Friction Factor Estimation for Turbulent Flow in Corrugated Pipes with Rough Walls

Maxim Pisarenco
Department of Mathematics and Computer Science
Eindhoven University of Technology

August, 2007
Outline

1. Problem Setting

2. Two-Equation Turbulence Models and BCs
 - Reynolds Averaging, $k - \epsilon$ and $k - \omega$ Models.
 - Law of the Wall

3. Turbulent Flow in Conventional Pipes
 - Smooth Wall Case
 - Rough Wall Case

4. Friction Factor Computations
Where We Are Now

1. Problem Setting

2. Two-Equation Turbulence Models and BCs
 - Reynolds Averaging, $k - \epsilon$ and $k - \omega$ Models.
 - Law of the Wall

3. Turbulent Flow in Conventional Pipes
 - Smooth Wall Case
 - Rough Wall Case

4. Friction Factor Computations
Flexible Pipes

- Respond well to bending
- Easy to install
- Excellent strength/length ratio
- Corrugated
- Rough walls
Simulation of Turbulent Flows

3 basic approaches:
- DNS - Direct Numerical Simulation
- LES - Large-Eddy Simulations
- RANS - Reynolds-Averaged Navier-Stokes

← DNS solution

← RANS solution
Where We Are Now

1. Problem Setting

2. Two-Equation Turbulence Models and BCs
 - Reynolds Averaging, $k - \epsilon$ and $k - \omega$ Models.
 - Law of the Wall

3. Turbulent Flow in Conventional Pipes
 - Smooth Wall Case
 - Rough Wall Case

4. Friction Factor Computations
Equations Describing the Dynamics of Flow

Incompressible flow equations:

\[
\frac{\partial \tilde{u}_j}{\partial x_j} = 0 \quad \leftarrow \text{continuity equation}
\]

\[
\rho \left[\frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} \right] = -\frac{\partial p}{\partial x_i} + \frac{\partial \tilde{T}_{ij}^{(v)}}{\partial x_j} \quad \leftarrow \text{NS equation}
\]

\(\tilde{T}_{ij}^{(v)}\) - stress due to viscous forces

Newtonian fluid hypothesis:

\[
\tilde{T}_{ij}^{(v)} = \mu \left[\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} \right].
\]
Reynolds Averaging

Reynolds decomposition:

\[
\tilde{u}_i = U_i + u_i, \\
\tilde{p} = P + p, \\
\tilde{T}^{(v)}_{ij} = T^{(v)}_{ij} + \tau^{(v)}_{ij},
\]

\(U_i, P, T^{(v)}_{ij}\) - mean components; \(u_i, p, \tau^{(v)}_{ij}\) - fluctuating components.

\[
\frac{\partial U_j}{\partial x_j} = 0.
\]

\[
\rho \left[\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} \right] = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left[T^{(v)}_{ij} - \rho \langle u_iu_j \rangle \right].
\]

\(\rho \langle u_iu_j \rangle\) is unknown ← closure problem
Eddy Viscosity Approximation

Newtonian type closure, proposed by Boussinesq:

\[
\sigma_{ij} \equiv -\rho \langle u_i u_j \rangle = \mu_T \left[\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right]
\]

\(\mu_T\) - "turbulence viscosity" (eddy viscosity), \([\text{N/m}^2\cdot\text{s}]\) (not constant).

\(k\) - specific turbulence kinetic energy, \([\text{N}\cdot\text{m/kg=\text{m}^2/\text{s}^2}]\).
\(\epsilon\) - turbulence dissipation, \([\text{m}^2/\text{s}^3]\).
\(\omega\) - turbulence dissipation per unit turbulence kinetic energy, \([1/\text{s}]\).

\[\mu_T = \rho C_\mu \frac{k^2}{\epsilon}\]

\[\mu_T = \rho \frac{k}{\omega}\]

Both modeled on dimensional grounds.
Define the NS operator as

\[N(\tilde{u}_i) = \rho \frac{\partial \tilde{u}_i}{\partial t} + \rho \tilde{u}_k \frac{\partial \tilde{u}_i}{\partial x_k} + \frac{\partial \tilde{p}}{\partial x_i} - \mu \frac{\partial^2 \tilde{u}_i}{\partial x_k^2}, \]

Take the following moment of NS operator

\[\langle u_i N(\tilde{u}_j) + u_j N(\tilde{u}_i) \rangle = 0 \Rightarrow \text{equation for } \rho \langle u_i u_j \rangle. \]

Turbulence kinetic energy (per unit mass)

\[k \equiv \frac{1}{2} \langle u_i u_i \rangle = \frac{1}{2} [\langle u_1^2 \rangle + \langle u_2^2 \rangle + \langle u_3^2 \rangle]. \]

