A logarithmic approximation for the unsplittable flow on line graphs

Nikhil Bansal∗ Zachary Friggstad† Rohit Khandekar∗ Mohammad R. Salavatipour†

Abstract

We consider the unsplittable flow problem on a line. In this problem, we are given a set of \(n \) tasks, each specified by a start time \(s_i \), an end time \(t_i \), a demand \(d_i > 0 \), and a profit \(p_i > 0 \). A task, if accepted, requires \(d_i \) units of “bandwidth” from time \(s_i \) to \(t_i \) and accrues a profit of \(p_i \). For every time \(t \), we are also specified the available bandwidth \(c_t \), and the goal is to find a subset of tasks with maximum profit subject to the bandwidth constraints.

We present the first polynomial-time \(O(\log n) \)-approximation algorithm for this problem. This significantly advances the state-of-the-art, as no polynomial-time \(o(n) \)-approximation was known previously. Previous results for this problem were known only in more restrictive settings, in particular, either if the given instance satisfies the so-called “no-bottleneck” assumption: \(\max_i d_i \leq \min t c_t \), or else if the ratio of both the maximum to the minimum demands and the maximum to minimum capacities are polynomially (or quasi-polynomially) bounded in \(n \). Our result, on the other hand, does not require any of these assumptions.

Our algorithm is based on a combination of dynamic programming and rounding a natural linear programming relaxation for the problem. While there is an \(\Omega(n) \) integrality gap known for this LP relaxation, our key idea is to exploit certain structural properties of the problem to show that instances that are bad for the LP can in fact be handled using dynamic programming.

†Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. email: {zacharyf,mreza}@cs.ualberta.ca. The second author was supported by NSERC and iCore scholarships and the fourth author was supported by NSERC and an Alberta Ingenuity New Faculty award.
1 Introduction

In the Unsplittable Flow Problem (UFP), we are given an undirected graph \(G = (V, E) \) with edge capacities \(\{c_e\}_{e \in E} \), a set of pairs of vertices called demand pairs \(T = \{(s_i, t_i)\}_{1 \leq i \leq n} \) where each pair \(s_i, t_i \) has a demand value \(d_i > 0 \) and profit \(p_i > 0 \). We obtain a profit of \(p_i \) if we can route the total demand \(d_i \) of the pair from \(s_i \) to \(t_i \) along a single path. A subset \(S \subseteq \{1, \ldots, n\} \) of the demands is called feasible if all the demands in \(S \) can be routed simultaneously without violating any edge capacity, i.e., the total demand flow on each edge \(e \) is at most \(c_e \). The goal is to find a feasible set of demand pairs and paths to route the corresponding demands while maximizing the total profit obtained from the demand pairs that are fully routed. The UFP is NP-hard even when restricted to very special cases. For instance, if the entire graph \(G \) is a single edge, the UFP specializes to the KNAPSACK problem. When all the edge capacities as well as all the demands and profits are 1, the UFP specializes to the well-studied maximum edge-disjoint paths problem (EDP). This problem is also NP-hard even for restricted classes of graphs, like planar graphs.

There is a large amount of research focused on the study of UFP on line networks. In such an instance, the input graph \(G \) is an undirected path (line). The study of UFP on line graphs\(^1\) is motivated by several applications such as bandwidth allocation of sessions on a shared communication link, job scheduling with known machine requirements and time windows, the general caching problem with varying page sizes and available memory and so on. In fact, UFP on lines is equivalent to the following scheduling problem called Resource Allocation Problem (or RAP for short). In this problem, we are given \(n \) tasks, each specified by a start time \(s_i \), end time \(t_i \), demand \(d_i \), and profit \(p_i \). The task \(i \), if scheduled, requires \(d_i \) units of a resource in the time interval \([s_i, t_i] \), called span of \(i \), and is assumed to accrue a profit of \(p_i \). The resource (e.g. CPU), which is shared among scheduled tasks, is present to an extent \(c_t \) at time \(t \). We refer to \(c_t \) as the capacity at time \(t \). The problem is to find a subset \(S \) of the tasks such that \(\sum_{i \in S} p_i \) is maximized while satisfying the resource capacity constraints at all times. It is easy to see the correspondence between the tasks in RAP and demand pairs in UFP on lines. This problem has also been studied under other names such as “Bandwidth Allocation”, “Resource Constrained Scheduling”, and “Call admission Control”.

UFP continues to be a difficult problem even when restricted to lines and obtaining a reasonable approximation for it has resisted several attempts. In particular, no non-trivial approximation for this problem is known without any extra assumptions on the parameters of the input. One difficulty is that the natural LP relaxation for this problem has an integrality gap of \(\Omega(n) \) and obtaining an approximation algorithm with performance ratio \(o(n) \) has been an interesting open question. As we discuss below, all previous results require extra assumptions. The most widely used assumption is the so called no-bottleneck assumption which states that \(d_{\text{max}} \leq c_{\text{min}} \). Note that this requires that demand of every task be no more than the capacity of every edge (and not just those edges that this task spans). The no-bottleneck assumption imposes a rather strong restriction on the instances, and seems to exclude the truly hard cases of the problem. For example, the integrality gap instance mentioned above does not satisfy this assumption.

