Upon such a message, patterns can be defined.
A pattern is a list of tuples of words and POS-tags repre-
sented as m. Patterns belong to a certain pattern group and
hence we represent a pattern q as a tuple q = (g, p), where
g is the pattern group q belongs to, and p is the list of enti-
ties comprising the actual pattern. In general, each element
(w′i, t

′
i) of a pattern p consists of a word w′i which is precisely

defined and a POS-tag t′i which is also precisely defined. As
an exception, elements of p may contain wildcards instead.
We consider three types of wildcards.

• Word wildcards ( , t′i): in this case we only consider
t′i. w′i can be any arbitrary word.

• Single-position wildcards ( , ): in this case a single
entity can be any arbitrary combination of a single
word and a single POS-tag.

• Multi-position wildcards ((∗, ∗): in this case any
arbitrary combination of word and POS-tag pairs of
any arbitrary length matches the pattern.

Note that word and single-position wildcards can occur at
any position in p. But multi-position wildcards can only
occur in between two elements that are not multi-position
wildcards as co-occurrence of other multi-position wildcards
yields another multi-position wildcard.

Our model now simply consists of a set of patterns per
pattern group, represented as the set Model , containing tu-
ples of groups and patterns; (g, p). All patterns except for
the positive and negative patterns adhere to an action ra-
dius E . We set E = 4 according to the related experimental
results with negation patterns reported in [24]. In general
it is possible that the optimal choice of E may vary from
pattern to pattern and/or from one language to the other.

2.2 Classifying with RBEM
When classifying previously unseen data, we perform two

steps. First we collect all patterns in our model that match
our sentence. Then, we apply a rule associated with each
pattern group - with exception of the neutral group - for
each pattern present in our message.

Pattern Matching. Each pattern q = (g, p) ∈ Model
is matched against our message h = [(w1, t1), .., (wn, tn)]
where p = [(v1, s1), .., (vm, sm)]. We consider each tuple
(wi, ti) and evaluate (v1, s1) =match (wi, ti) where =match is
defined as follows:

(vj , sj) =match (wi, ti) ≡

true (1)
if j > m, define end← i

false (2)
if i > n

vj = wi ∧ sj = ti ∧ (vj+1, sj+1) =match (wi+1, ti+1) (3)
if vi 6= ∧ vi 6= ∗ ∧ j ≤ m ∧ j ≤ n

sj = ti ∧ (vj+1, sj+1) =match (wi+1, ti+1) (4)
if vi = ∧ si 6= ∧ j ≤ m ∧ j ≤ n

(vj+1, sj+1) =match (wi+1, ti+1) (5)
if vi = ∧ si = ∧ j ≤ m ∧ j ≤ n

(vj+1, sj+1) =match (wi+1, ti+1) ∨ (vj , sj) =
=match (wi+1, ti+1) (6)

if vi = ∗ ∧ j ≤ m ∧ j ≤ n



Note that in the definition of =match, cases (4), (5) and
(6) correspond to the three different types of wildcards.
Moreover, in the evaluation of the first disjunction of (6),
(vj+1, sj+1) =match (wi+1, ti+1), it must hold that vj+1 6=
∗∧ sj+1 6= ∗ due to the restriction we put on the occurrence
of multi-position wildcards.

We match all patterns of all groups against every possible
element (wi, ti) of m. While doing this, we need to keep
track of two positions if a pattern matches; the start position
of the match in m and the end position of the match in m.
The starting position is i whereas the end position is end
which is assigned a value in case (1) of =match, implying a
match between the pattern and the message. We thus get a
set of matching patterns containing a start position, an end
position and a pattern.

matchedPatterns = {(start , end , (g, [(v1, s1), .., (vn, sn)])) |
(v1, s1) =match (wstart, tstart)}

Elements of matchedPatterns may subsume each other. Sub-
sumption in this sense is defined as follows, where we say
that q1 subsumes q2 in message m.