Take the trace of the Reynolds stress equation

\[\rho \frac{\partial k}{\partial t} + \rho U_j \frac{\partial k}{\partial x_j} = \sigma_{ij} \frac{\partial U_i}{\partial x_j} - \rho \epsilon + \frac{\partial}{\partial x_j} \left[(\mu + \frac{\mu_T}{\sigma_k}) \frac{\partial k}{\partial x_i} \right]. \]
Turbulence Dissipation Equation - Outline of Derivation

Take the following moment of NS operator

$$2\frac{\mu}{\rho} \left\langle \frac{\partial u_i}{\partial x_j} \frac{\partial N(u_i)}{\partial x_j} \right\rangle = 0 \Rightarrow \text{equation for } \epsilon = \frac{\mu}{\rho} \left\langle \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right\rangle.$$

$$\rho \frac{\partial \epsilon}{\partial t} + \rho U_j \frac{\partial \epsilon}{\partial x_j} = C_{\epsilon 1} \frac{\epsilon}{k} \sigma_{ij} \frac{\partial U_i}{\partial x_j} - C_{\epsilon 2} \rho \frac{\epsilon^2}{k} + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_T}{\sigma_\epsilon} \right) \frac{\partial \epsilon}{\partial x_j} \right].$$

$C_{\epsilon 1}, C_{\epsilon 2}, \sigma_\epsilon$ - modeling constants.

$$\rho \frac{\partial \omega}{\partial t} + \rho U_j \frac{\partial \omega}{\partial x_j} = \alpha \frac{\omega}{k} \sigma_{ij} \frac{\partial U_i}{\partial x_j} - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_T) \frac{\partial \omega}{\partial x_j} \right].$$

$\alpha, , \beta, \sigma_\omega$ - modeling constants.
Boundary Conditions

Law of the Wall

\[U_p^+ = \frac{1}{\kappa} \ln y_p^+ + B. \]
Law of the Wall

\[
U_p^+ = \frac{1}{\kappa} \ln y_p^+ + B,
\]

where \(U_p^+ = \frac{U_p}{u_*} \), \(y_p^+ = \frac{u_* y_p}{\nu} \).

\[u_* = \sqrt{\frac{\tau_w}{\rho}}, \quad \tau_w \text{ is unknown!} \]

From Prandtl’s assumption (\(\nu_T = \kappa u_* y \)) and the balance of production and dissipation of turbulent kinetic energy:

\[u_* = C_{\mu}^{1/4} k_p^{1/2}. \]
Law of the Wall as Boundary Condition

\[\frac{U_p}{u_*} = \frac{1}{\kappa} \ln y_p^+ + B. \]

Multiply by \(u_*^2 \)

\[U_p u_* = u_*^2 \left(\frac{1}{\kappa} \ln y_p^+ + B \right). \]

Replace \(u_*^2 \) by \(\tau_w/\rho \), and \(u_* \) by \(C_\mu^{1/4} k_p^{1/2} \)

\[U_p C_\mu^{1/4} k_p^{1/2} = \frac{\tau_w}{\rho} \left(\frac{1}{\kappa} \ln y_p^+ + B \right). \]

The skin friction force at the wall (or wall stress), \(\tau_w \):

\[\tau_w = \frac{\rho C_\mu^{1/4} k_p^{1/2}}{\frac{1}{\kappa} \ln y_p^+ + B} U_p. \]
The stress at the wall (or anywhere else) can be computed as a function of the velocity gradient (Newtonian Fluid approximation).

\[\tau_w = (\mu + \mu_T) \frac{\partial U_p}{\partial n}. \]

\[(\mu + \mu_T) \frac{\partial U_p}{\partial n} - \frac{\rho C_\mu^{1/4} k_p^{1/2}}{1/\kappa \ln y_p^+ + B} U_p = 0, \quad y_p^+ = \frac{\rho C_\mu^{1/4} k_p^{1/2} y_p}{\mu}. \]

\[a(k_p, \epsilon_p) \frac{\partial U_p}{\partial n} + b(k_p) U_p = 0. \quad \leftarrow \text{Robin BC with variable coefficients} \]

Zero-flux BC (no turb. energy transfer through the boundary)

\[\mathbf{n} \cdot \nabla k_p = 0, \quad \epsilon_p = \frac{C_\mu^{3/4} k_p^{3/2}}{\kappa y_p}, \quad \omega_p = \frac{C_\mu^{-1/4} k_p^{1/2}}{\kappa y_p} \]

\(y_p \) - distance from the wall, free parameter
Sensitivity of Solution to the Choice of y_p^+

Solution is not changing for $50 < y_p^+ < 300$
Where We Are Now

1. Problem Setting

2. Two-Equation Turbulence Models and BCs
 - Reynolds Averaging, $k - \epsilon$ and $k - \omega$ Models.
 - Law of the Wall