\(^1\)We use the term “line graphs” or “line networks” to refer to graphs that consist of a simple path, as it has been done in the previous works on UFP. Our usage of term line graphs should not be confused with a more standard notion of line graphs in graph theory, i.e., a graph obtained from another graph by replacing edges by vertices and making two vertices adjacent if the corresponding edges are incident.
1.1 Previous work

As stated above, when all the demands, capacities, and profits are one, we obtain the problem of EDP which is very well-studied. This problem is NP-hard in general graphs (with non-constant number of terminal-pairs), and NP-hard even with only two terminal-pairs in directed graphs (see Fortune et al. [11]). Kleinberg [15] proved that EDP is approximable within a factor of $O(\sqrt{|E|})$. This is later generalized to UFP by Srinivasan [19] and Baveja and Srinivasan [6] under the so-called “no-bottleneck” assumption: $\max_i d_i \leq \min_e c_e$. More recently Chekuri et al. [9] improved these to $O(\sqrt{|V|})$-approximation. On the other hand, Guruswami et al. [14] proved that EDP on directed graphs is NP-hard to approximate within $\Omega(|E|^{1/2-\epsilon})$ for any constant $\epsilon > 0$. In the undirected setting Andrews et al. [2, 1] show that the problem is quasi-NP-hard to approximate within $\Omega(|E|^{1/2-\epsilon})$ for any $\epsilon > 0$. All these results give the same hardness for UFP even with the no-bottleneck assumption in the corresponding model. Without the no-bottleneck assumption, Azar and Regev [3] proved that UFP is NP-hard to approximate within $\Omega(|E|^{1/2-\epsilon})$. For the case of trees (even for stars with unit demands), Garg et al. [13] proved that UFP is APX-hard.

Several papers have studied UFP and EDP on graphs with high expansion, we name a few here. For instance, Frieze [12] proved that for (large) constant-degree regular expanders with sufficiently high expansion, there is a constant c such that any $cn/\log n$ pairs for which no vertex appears in more than $O(1)$ pairs, can be connected via edge-disjoint paths. This implies an $O(\log n)$-approximation for EDP on such expanders. Using earlier works by Kleinberg and Rubinfeld [16], Srinivasan [19] gave an $O(\log^3 n)$-approximation for uniform capacity UFP (referred to as UCUFP) on expanders. Some improvements were obtained by Kolman and Scheideler [17] and Chakrabarti et al. [8].

The special case of the EDP problem on line networks corresponds to maximum independent set on interval graphs, which can be solved in polynomial time. If we have uniform capacities (i.e. UCUFP) then the problem is NP-hard even on lines. This problem is equivalent to a resource allocation problem that has been studied by Bar-Noy et al. [5] and Phillips et al. [18]. The first constant approximation algorithm for UCUFP on lines was provided by [18]. The approximation ratio of problem was later improved in a series of papers [5, 7] to $(2 + \epsilon)$.

For the general UFP on lines, as mentioned earlier, the problem has not been easy to approximate. So most of the previous works have made some extra assumptions in order to get a reasonable approximation. A typical extra assumption has been to consider instances of UFP on lines with the no-bottleneck assumption. For UFP on line graphs, with the no-bottleneck assumption, Chakrabarti et al. [8] presented the first constant approximation which was later improved by Chekuri et al. [10] to a $(2 + \epsilon)$-approximation (again under the no-bottleneck assumption). Bansal et al. [4] proved that if all the demands, edge capacities, and profits are quasi-polynomial in the number of pairs, i.e., at most $O(2^{\text{polylog}(n)})$, then there is a $(1 + \epsilon)$-approximation algorithm that runs in quasi-polynomial time. Chakrabarti et al. [8] also proved that the integrality gap of the natural LP relaxation of the UFP on line graphs is $\Omega(\log(d_{\max}/d_{\min}))$ which was $\Omega(n)$ in their example.
Our result and techniques

In this paper we study the UFP on lines, or equivalently, the Resource Allocation Problem (RAP) defined earlier. We present an $O(\log n)$-approximation for RAP (i.e. the UFP on lines) without any extra assumptions, thus beating the integrality gap for the natural LP relaxation. This also implies an $O(\log n)$-approximation for UFP when the underlying graph is a cycle, also called ring networks.