∃(s1,e1,q1),(s2,e2,q2)∈matchedPatterns : s1 ≤ s2 ∧ e1 ≥ e2

∧¬(s1 = s2 ∧ e1 = e2) ∧ q1 6= q2

All patterns that are subsumed by some other pattern are
removed. Note that coinciding patterns, having the same
start position as well as the same end position, are not re-
moved but as we deal with sets, such coinciding patterns
must be of different pattern groups. Also note that it may
be that a pattern containing a wild card may match our
sentence multiple times from the same starting position. As
the definition of =match dictates, we only find and hence
maintain the shortest of such matchings. After removing
subsumed patterns, the resulting set maxPatterns only con-
tains maximal patterns and is defined as follows. Note that
this is where the neutral pattern group plays a role. When-
ever a neutral pattern exists in a context that subsumes any
other pattern, the neutral pattern is kept whereas the other
pattern is discarded. During the application of rules how-
ever, nothing is done with this neutral pattern, explaining
the name of this pattern group.

maxPatterns = {(s, e, q)|(s, e, q) ∈ matchedPatterns ∧
¬(∃(s′,e′,q′)∈matchedPatterns : s ≤ s′ ∧ e′ ≥ e

∧¬(s = s′ ∧ e = e′) ∧ q 6= q′)}

Rule Application. After having collected all maximal
patterns, we can apply the heuristic rules for each different
pattern group, excluding the neutral pattern group. The
rules formally work out the motivation for the presence of
each pattern group. The order in which the rules are applied
is crucial and so is the role of the action radius E . We
outline each of the rules in the order in which they are to be
applied. We assume we are given a message m and a model
(Model , E) on which maxPatterns is defined. Every element
ei = (wi, ti) ∈ m has a certain emission value em(ei) which
initially is set to 0 for all ei ∈ m.

Rule 1. Setting Stops – This rule sets emission bound-
aries in our message m. It uses all left flip and stop patterns
and sets a stop at the starting position of such a pattern.

We thus get a set of stops:

stops = {s|(s, f, leftflip) ∈ maxPatterns

∨(s, f, stop) ∈ maxPatterns}

Rule 2. Removing Stops – Stops set in the previous
step can be removed by continuator patterns. This however,
only happens to the left of a continuator pattern. We thus
remove all stops that occur closest to the left of a continuator
pattern, taking E into account:

stops = stops \ {t|t ∈ stops∧
(∃(s,f,continuator)∈maxPatterns : t ≤ s ∧ s− t < E

∧¬(∃t′∈stops : t < t′ ≤ s))}

Rule 3. Positive Sentiment Emission – A positive
pattern can emit positive sentiment among elements of m.
The strength of the emission decays over distance and hence
we need a decaying function. We use e−x as decaying func-
tion, where x is the distance between the positive pattern
and an element of m. The choice of the formula e−x is just
a choice made by the authors and is not proven to be the
optimal formula. As center for the emission, we take the
floor of the center of the pattern in m, computed by taking
the center of start and end position. We also need to take
all stops into account. For each positive pattern, we update
the emission values em(ei) as follows:

∀(s,f,positive)∈maxPatterns : c = bs + f

2
c∧

(∀ei∈m : ¬(∃t∈stops : c ≥ i⇒ i ≤ t ≤ c ∨ i ≥ c

⇒ c ≤ t ≤ i)⇔ em(ei) = em(ei) + e−i)

Rule 4. Negative Sentiment Emission – Negative
patterns are dealt with in the same way positive patterns
are. The only difference is that our decaying function is now
negative, yielding −e−x. The updating of emission values
happens in the same manner:

∀(s,f,negative)∈maxPatterns : c = bs + f

2
c∧

(∀ei∈m : ¬(∃t∈stops : c ≥ i⇒ i ≤ t ≤ c ∨ i ≥ c

⇒ c ≤ t ≤ i)⇔ em(ei) = em(ei) +−e−i)