3. Turbulent Flow in Conventional Pipes
 - Smooth Wall Case
 - Rough Wall Case

4. Friction Factor Computations
The Moody Diagram
Fully Developed Flow

\[\frac{L_e}{D} \approx 4.4Re^{1/6}, \text{ for turbulent flow} \]
Computational Domain and BCs

Inflow/Outflow

\[\mathbf{U}(r, 0) = \mathbf{U}(r, L) \]
\[k(r, 0) = k(r, L) \]
\[\epsilon(r, 0) = \epsilon(r, L) \]
\[\omega(r, 0) = \omega(r, L) \]
\[P(r, 0) = P_{in} \]
\[P(r, L) = P_{out} \]

Symmetry axis

\[\mathbf{n} \cdot \nabla \mathbf{U} = 0 \]
\[\mathbf{n} \cdot \nabla k = 0 \]
\[\mathbf{n} \cdot \nabla \epsilon = 0 \]
\[\mathbf{n} \cdot \nabla \omega = 0 \]

Wall

\[(\mu + \mu_T) \frac{\partial U_p}{\partial n} = \frac{\rho C_1^{1/4} k_p^{1/2}}{\frac{1}{\kappa} \ln y_p^+ + B} U_p \]
\[\mathbf{n} \cdot \nabla k_p = 0 \]
\[\epsilon_p = \frac{C_3^{3/4} k_p^{3/2}}{\kappa y_p^+}, \quad \omega_p = \frac{C_1^{-1/4} k_p^{1/2}}{\kappa y_p^+} \]
Meshes and Solution Procedure
Computed vs. Measured Friction Factor
Computed vs. Measured Friction Factor

Friction factor computed with different turbulence models:

- $k-\varepsilon$, $B=5.5$
- $k-\varepsilon$, $B=5.0$
- $k-\omega$, $B=5.5$
- $k-\omega$, $B=5.0$
- Measurement
Law of the Wall for Rough Walls

\[\frac{U}{u_\ast} = \frac{1}{\kappa} \ln \left(\frac{y_p}{e} \right) + 8.5 \]

where:
- \(U \) is the mean flow velocity
- \(u_\ast \) is the friction velocity
- \(y_p \) is the distance from the wall to the point of interest
- \(e \) is the roughness height
- \(\kappa \) is the von Karman constant

The graph shows the variation of friction factor \(f \) with Reynolds number \(Re \) for different roughness heights. The equation is valid for turbulent flow in conventional pipes.
Law of the Wall for Rough Walls

\[\frac{U}{u_*} = \frac{1}{\kappa} \ln \left(\frac{y_p}{e} \right) + 8.5 = \frac{1}{\kappa} \ln y_p^+ + \left[8.5 - \frac{1}{\kappa} \ln e^+ \right] \]

- \(e \) - roughness height
- \(e^+ \) - non-dimensional roughness
"Combined" Law of the Wall

Introduce a "combined" law of the wall:

\[\frac{U}{u_*} = \frac{1}{\kappa} \ln y_p^+ + B^*, \]

where

\[B^* = B + \theta(8.5 - B - \frac{1}{\kappa} \ln e^+), \]

Hydrodynamic smoothness - \(\theta = 0 \) (\(e^+ < e_1^+ \))

Full roughness - \(\theta = 1 \) (\(e^+ > e_2^+ \))

Transition - \(\theta = \theta(e^+) \), \(e_1^+ < e^+ < e_2^+ \)

\[\theta = \sin \left(\frac{\pi \ln(e^+/e_1^+)}{2 \ln(e_2^+/e_1^+)} \right), \quad e_1^+ = 2.25, \quad e_2^+ = 90. \]
Computed vs. Measured Friction Factor

Friction factor for different values of wall roughness

- $e/D=0.0005$
- $e/D=0.001$
- $e/D=0.005$
- $e/D=0.01$
- $e/D=0.05$

Re vs. f
Where We Are Now

1. Problem Setting

2. Two-Equation Turbulence Models and BCs
 - Reynolds Averaging, $k - \epsilon$ and $k - \omega$ Models.
 - Law of the Wall

3. Turbulent Flow in Conventional Pipes
 - Smooth Wall Case
 - Rough Wall Case

4. Friction Factor Computations
Pressure across the pipe is not constant in corrugated pipes

\[P(r, 0) = P(r, L) + \Delta P \]
Initial Mesh
Adapted Mesh
Convergence vs. Iteration Number (Adaptive Solver)
A Typical Solution
Friction Factor vs. Wall Roughness
Conclusions

- $k - \epsilon$ model is \textit{slightly better} than $k - \omega$ model
- To get a realistic estimation of the friction factor the laws for smooth and rough wall have to be \textit{combined}
- The roughness of the fabric has a secondary influence on the friction factor
- To obtain a considerable decrease in friction factor shape optimisation for the steel spiral should be considered