The following is a natural LP relaxation of the problem. We associate a variable x_i to denote if task i is picked in the solution.

\[
\text{(LP)} \quad \max \sum_i p_i x_i \\
\text{s.t.} \quad \sum_{i:t \in [s_i, t_i]} d_i x_i \leq c_t, \quad 1 \leq t \leq T \\
x_i \in [0, 1], \quad 1 \leq i \leq n
\]

It is instructive to consider the following $\Omega(n)$ integrality gap example, that we refer to as the staircase instance. This example first seems to have been observed by [8]. We have n tasks and task i has start time $s_i = 0$ and finish time $t_i = i$, i.e. span $[0, i)$, and $d_i = 1/2^{i-1}$. All the tasks have profit 1 and the capacity c_t during interval $[t, t+1)$ is equal to $1/2^t$, for $0 \leq t \leq n-1$ (see Figure 1).

Now consider the fractional solution in which $x_i = 1/2$ for all tasks i. It is easy to see that it is feasible for the LP and accrues a profit of $n/2 = \Omega(n)$. On the other hand, we claim that any integral solution can have profit of at most 1. To see this, let d_{j^*} be the demand (task) with the smallest index that is selected in the solution. Then this demand saturates time $j^* - 1$ (recall that $d_{j^*} = 1/2^{j^*-1} = c_{j^*-1}$). So no other task with index $j' > j^*$ can be selected. Note that this example does not satisfy the no-bottleneck property that $\max_i d_i \leq \min_t c_t$ and that the demands (and capacities) are exponentially large in n. Therefore, in a sense, the extra assumptions used in earlier works [8, 10, 4] to obtain a constant ratio approximation for UFP on lines may actually be excluding the truly hard cases of the problem.

The starting point for our results is the observation that even though the staircase-like instances described above are bad for the LP, they can be well approximated using dynamic programming. In particular, we show that any instance can essentially be decomposed into two parts. The first, can be solved well using LP relaxation, and the second can be solved well using dynamic programming. The overall algorithm simply chooses the best of these two solutions. The second part requires us to identify some key structural properties such as being “intersecting” and “laminar”, that make the instance amenable to dynamic programming.
More precisely, our algorithm has the following steps: First, we show (by a simple argument) that at the loss of an $O(\log n)$ factor, the problem can be reduced to instances where all requests intersect at some common time. We then describe an $O(1)$-approximation for such intersecting instances. To do this, we partition the tasks into slack tasks and tight tasks. Slacks tasks are those whose demands are a small fraction of the minimum capacity available during their respective spans. The rest of the tasks are tight tasks. We show that if all the tasks are slack and intersecting, then there is a randomized rounding based $O(1)$-approximation based on the ideas of Calinescu et al. [7]. For tight task instances, we show that requiring that each task be tight and the instance be intersecting, imposes a lot of structure on the instance. Handling tight task instances is perhaps the most interesting contribution of this paper. These instances seem to capture most of the inherent hardness of the problem. For example, note that the staircase instance above satisfies both the intersecting property and each task there is tight.

2 Reduction to Intersecting Instances

We start with some notation. Recall that for a task i, the span is $\text{span}(i) = [s_i, t_i)$ and we define $\text{length}(i) = t_i - s_i$. We can assume that for each task i, the start and end times s_i and t_i are integers in the range $\{1, \ldots, 2n\}$, since this leaves the problem combinatorially unchanged. Each edge corresponds to some interval $[i, i+1)$. Thus task i, spans the edges $[s_i, s_i + 1), \ldots, [t_i - 1, t_i)$. We say that tasks i and j intersect if they span a common edge, i.e. $\text{span}(i) \cap \text{span}(j) \neq \emptyset$. We call a subset S of tasks “admissible” if it satisfies the capacity constraints: $\sum_{i \in S : \text{span}(i) \cap \text{span}(j) \neq \emptyset} d_i \leq c_t$ for all t. We can assume that each task (by itself) is admissible, otherwise they can be discarded a priori. Thus, any algorithm can trivially obtain a profit of p_{max}, and hence we can assume that each $p_t \geq \epsilon p_{\text{max}} / n$, by discarding tasks with lower profit if necessary. Moreover, the profits can be assumed to be integers.

We call an instance of RAP “intersecting” if all the tasks intersect at a single time, i.e., there exists a time t_{mode} such that $t_{\text{mode}} \in \text{span}(i)$ for all tasks i. The following lemma shows that the RAP can be reduced to the intersecting instances of RAP with a loss of $O(\log n)$ factor in the approximation.