Rule 5. Amplifying Sentiment – Amplifier patterns
amplify sentiment emitted either by positive or negative
patterns. Similar to the decaying function used for pos-
itive and negative patterns, amplification diminishes over
distance. Moreover, since entities may already emit senti-
ment, we use a multiplicative function instead of an additive
function. The function we use is 1 + e−x where x is the dis-
tance. Again this formula is just chosen by the authors and
not proven to be optimal. In contrast to positive and nega-
tive patterns, amplifiers adhere to the action radius E . The
emission values are updated as follows:

∀(s,f,amplifier)∈maxPatterns : c = bs + f

2
c∧

(∀ei∈m : (¬(∃t∈stops : c ≥ i⇒ i ≤ t ≤ c ∨ i ≥ c⇒
c ≤ t ≤ i) ∧ 0 < |c− i| < E)⇔

em(ei) = em(ei) · (1 + e−i))

Note the 0 < |c−i| < E clause. This constraint dictates that

|c−i| is at least 1 in 1−e−|c−i| (which is our 1+e−x function),
thus avoiding the case that we multiply by 0 (when we allow



|c− i| = 0, we get 1− e0 = 0) and hence completely remove
emission values.

Rule 6. Attenuating Sentiment – Attenuator pat-
terns perform the reverse of amplifier patterns and weaken
sentiment. To do so, instead of using 1+e−x, we use 1−e−x:

∀(s,f,amplifier)∈maxPatterns : c = bs + f

2
c∧

(∀ei∈m : (¬(∃t∈stops : c ≥ i⇔ i ≤ t ≤ c ∨ i ≥ c

⇔ c ≤ t ≤ i) ∧ 0 < |c− i| < E)⇔

em(ei) = em(ei) · (1− e−i))

Rule 7. Right Flipping Sentiment – Right flip pat-
terns simply flip the emission of sentiment to their right as
follows. If there is a stop at the exact center of our right
flip, we disregard it:

∀(s,f,rightflip)∈maxPatterns : c = bs + f

2
c ∧ (∀ei∈m : (¬(∃t∈stops :

c < t ≤ i) ∧ |c− i| < E)⇔ em(ei) = −em(ei))

Rule 8. Left Flipping Sentiment – Left flip patterns
mirror the effect of right flip patterns:

∀(s,f,leftflip)∈maxPatterns : c = bs + f

2
c ∧ (∀ei∈m : (¬(∃t∈stops :

i ≤ t < c) ∧ |c− i| < E)⇔ em(ei) = −em(ei))

Once the above rules have been applied in the order given,
every element ei of m has an emission value em(ei). The
final polarity of the message is defined by the sum of all
emission values for all elements of m:

polarity =

n∑
i=1

em(ei)

Straightforwardly, we say that m is positive (class +) if and
only if polarity > 0. Likewise, we say that m is negative
(class −) if and only if polarity < 0. Whenever polarity = 0,
we say that m is neutral (class =).

When looking at the rules, it becomes clear that the order
is important. Stops need to be set first since the other rules
depend on stops. Next positive and negative sentiment need
to be defined because amplifying, attenuating and flipping
sentiment requires sentiment beforehand. Next the senti-
ment is amplified and attenuated based on the positive and
negative emissions defined before. Finally the flips change
the direction of the sentiment.

2.3 Related work
Polarity detection has been studied in different commu-

nities and in different application domains. The polarity of
adjectives was studied in [7] with the use of different conjunc-
tive words. A comprehensive overview of the performance of
different machine leaning approaches on polarity detection
were presented in [13, 11, 12]. Typically, polarity detection is
solved using supervised learning methods but more recently
attention is being paid to unsupervised approaches [10].

Some of the recent works adopt a concept-level approach
to sentiment analysis [4], which leverages on common sense
knowledge for deconstructing natural language text into sen-
timents. A notable example is [3], in which a two-level af-
fective common sense reasoning framework is proposed to
mimic the integration of conscious and unconscious reason-
ing for sentiment analysis using data mining techniques.