Lemma 1 *If there is a p-approximation for the intersecting instances of RAP, then there is an $O(p \cdot \log n)$-approximation for the RAP.*

Proof: Consider a general instance of RAP. We partition the tasks into groups according to their lengths $\text{length}(i)$. We say that a task i belongs to group r if $2^r \leq \text{length}(i) < 2^{r+1}$. Clearly there are at most $\lceil \log(2n) \rceil$ groups $\{0, 1, \ldots, \lceil \log(2n) \rceil - 1\}$. Here the logarithm is taken to the base 2. Our algorithm computes an $O(\rho)$-approximation for every group taken one at a time, as described below, and outputs the maximum profit solution out of these $\lceil \log(2n) \rceil$ solutions; thereby yielding an overall $O(\rho \cdot \log n)$ approximation. It is, thus, enough to show how to obtain an $O(\rho)$-approximation for a single group.

Now fix some group r. For an integer j, a task i in group r is said to belong to part j if it spans time $j \cdot 2^r$. Since $2^r \leq \text{length}(i) < 2^{r+1}$ for every task i in group r, each such task belongs to some part j for some integer j (if it spans two such times, we assign it to both parts). Moreover, a task in part j cannot intersect any task that belongs to part $j + 4$. Now, for $a = 0, 1, 2, 3$, let S_a denote the set of group r tasks in parts...
Lemma 3 is an FPTAS for laminar instances. We call an instance of RAP “laminar” if the tasks can be ordered such that for an intersecting instance of RAP, there exists a time t such that $t = \mathop{\text{span}}(i)$ for all tasks i. Given Lemma 1, we now present a constant factor approximation for intersecting instances of RAP. Recall that for an intersecting instance of RAP, there exists a time t_{mode} such that $t_{\text{mode}} \in \mathop{\text{span}}(i)$ for all tasks i. Intersecting instances allow the following simplification.

Lemma 2 Without loss of generality, we can assume that the capacity profile $\{c_t \mid 1 \leq t \leq T\}$ is “unimodal”, i.e., $c_t \leq c_{t+1}$ for all $1 \leq t < t_{\text{mode}}$ and $c_t \geq c_{t+1}$ for all $t_{\text{mode}} \leq t < T$.

Proof: Consider any $t \in [1, t_{\text{mode}})$. Note that if task i satisfies $t \in [s_i, t_i)$, then it also satisfies $t + 1 \in [s_i, t_i)$. Therefore setting $c_t := \min\{c_t, c_{t+1}\}$ does not change the set of feasible solutions. Thus we can assume $c_t \leq c_{t+1}$ without loss of generality. A similar argument also works for $t \in [t_{\text{mode}}, T)$.

3.1 The Laminar Instances

We call an instance of RAP “laminar” if the tasks can be ordered $i = 1, \ldots, n$ such that $\mathop{\text{span}}(i + 1) \subseteq \mathop{\text{span}}(i)$ for all $1 \leq i < n$. Before dealing with the general intersecting instances, we first observe that there is an FPTAS for laminar instances.

Lemma 3 There is an FPTAS for the laminar instances of RAP. For any $\epsilon > 0$, the algorithm obtains $(1 + \epsilon)$-approximation in time $O(n^2 / \epsilon^2 \cdot \log(nP))$ if the profits are integers in the range $[1, P]$.

Proof: The algorithm is based on dynamic programming similar to the one used for knapsack problems. Given integers i and p, let $D(i, p)$ denote the minimum total demand of an admissible subset $S \subseteq \{1, \ldots, i\}$ of first i tasks such that $\sum_{j \in S} p_j \geq p$. We use the convention $D(i, p) = \infty$ if no such S exists. The values $D(i, p)$ are computed in the order of increasing i. For $i = 1$, we set $D(1, p) = d_1$ if $\{1\}$ is admissible and $p \geq p_1$; or ∞ otherwise. Now we use the following recurrence:

$$D(i + 1, p) = \begin{cases} \min\{D(i, p), D(i, p - p_{i+1}) + d_{i+1}\}; & \text{if } D(i, p - p_{i+1}) + d_{i+1} \leq \min_{t \in \mathop{\text{span}}(i+1)} c_t \\ D(i, p); & \text{otherwise.} \end{cases}$$

The correctness follows as the tasks are laminar, and hence the decision whether task $i + 1$ can be admitted to set $S \subseteq \{1, \ldots, i\}$ or not, depends only on the total demand of S.

The above dynamic program computes the optimum solution in time $O(n \cdot nP)$. Moreover, if we know the value OPT of the optimum solution, the above dynamic program runs in time $O(n \cdot OPT)$. We can
make the running time polynomial in n, $\log P$, and $1/\epsilon$ as follows. We guess the value of OPT in the range $[1, nP]$ within a factor of $(1 + \epsilon)$, remove all the tasks with profit less than $\epsilon OPT/n$, and then round the profits p_i to $\lfloor np_i/(\epsilon OPT) \rfloor$. After the rounding, the optimum value is $\lfloor n/\epsilon \rfloor$, and hence the above algorithm computes an $(1 + \epsilon)$-approximation in time $O(n \cdot n/\epsilon)$. Since the algorithm iterates over $O(1/\epsilon \cdot \log(nP))$ guesses of OPT, the overall running time is $O(n^2/\epsilon^2 \cdot \log(nP))$.

3.2 The General Intersecting Instances

We now consider the general intersecting instances. We partition the tasks into four disjoint types as follows. Let $\epsilon > 0$ be a constant to be fixed later.

1. A task i is called “slack” if $d_i \leq \epsilon \cdot c_t$ for all $t \in [s_i, t_i]$.
2. A task i is called “left-tight” if $d_i > \epsilon \cdot c_t$ for some time $t \in [s_i, t_{\text{mode}})$ and $d_i \leq \epsilon \cdot c_t$ for all $t \in [t_{\text{mode}}, t_i]$.
3. A task i is called “right-tight” if $d_i > \epsilon \cdot c_t$ for some time $t \in [t_{\text{mode}}, t_i)$ and $d_i \leq \epsilon \cdot c_t$ for all $t \in [s_i, t_{\text{mode}})$.
4. A task i is called “tight” if it is not slack, left-tight, or right-tight.

In the following sections, we show how to obtain constant factor approximations for the case when all the tasks belong to a single type. Clearly, given a general intersecting instance, if we partition the set of tasks into these four groups and find a constant approximation for each group separately, the maximum solution of the four gives a constant approximation for the given instance.

3.2.1 Slack tasks

For the case of slack tasks, we give an LP based $O(1)$-approximation. Our algorithm is an adaptation of the randomized rounding algorithm of Calinescu et al. [7]. In particular, we need to adapt their algorithm to work for unimodal capacity profiles. We lose an additional factor 2 in the process.\(^2\)

Our algorithm begins by solving the LP relaxation (LP) described in Section 1.2. Let x_i^* be some optimum LP solution. By scaling if necessary, we assume that the smallest capacity is 1. We partition the tasks into two sets: C_\leq be the set of tasks i such that $c_{s_i} \leq c_{t_i-1}$; and $C_>$ be the set of tasks i such that $c_{s_i} > c_{t_i-1}$. Clearly, at least one of the sets C_\leq or $C_>$ accrues at least half of the fractional profit, i.e., either (1) $\sum_{i \in C_\leq} p_i x_i^* \geq \frac{1}{2} \sum_{i} p_i x_i^*$ or (2) $\sum_{i \in C_>} p_i x_i^* \geq \frac{1}{2} \sum_{i} p_i x_i^*$.

Let us assume that case (1) holds. Below we present how to round the fractional solution for C_\leq to get an admissible integral solution of almost equal cost. An analogous argument holds for the other case (2); and is omitted.

\(^2\)The original argument of [7] holds only for non-decreasing capacity profiles.
The rounding algorithm proceeds as follows. We ignore the tasks in \(C_\geq \) and order the tasks in \(C_\leq \) in the increasing order of their starting times. Let \(\delta = \epsilon + \epsilon^{1/4} \). We choose each task \(i \in C_\leq \) independently with probability \((1-\delta)x_i^*\). Let \(R \) denote the set of chosen tasks. Let these tasks in \(R \) be \(i_1 < i_2 < \cdots < i_{|R|} \). We construct a sequence of sets \(\emptyset = S_0, S_1, \ldots \), as follows: let \(S_r = S_{r-1} \cup \{i_r\} \) if \(S_{r-1} \cup \{i_r\} \) is admissible; or let \(S_r = S_{r-1} \) otherwise. The algorithm outputs the set \(S = S_{|R|} \).

Note that \(S \) is a random set, and the decision whether task \(i \) lies in \(S \) or not is correlated to whether other tasks lie in \(S \) or not. We will show that:

Theorem 1 For any request \(i \in C_\leq \), it lies in \(S \) with probability at least \((1 - \sqrt{\epsilon}) \cdot (1- \epsilon - \epsilon^{1/4})x_i^*\).

Proof: Define the following random variables: for \(i \in C_\leq \), let \(X_i = 1 \) if \(i \in R \), and 0 otherwise; and let \(Y_i = 1 \) if \(i \in S \), and 0 otherwise. Note that \(X_i \)'s are independent, but \(Y_i \)'s are not.

Fix \(1 \leq r \leq |R| \) and consider the task \(i = i_r \). We are interested in \(E[Y_i] \). Since \(S \subseteq R \), we have \(Y_i \leq X_i \) and hence \(E[Y_i] \leq E[X_i] \). Consider the event \(E_r \) that \([Y_i = 0 \mid X_i = 1]\). If \(E_r \) happens, then it must be the case that \(S_{r-1} \cup \{i\} \) is not admissible. The lemma below characterizes the reason \(E_r \) happens.