Other works are those of [17, 24, 23, 22]. In these re-
lated works, the authors start from bootstrapping methods
to label subjective patterns. In their latest work, both sub-
jectivity and polarity detection is performed and evaluated
using these patterns along with high precision rules defined
in their earlier works.

The idea of using patterns arises from [24] who label sub-
jective expressions (patterns) in their training data. In their
experiments however they limit themselves to matching against
single-word expressions. The use of rules stems from a differ-
ent domain. The Brill tagger [2] for POS-tagging uses rules.
We borrow this ideology and apply it to polarity detection.
The emission aspect of our RBEM algorithm is related to
smoothing which is often applied in different machine learn-
ing settings. RBEM has also close resemblance to [16] where
different rules and patterns are defined on the top of a full
linguistic parser output.

More recently attention is being paid to sentiment analysis
on social media. Sentiment analysis on Twitter is researched
by [6, 9] who use similar methodologies to construct corpora
and analyze Twitter messages to determine their polarity.
[8] use opinion mining on Twitter to poll the presidential
election of the United States in 2008 and show how using
Twitter opinion time series can be used to predict future
sentiment.

3. EXPERIMENTAL EVALUATION
The goal of our experimental study is three-fold: 1) to

benchmark the performance of the proposed RBEM compar-
ing it against popular classification approaches for polarity
detection, 2) to study the multilingual settings and the effect
of language identification, and 3) to study the portability of
RBEM to different application domains.

3.1 Datasets
The training set for our polarity detection algorithm con-

tains messages in multiple languages, multiple sentiments
and multiple domains, stemming from social media. The
methodology we use to collect data covering different senti-
ments is similar to [6, 15], in which smileys are used as noisy
labels for sentiment and news messages as noisy indicators
of neutral messages. For positive and negative messages we
query Twitter just for 30 minutes searching for content with
happy smileys such as :), :-), :D etc. for another 30 minutes
with sad smileys such as :(, :-(, :’( etc.. For neutral mes-
sages, we extract all messages produced by news instances
such as the BBC, CNN (English) or EenVandaag (Dutch).
We do this again for 30 minutes. From this mixture of polar
and non-polar messages we extract patterns for RBEM by
manual labeling using a custom web interface that allowed
to do this in a quick manner.

For polarity detection we train language specific models.
Moreover, the models use POS tags as features known be-
forehand. LIGA is used to filter out those messages that are
neither in Dutch nor in English when querying Twitter with
smileys. (LIGA was trained on the other benchmark we cre-
ated earlier [20]). All the resulting messages are processed
by the POS-tagger to form the extended representation con-
taining the parts of speech features.

To construct the test set we collected random data from
Twitter as well and then manually annotated the messages.
We first labeled messages on language and kept only Dutch
and English ones. We next labeled each message on its polar-



Table 1: The sizes of the training/test sets.
Training set/test set size

English Dutch
Positive 3614/205 1202/262
Negative 3458/200 1504/200
Neutral 4706/454 2099/595
Total 11778/859 4805/1057

Table 2: The number of patterns present in the En-
glish and Dutch RBEMs.

Pattern English Dutch
Type Count Count
Amplifiers 67 53
Attenuators 12 6
Rightflips 39 8
Continuators 10 4
Leftflips 5 2
Negatives 541 364
Positives 308 231
Stops 0 2

ity, being either one of positive, negative or neutral. Finally,
we extracted numerous RBEM patterns from each message.

The labeling of the test has been performed by multiple
annotators, divided into two groups. The first group con-
sisted of three annotators and focused on extracting Dutch
messages only and annotating their polarity only, they did
not identify RBEM patterns as for testing merely a polarity
label is required. The second group consisted of two anno-
tators and focused on extracting English messages only, fol-
lowed by the same process as for Dutch. We use messages for
Dutch in which at least two out of three annotators agreed
upon polarity and for English we use messages for which
both annotators agreed upon polarity2.

The size of the resulting training and test sets is shown
in Table 1 whereas the numbers of patterns present in our
RBEM model used for all experiments are shown in Table 2.