Lemma 4 The event \(E_r \) holds if and only if the capacity constraint at the start time \(s_i \) of task \(i \) is violated by the set of tasks \(S_{r-1} \cup \{i\} \).

Proof: The proof is based on the fact that the capacity profile is unimodal with the maximum capacity at time \(t_{\text{mode}} \) and defining property of the tasks in \(C_\leq \). By definition, \(E_r \) happens if and only if the capacity constraint at some time \(t \in [s_i, t_i] \) is violated by \(S_{r-1} \cup \{i\} \). If \(t \leq t_{\text{mode}} \), then from the assumption that capacity profile is unimodal, we have \(c_{s_i} \leq c_t \). If \(t > t_{\text{mode}} \), then since \(i \in C_\leq \), we have \(c_{s_i} \leq c_{t_{i-1}} \leq c_t \). Since all the tasks in \(S_{r-1} \cup \{i_r\} \) cross \(s_i \) and may or may not cross \(t \), we get that that \(S_{r-1} \cup \{i_r\} \) must violate the capacity constraint at \(s_i \).

Thus, for \(E_r \) to hold, the total demand of tasks in \(R \cap \{1, \ldots, i-1\} \) must exceed \(c_{s_i} - d_i \). We now use Chebyshev’s inequality to bound \(Pr[E_r] \). For \(j = 1, \ldots, i-1 \), consider a random variable \(D_j = d_j \) if \(j \in R \), and 0 otherwise. Let \(D = \sum_{j=1}^{i-1} D_j \).

Lemma 5 \(Pr[E_r] \leq \sqrt{\epsilon} \).

Proof: We shall show that \(Pr[E_r] \leq Pr[D \geq c_{s_i} - d_i] \leq Pr[D \geq c_{s_i} - \epsilon c_{s_i}] \leq \sqrt{\epsilon} \). The second step follows as all tasks are slack.

We have \(E[D] = \sum_{j=1}^{i-1} E[D_j] = \sum_{j=1}^{i-1} d_j (1-\delta)x_j^* \leq (1-\delta)c_{s_i} \). The last inequality holds since the fractional solution \(x^* \) satisfies the capacity constraint at time \(s_i \). Since \(D_j \)'s are independent,

\[
Var[D] = \sum_{j=1}^{i-1} Var[D_j] \leq \sum_{j=1}^{i-1} E[D_j^2] = \sum_{j=1}^{i-1} d_j^2 \cdot (1-\delta)x_j^* \leq \epsilon c_{s_i} \sum_{j=1}^{i-1} d_j \cdot (1-\delta)x_j^* \leq \epsilon (1-\delta)c_{s_i}^2.
\]

The second last inequality follows since all the tasks are slack.
Now we use Chebyshev’s inequality: \(Pr[D - E[D] \geq t\sqrt{Var[D]}] \leq 1/t^2 \) for \(t > 0 \). Putting \(t = \epsilon^{-1/4} \), we get

\[
Pr[D > (1 - \delta)c_{a_i} + \epsilon^{-1/4} \cdot \sqrt{\epsilon(1 - \delta)c_{a_i}^2}] \leq \sqrt{\epsilon}.
\]

That is, \(Pr[D > c_{a_i} \cdot (1 - \delta + \epsilon^{1/4}\sqrt{1 - \delta})] \leq \sqrt{\epsilon} \). Now letting \(\delta = \epsilon + \epsilon^{1/4} \), we get the lemma. □

Now,

\[
E[Y_i] = Pr[Y_i = 1 \mid X_i = 1] \cdot Pr[X_i = 1] + Pr[Y_i = 1 \mid X_i = 0] \cdot Pr[X_i = 0] \\
= Pr[Y_i = 1 \mid X_i = 1] \cdot Pr[X_i = 1] \\
= (1 - Pr[E_i]) \cdot (1 - \delta)x_i^* \\
\geq (1 - \sqrt{\epsilon}) \cdot (1 - \epsilon - \epsilon^{1/4})x_i^*
\]

as claimed. □

If \(z^* \) is the value of the LP solution for the slack tasks, using Theorem 1, the expected value of the solution obtained by the algorithm is at least \(\frac{1}{2}(1 - \sqrt{\epsilon}) \cdot (1 - \epsilon - \epsilon^{1/4})z^* \). The algorithm above can be easily derandomized by using pairwise independent family of random variables.

3.2.2 Tight tasks

We first remove any tight task that is not admissible by itself since such a task may never be satisfied. We then further partition them into classes based on the demands. A task \(i \) belongs to class \(r \) if \(2^r \cdot d_i < 2^r + 1 \). Let \(k = \lceil \log(1/\epsilon) \rceil + 1 \) and let \(C_a \) for \(a = 0, 1, \ldots, k - 1 \) be the collection of tasks of class \(r \equiv a \mod k \).