For studying RBEM portability we conducted a case study
with additional datasets which we discuss in the correspond-
ing subsection.

3.2 RBEM Accuracy
We compare RBEM against other popular approaches used

for sentiment classification, including Prior Polarity Classi-
fier (PPC), Naive Bayes (NB), AdaBoost (AB) with deci-
sion stumps as base classifiers, and Support Vector Machines
(SVMs).

We experimented with using four different feature spaces
where we use either tokens, POS tags, a combination of both
or patterns. We also experimented with using all features
or the top 2000, 4000 or 8000 features as ranked by mutual
information. The resulting accuracies are given in Table 4.

Even though the accuracy of the SVM approach is close

2For the Dutch dataset, the agreement amongst all three an-
notators is a mere 55%. The agreement between two out of
three annotators varies from 65% up to 71%. The agreement
on the English dataset is 72.1%.

to that of the Naive Bayes approach, the SVM has much
higher recall whereas the precisions are also comparable. An
SVM approach using all features and patterns performs best
among the experimented environments, which was also the
case for subjectivity detection. Thus SVM outperforms the
Naive Bayes on this dataset.

Table 4 only lists using POS-tags for AdaBoost as we
found this to be the best feature set for this approach. Us-
ing 50 weak learners yields an accuracy of 72.3%, the best
accuracy among the settings and features we experimented
with for AdaBoost.

The performance of the Prior Polarity Classifiers (Prior)
is better than that of SVM and Naive Bayes and close to the
performance of the AdaBoost approach. The SentiWordNet
variant (SWN) is the most extensive and performs better in
terms of precision and overall accuracy.

The left half of the mid section of Table 4 shows the perfor-
mance of RBEM. Even when we count the misclassification
of polar messages we miss out due to insufficient labeling,
the accuracy is already comparable to the highest accuracy
for AdaBoost and higher than that of the prior polarity clas-
sifiers. When we disregard polar messages for which no pat-
terns are present in our model, we obtain a much higher
accuracy of 83.9%.

The precision and especially recall of the RBEM algo-
rithm are much higher than those of other approaches. The
RBEM algorithm is thus the most favored approach by the
experiments conducted.

To investigate how much we can increase the performance
of the RBEM algorithm, we investigate how much more the
accuracy increases when we have more patterns in RBEM. In
approximately six hours of dedicated labeling we found 81
additional patterns. A linguist however would most likely
do this much quicker. We mainly label more on positive
and negative patterns as we expect to gain the most with
these pattern types. Moreover, as our Dutch model was rel-
atively small with respect to our English model, we focused
on Dutch patterns. The scores for our metrics we then get
for the RBEM algorithm are shown in Table 3. The per-
centage of polar messages that we do not manage to find
due to insufficient labeling drops from 12.9% to 9.4%. The
accuracy increases 72.4% to 74.1% when taking all messages
into account. When we leave out the messages we cannot
find due to insufficient labeling, our accuracy increases from
83.9% to 84.2%, indicating that the newly labeled patterns
not only allow us to classify those messages we could not
classify previously but also help correct the classification of
messages that we misclassified previously.

Table 3: The performance of RBEM with 81 more
patterns.

With Missed
A 0.741
P 0.733
R 0.876

Without Missed
A 0.842
P 0.832
R 0.955

Missed % 9.4%

3.3 Three-step Process Evaluation
Since we study multilingual settings, we also want to mea-

sure the impact of language identification (accuracy) on po-



Table 4: The overall accuracy (A), precision (P) and recall (R) of algorithms for polarity detection. The
instances per algorithm having the highest F-measure are shown in bold. The ’Missed %’ row lists the
fraction of subjective texts not found as such due to insufficient labeling.

Naive Bayes All MI 2000 MI 4000 MI 8000

Tokens
A 0.616
P 0.551
R 0.393

A 0.504
P 0.459
R 0.297

A 0.506
P 0.460
R 0.301

A 0.511
P 0.467
R 0.313

Tags
A 0.585
P 0.543
R 0.386

A 0.491
P 0.439
R 0.281

A 0.493
P 0.440
R 0.287

A 0.482
P 0.427
R 0.259

Mixture
A 0.589
P 0.546
R 0.387

A 0.495
P 0.443
R 0.286

A 0.494
P 0.441
R 0.287

A 0.502
P 0.453
R 0.292

Patterns
A 0.545
P 0.497
R 0.338

A 0.502
P 0.419
R 0.313

A 0.489
P 0.447
R 0.302

A 0.510
P 0.428
R 0.326

SVM All MI 2000 MI 4000 MI 8000

Tokens
A 0.656
P 0.795
R 0.431

A 0.504
P 0.500
R 0.013

A 0.507
P 0.688
R 0.023

A 0.420
P 0.675
R 0.478

Tags
A 0.451
P 0.559
R 0.532

A 0.551
P 0.549
R 0.490

A 0.531
P 0.523
R 0.473

A 0.544
P 0.533
R 0.452

Mixture
A 0.654
P 0.699
R 0.486

A 0.540
P 0.542
R 0.496

A 0.547
P 0.557
R 0.499

A 0.564
P 0.555
R 0.464

Patterns
A 0.637
P 0.646
R 0.564

A 0.500
P 0.500
R 0.131

A 0.503
P 0.542
R 0.261

A 0.514
P 0.575
R 0.279

RBEM Prior, Tok Prior, Tok+Tags Prior, SWN

With missed
A 0.724
P 0.719
R 0.862

A 0.602
P 0.611
R 0.583

A 0.552
P 0.577
R 0.550

A 0.681
P 0.737
R 0.498

Without missed
A 0.839
P 0.828
R 0.953

A 0.769
P 0.785
R 0.747

A 0.778
P 0.831
R 0.664

A 0.687
P 0.741
R 0.712

Missed % 12.9% 21.4% 28.7% 0.9%

AdaBoost 25 models 50 models 75 models 100 models 250 models

Tokens
A 0.664
P 0.667
R 0.638

A 0.691
P 0.707
R 0.654

A 0.685
P 0.692
R 0.649

A 0.678
P 0.686
R 0.644

A 0.698
P 0.706
R 0.658

Tags
A 0.699
P 0.704
R 0.668

A 0.723
P 0.729
R 0.691

A 0.715
P 0.722
R 0.685

A 0.703
P 0.709
R 0.677

A 0.691
P 0.697
R 0.666



Table 5: The correctness scores after each step (ver-
tical) for leaving out each possible step (horizontal).

No LI No POS All included
Acc. of LI – 0.971 0.971
Acc. of Pol 0.782 0.795 0.839
Acc. of Complete 0.782 0.778 0.788

larity detection.

• Leaving out Language Identification. When we
do not know the language of a message, we can no
longer use language-specific models and hence need to
apply more generic models. We thus need to com-
bine the language-specific models into one. For POS-
tagging we simply apply all models that are present
and use the model showing the highest probabilities
of being correct. For polarity detection we apply both
the English as well as the Dutch model on the message,
sum up the scores for both languages and assign the
resulting class.

• Leaving out POS-tagging. Polarity detection uses
POS-tags as features. When we do not have these tags
we need to resort to using tokens only. For polarity
detection with RBEM, we use our patterns without
regarding the POS-tags.

Table 5 shows the accuracies on the test set for all different
scenarios. The columns list the steps left out whereas the
rows list the accuracies after each step. The accuracy for a
single step is computed by dividing the number of messages
correctly classified by that step by the number of messages
correctly classified up to that step. The last row indicates
the proportion of messages that are polar but which our po-
larity detection step could not classify as such due to insuf-
ficiently labeled data. The complete row lists the accuracies
on the entire test set, computed by dividing the number of
messages correctly classified by all steps by the corpus’ size.
As POS-tagging is merely used to expand our feature space,
we do not evaluate the accuracy after performing this step.

As we compare Table 5 column by column, we observe
that the highest accuracy is obtained when all three steps
are included. This indicates the importance of each of them.