It suffices to design a constant factor approximation for any collection \(C_a \). The overall algorithm can simply apply the algorithm to each of these collections and choose the best solution.

Fix \(a \in \{0, 1, \ldots, k - 1\} \). It is easy to see that if \(i, j \in C_a \) such that \(i \) is of higher class than \(j \), then \(d_j < \epsilon \cdot d_i \). We now argue that \(\text{span}(i) \subseteq \text{span}(j) \). Suppose, on the contrary, that this does not hold and that without loss of generality, there exists \(t \leq t_{\text{mode}} \) such that \(t \in \text{span}(i) \setminus \text{span}(j) \). Since the capacity profile is unimodal, we have \(d_j < \epsilon d_i \leq \epsilon c_t \leq \epsilon c_{t'} \) for all \(t' \in [s_j, t_{\text{mode}}) \). This contradicts the fact that task \(j \) is tight and not right-tight.

We next argue that the optimum algorithm can pick at most \(2/\epsilon \) tasks from any class. Suppose, to the contrary, that the optimum picks more than \(2/\epsilon \) tasks from some class. Consider the task \(i \) among these with largest start time \(s_i \). Since each job in the class of \(i \) has demand at least \(d_i/2 \), it must be that \(d_i/2 \cdot 2/\epsilon < c_t \) for all \(t \in [s_i, t_{\text{mode}}) \). However this contradicts the fact that task \(i \) is tight and not right-tight. We will use the fact that optimum picks at most \(2/\epsilon \) tasks from any class in our dynamic programming.

Now we use a dynamic program similar to the one presented for the laminar case in Section 3.1, to compute a maximum profit set of tasks among the admissible sets which pick at most \(2/\epsilon \) tasks from each class, and then use the same standard trick to transform this pseudo-polynomial algorithm to a PTAS. The algorithm is essentially the same as for the laminar case, except that at each step, instead of considering the possibility of adding one task to the subproblem, we consider the possibility of adding a subset of size at most \(2/\epsilon \) of the tasks in a class. More specifically, we define \(D(r, p) \), for \(r \equiv a \mod k \), as the minimum
total demand of an admissible subset S of tasks of class at most r in C_a such that $\sum_{j \in S} p_j \geq p$ with the condition that no more than $2/\epsilon$ tasks are selected from each class. It is trivial how to set the initial values. For computing the rest of the values of the table we use the following recurrence. For any subset Q of size at most $2/\epsilon$ of tasks in class $r + k$, let P_Q be the total profit of the tasks in Q and for each edge t in the span of some task in Q let $D_Q(t)$ be the total demands in Q whose span contains t. We use D_Q to denote the total demands of all the tasks in Q. Note that the tasks in Q form a demand profile, so the total demands of the tasks belonging to Q over an edge might be different from another edge. We compute $D(r+k,p)$ by: $D(r+k,p) = \min\{D(r,p), D(r,p-P_Q) + D_Q\}$ where for the second term we consider all subsets Q of size at most $2/\epsilon$ of tasks in class $r + k$, with the condition that for every edge t in the span of some task in Q: $D(r,p-P_Q) + D_Q(t) \leq c_t$. Note that each such entry can be computed in time that is exponential in $2/\epsilon$ but polynomial in n. Also, note that here we crucially use the fact that span of every demand in a class $r + k$ is contained in the span of every demand in any class less than $r + k$.

We can easily transform this into a PTAS as in the case of laminar instance. Overall we obtain a $(\lceil \log(1/\epsilon) \rceil + 1)$-approximation for the tight tasks.

3.2.3 Left-tight or right-tight tasks

We now describe our algorithm for the left-tight tasks. Our algorithm for the right-tight tasks is similar and is omitted. The algorithm for left-tight tasks is similar to that of tight tasks, however there are some differences. We remove any left-tight task that is not admissible by itself since such a task may never be satisfied. We then partition the tasks into classes based on the demands. A task i is of class r if $2^r \leq d_i < 2^{r+1}$. Let $k = \lceil \log(1/\epsilon) \rceil + 1$ and let C_a for $a = 0, 1, \ldots, k-1$ be the collection of tasks of class $r \equiv a \mod k$. The algorithm computes a constant approximation for each collection C_a and outputs the maximum profit solution out of these $O(\log(1/\epsilon))$ solutions.

Fix $a \in \{0, 1, \ldots, k-1\}$. As in the case of tight tasks, we argue that if $i, j \in C_a$ such that i is of higher class than j, then $s_i > s_j$. Suppose, on the contrary, that this does not hold and suppose that there exists t such that $s_i \leq t < s_j$. Since the capacity profile is unimodal, we have $d_j < \epsilon d_i \leq \epsilon c_t \leq \epsilon c_{t'}$ for all $t' \in [s_j, t_{\text{mode}})$. This contradicts that fact that task j is left-tight. Note however that unlike the case of tight tasks, a task in a higher class does not necessarily lie in the span of a lower class task (since the right end-points of tasks need not satisfy the above property).