3.4 RBEM Domain Portability
Use of language is highly dependent upon the domain in

which it is being used. As such, it is expected that a generi-
cally trained model does not perform as well as it should on
a specific domain and that domain-specific models do not
port well to other domains. In these experiments we show
that regardless of whether a concrete instance of RBEM is
domain-agnostic or not, its models are easily adapted to new
domains for which no previously annotated data were avail-
able.

We illustrate the adaptability of the RBEM algorithm
through a real-life use case in which it has been applied to a
highly specific domain, being the domain of media and par-
ticularly television. We do this by taking the generic base
model, its characteristics being given in Table 2, and adapt-
ing it to fit the television domain. This process involves hu-
man interaction, but we show that the adaptation requires
little effort. This is in fierce contrast to general-purpose

state-of-the-art classification techniques used for sentiment
classification, including e.g. SVMs, supervised sequence em-
bedding [1] or deep learning neural networks [5] with which
adaptation of models is a nontrivial labor-intensive process
requiring a deep understanding of machine learning.

Experiment setup. To demonstrate the ease of porta-
bility to a new domain, we applied the generic model con-
structed in Section 3.1 to the television domain in two differ-
ent use cases. For convenience we name them Experiment 1
and Experiment 2. The use cases arose from two real-life sce-
narios in which two different and non-related Dutch televi-
sion broadcasters wanted to use our approach for sentiment
analysis on social media with respect to specific television
shows, news bulletins or movies being broadcasted3.

Even though language use may be different in the tele-
vision domain, it is expected that language n-gram char-
acteristics as used by the LIGA algorithm hardly change.
This expectation is supported by the experiments conducted
in [20] where it is shown that LIGA generalizes well across
domains.

Both experiments were conducted in the same manner
and both applied solely to Dutch messages originating from
Twitter.4 For both experiments we initially collected data
starting from 30 minutes before and 2 hours after a televi-
sion broadcast exactly once. The data was collected from
Twitter by searching for the keywords given in Table 6. For
each keyword, the amount of messages extracted is also men-
tioned.

Each of the Dutch messages (as classified by LIGA) is
classified with Dutch RBEM as being positive, neutral or
negative. These messages along with their polarity labels
have been handed over to domain experts for judgement
with the aid of identifying common or drastic patterns that
are often misunderstood by the generic RBEM base model.
The domain experts were asked to return messages that they
identified as being misclassified by RBEM, give their judge-
ment on what the correct label would be and if possible, give
a brief argument.

We investigated the received feedback to identify common
patterns and drastic misinterpretations by the RBEM algo-
rithm. These common and drastic patterns directly lead to
modifications of our base model and can either entail re-
moval of present patterns, addition of new patterns or both.

Generic Model Refinement. For Experiment 1, the
domain experts returned 90 messages in total across all given
keywords that were misclassified according to domain ex-
perts. For Experiment 2 only 8 messages were returned.
The great difference in the number of messages returned is
not investigated but is most likely to due variance in com-
mitment by the different domain experts.

Table 7 shows the patterns extracted from the resulting
messages that corrected the greatest amount of misclassified
messages. Note that in these experiments, we did not verify
whether these corrections introduce new errors in messages
that were not in the set of messages returned by domain

3Soap Goede tijden, slechte tijden, Talent shows De beste
zangers van Nederland, Real-life show Hotter than my
daughter, Game show Ik hou van Holland, other shorter
names are provided in Table 6.
4We intentionally focus on demonstrating domain porta-
bility rather than multilingual or source-agnostic aspects;
hence the homogeneity of our input data with respect to
these two aspects.



Table 6: The keywords used in the portability exper-
iments and the number of resulting messages. Note
that for Experiment 2, a single message may be in-
cluded for multiple keywords.

Description Keyword # Messages
Experiment 1
TV show Babyboom #babyboom 226
Talent shows #bestezangers 199
TV series Hitch #hitch 305
Real-life show #htmd 969
TV series House #house 199
Game show 5 #ihvh 772
Experiment 2
Soap goede tijden 2465
Soap goedetijden 432
Soap gtst 4013
Venue of soap meerdijk 232

experts.
From Experiment 1, we found that the pattern [(te, partte),

(,adj)] (in English: too ...), which is a negative pattern in
the generic base model, expressing that having too much
of something is often bad, is not always used to express
something negative. Removing this pattern mainly resulted
in messages classified as negative before being classified as
neutral or even positive after. The words jammer (in En-
glish: pity) and huilen (in English: crying) are generically
associated with negative polarity and hence existed as such
in our generic model. In the television domain however, the
Dutch word for pity is often used to indicate that it is a
pity a show is over and hence is positive instead of negative.
Similarly, expressing an emotional act of crying often indi-
cates a television broadcasting has high impact and hence is
a positive pattern.

From Experiment 2, the main correction was a straight-
forward one. The television show goede tijden, slechte tijden
contains the words goede and slechte, indicating positive and
negative sentiment when no context is given. When talking
about goede tijden in the context of this specific television
show however, it is obvious that this is the name of the show
and hence bears no emotional value. To this end, adding
goede tijden (and likewise, slechte tijden) as a neutral pat-
tern ensures that when this bigger context is given, the pos-
itive pattern containing just the word goede is subsumed by
this newly introduced neutral pattern and hence eliminated.

After incorporating new patterns based on the feedback
by domain experts, we reduced the number of misclassifi-
cations from 90 to 32 in Experiment 1 and from 8 to 1 in
Experiment 2.

4. CONCLUSIONS
Previous work in the area of sentiment analysis tradition-

ally focused on benchmarking performance of sentiment clas-
sification techniques, typically on one language only, usually
English as the resources for English are best available. In
this paper we introduced a new rule-based approach for po-
larity detection and investigated its competitive advantages.

The RBEM algorithm provides a solid foundation that
is easily extended. Adding more patterns and rules that

Table 7: Best scoring patterns found in both exper-
iments. G - pattern group (positive +, negative –
and neutral =), O - operation (add +, remove -) and
#C - number of corrections.

Pattern G O #C
Experiment 1
[(huilen, verbpressg)] – – 7
[(te, partte), (,adj)] – – 3
[(jammer, verbpressg)] – – 2
[(jammer, verbpressg), (∗, ∗), + + 1
(afgelopen, verbpapa)]
Experiment 2
[(goede, adj), (tijden, nounpl)] = + 2
[(slechte, adj), (tijden, nounpl)] = + 2
[(stotterd, nounsg)] – + 1

further increase its accuracy is straightforward when the re-
lation with the other rules is analyzed. Enriching the model
via the relevance feedback from the user is also feasible and
automating this process is one of the directions of our fur-
ther work. We will explore methods to find patterns in an
automated fashion rather than through a manual labeling
process.

Even though many of existing approaches for sentiment
analysis can be extended to support multiple languages, this
is not a trivial task and typically not included in the studies
themselves. We demonstrated the potential of RBEM to
be used in a multilingual solution to sentiment analysis by
taking both English and Dutch into account.

We targeted multilingual short texts typically present in
social media. However, our approach is applicable to senti-
ment classification in other settings as well.

For our experimental study we constructed two datasets.
The training set was constructed by querying Twitter with
smileys and scraping news accounts. This yields messages
with noisy labels rather than accurate labels. Moreover, this
training data is biased as it only contains messages in which
smileys are originally present. Constructing more accurate
and more representative training data is expected to increase
the accuracy of sentiment classification. Additionally, data
can be collected for each social medium separately, allowing
for more specific, social medium-tailored, models.

In our experimental study we showed the importance of
each step, justifying our three-step approach rather than a
more generic approach comprising fewer steps. If the sen-
timent analysis on social media is used for personal use (as
envisioned e.g. in [21]) rather than for marketing we can
expect that lot of input for RBEM will come through the
simple relevance feedback mechanism.
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