We next argue (similar to the case of tight jobs) that the optimum algorithm picks at most $2/\epsilon$ tasks from any class. Suppose, on the contrary, the optimum picks more than $2/\epsilon$ tasks from some class. Consider the task i among these with largest start time s_i. It follows that $d_i/2 \cdot 2/\epsilon < c_t$ for all $t \in [s_i, t_{\text{mode}})$ contradicting the fact that task i is left-tight. So, if we optimally select a subset of tasks with at most $(1 - \epsilon)/\epsilon$ tasks from each class we obtain a $2(1 - \epsilon)$-approximation for this collection of left-tight tasks. Given that we have a total of $k = \lceil \log(1/\epsilon) \rceil + 1$ collections C_a, the overall approximation for left-tight tasks will be $2(1 - \epsilon)(\lceil \log(1/\epsilon) \rceil + 1)$.

Even though we no longer have the property that the span of a task is contained in the span of a task of lower class, we claim that we can use a similar dynamic program as for tight tasks to compute a maximum profit set of admissible tasks with at most $(1 - \epsilon)/\epsilon$ tasks from each class. In particular, suppose we ignore
the capacity constraints to the right of t_{mode} and run the dynamic program. The only difference in the DP is that we consider subsets Q of size at most $(1 - \epsilon)/\epsilon$ of tasks in the class $r + k$ in the recurrence. Recall that any left-tight task i satisfies $d_i \leq \epsilon \cdot c_t$ for any $t \in [t_{\text{mode}}, t_i)$. Since we pick at most $(1 - \epsilon)/\epsilon$ tasks from each class, for any $t \geq t_{\text{mode}}$, the load on t from the demands of the tasks picked in any single class is at most $(1 - \epsilon)c_t$. As the demands of the jobs in different classes of any fixed collection C_a differ by a factor of at least ϵ, the total demands of all the tasks that load c_t for $t \geq t_{\text{mode}}$ can be at most $(1 - \epsilon)c_t + \epsilon(1 - \epsilon)c_t + \epsilon^2(1 - \epsilon)c_t + \cdots < c_t$ for any $\epsilon < 1$. Thus we can never violate the capacity constraints for any $t \geq t_{\text{mode}}$ in our dynamic program. As mentioned earlier, this dynamic program yields a $2(1 - \epsilon)(\lceil \log(1/\epsilon) \rceil + 1)$ for left-tight tasks.

3.3 Setting the parameters

We show that by a suitable choice of ϵ we have a 35.86-approximation for the intersecting instances of RAP; thus for ρ in Lemma 1 we have $\rho \leq 35.86$. Given that we lose a factor of $O(\log n)$ in Lemma 1 the overall approximation ratio still remains $O(\log n)$. It is straightforward to verify that by choosing $\epsilon = 0.1036$, $\frac{1}{2}(1 - \sqrt{\epsilon}) \cdot (1 - \epsilon - \epsilon^{1/4}) \geq 0.1115$ and therefore the ratio of the rounding algorithm for slack tasks (in Subsection 3.2.1) is at most $1/0.1115 \approx 8.964$. Also at $\epsilon = 0.1115$, $(2 - 2\epsilon)(\lceil \log(1/\epsilon) \rceil + 1) \approx 8.964$; and therefore the ratio of the algorithm for each of the cases of tight, left-tight, or right-tight tasks is at most 8.965. Since we take the best solution of these four cases, the approximation ratio for the general intersecting instance is at most 35.86.

4 Ring networks: when the graph is a cycle

The UFP on cycles can be solved approximately using the algorithm for lines. The following approach was observed in [8]. Consider an edge e in the cycle with the smallest c_e value and partition the set of demands routed in the optimal solution OPT into two sets: OPT_1 contains those demands that use edge e and OPT_2 contains the others (i.e. those that do not use edge e). Since c_e has the smallest capacity, to approximate OPT_1 we can use the known PTAS algorithms [20] for KNAPSACK to find a $(1 + \epsilon)$-approximation for OPT_1. The instance defined by considering the demands that do not use edge e is basically an instance on the line (obtained by deleting edge e) and so we can use the algorithm presented in the previous section for it. Returning the maximum of the two solutions obtained, is an $O(\log n)$-approximation for the problem on cycles.

5 Conclusions

An intriguing open question is whether there is an $O(1)$-approximation, or even an approximation scheme for the problem; we still do not know whether the UFP on lines (without any extra constraints) is APX-hard or not. Another interesting open question is to see if the techniques developed in this paper can be generalized to more families of graphs, e.g., trees. Even for restricted families of tree, such as bounded
degree trees, it seems some new ideas are needed to extend our results to that class.

References

