Verifying Generalized Soundness for Workflow Nets

Kees van Hee, Olivia Oanea, Natalia Sidorova and Marc Voorhoeve

Department of Mathematics and Computer Science
Technical University Eindhoven
The Netherlands

PSI 2006
A Petri net \(N = (P, T, F) \) is a \textit{Workflow net (WF-net)} iff:

1. \(N \) has two special places: \(i \) — the initial place with \(\bullet i = \emptyset \), and the final place \(f \) with \(f^\bullet = \emptyset \).

2. Every node \(n \in (P \cup T) \) is on a path from \(i \) to \(f \).
A Petri net $N = (P, T, F)$ is a *Workflow net (WF-net)* iff:

1. N has two special places: i — the initial place with $\cdot i = \emptyset$, and the final place f with $f^\bullet = \emptyset$.
2. Every node $n \in (P \cup T)$ is on a path from i to f.
Generalized soundness problem for Workflow nets

A Petri net $N = (P, T, F)$ is a *Workflow net (WF-net)* iff:

1. N has two special places: i — the initial place with $i^\bullet = \emptyset$, and the final place f with $f^\bullet = \emptyset$.
2. Every node $n \in (P \cup T)$ is on a path from i to f.

![Workflow net diagram]
A Petri net $N = (P, T, F)$ is a *Workflow net (WF-net)* iff:

1. N has two special places: i — the initial place with $\bullet i = \emptyset$, and the final place f with $f^\bullet = \emptyset$.
2. Every node $n \in (P \cup T)$ is on a path from i to f.

Proper termination (1-soundness)
A WF-net N is generalized sound iff for all $k \in \mathbb{N}$, all markings reachable from $k \cdot \bar{f}$ terminate properly, i.e. $m \rightarrow^* k \cdot \bar{f}$.
Generalized soundness problem for Workflow nets

A WF-net \(N \) is generalized sound iff for all \(k \in \mathbb{N} \), all markings reachable from \(k \cdot \tilde{f} \) terminate properly, i.e. \(m \xrightarrow{*} k \cdot \tilde{f} \).
Generalized soundness for Workflow nets: Motivation

Preserving correctness of (WF) nets by refinement
Generalized soundness for Workflow nets: Motivation

Preserving correctness of (WF) nets by refinement
Outline

1. Old procedure for deciding generalized soundness for WF nets
2. New Decision procedure for the generalized soundness of BWF-nets
3. Practical Application of the Decision Procedure
Decidability

Generalized soundness problem for Workflow nets is decidable

Main ideas

- A WF-net N is generalized sound iff a certain BWF-net N' can be derived from it and N' is generalized sound.
- Verifying generalized soundness on N' is reduced to a finite number of proper termination checks in N'.
Trap
A subset of places Q is called a *trap* if $Q^* \subseteq \bullet Q$.

Siphon
A subset $Q \subseteq P$ is called a *siphon* if $\bullet Q \subseteq Q^*$.

Definition
A Batch Workflow net (BWF-net) N is a WF-net having the following properties:

1. every non-empty siphon of N contains i;
2. every non-empty trap of N contains f.
Old decision procedure for the generalized soundness of BWF-nets

Facts

1. \(m \xrightarrow{\sigma} m' \) implies \(m' = m + F \cdot \vec{\sigma} \)

2. \(m \xrightarrow{\sigma} m' \) implies \(\mathcal{I} \cdot m = \mathcal{I} \cdot m' \), where \(\mathcal{I} \) is the matrix having place invariants as rows

If \(N \) is generalized sound then

1. \(\mathcal{I} \cdot \vec{i} = \mathcal{I} \cdot \vec{f} \) since \(\vec{i} \xrightarrow{*} \vec{f} \)

2. \(\mathcal{I} \cdot x = \vec{0} \) has only the trivial solution on \(\mathbb{N}^P \).
 otherwise if \(x > \vec{0} \Rightarrow x \xrightarrow{*} \vec{0} \) — false since \(t^\bullet \neq \emptyset \) for all \(t \)

Generalized soundness \(\Leftrightarrow\) proper termination of

- \(\mathcal{R} = \bigcup_{k \in \mathbb{N}} \mathcal{R}(k \cdot \vec{i}) = \bigcup_{k \in \mathbb{N}} \{ k \cdot \vec{i} + F \cdot \vec{v} | \vec{v} \in \mathbb{N}^T \} \cap \mathbb{N}^P \)

- \(\mathcal{G} = \bigcup_{k \in \mathbb{N}} \mathcal{G}_k \), where \(\mathcal{G}_k = \{ k \cdot \vec{i} + F \cdot \vec{v} | \vec{v} \in \mathbb{Z}^T \} \cap \mathbb{N}^P \)
 all markings \(m \in \mathcal{G}_k \) have the same \(i \)-weight \(w(m) = k \)
Old decision procedure for the generalized soundness of BWF-nets

Generalized soundness \iff proper termination of a finite $\Gamma \subseteq \mathcal{G}$

- $\mathcal{H} = \{ a \cdot \vec{i} + F \cdot \vec{v} | a \in \mathbb{Q}^+, \, \vec{v} \in \mathbb{Q}^T \} \cap (\mathbb{Q}^+)^P$ is a convex polyhedral cone and has a finite set of generators $E = \{ e_1, \ldots, e_n \}$;
- $E_G = \{ e^1, \ldots, e^n \} \in \mathcal{G}$ is the set of rescaled generators in \mathcal{G};
- $\Gamma = \{ \sum_i \alpha_i \cdot e^i \leq 1 \} \cap \mathcal{G}$ is the set of markings (integer points) of the polytope having as generators E_G.

Decision Procedure

1. Check whether $\mathcal{I} \cdot \vec{i} = \mathcal{I} \cdot \vec{f}$
2. Check whether $\mathcal{I} \cdot \vec{x} = \vec{0}$ has only the trivial solution on \mathbb{N}^P.
3. Check proper termination for Γ.
Old decision procedure for the generalized soundness of BWF-nets

Generalized soundness \iff proper termination of a finite $\Gamma \subseteq \mathcal{G}$

- $\mathcal{H} = \{a \cdot \bar{i} + F \cdot v | a \in \mathbb{Q}^+, v \in \mathbb{Q}^T \} \cap (\mathbb{Q}^+)^P$ is a convex polyhedral cone and has a finite set of generators $E = \{e_1, \ldots, e_n\}$;
- $E_G = \{e^1, \ldots, e^n\} \in \mathcal{G}$ is the set of rescaled generators in \mathcal{G};
- $\Gamma = \{\sum_i \alpha_i \cdot e^i \leq 1\} \cap \mathcal{G}$ is the set of markings (integer points) of the polytope having as generators E_G

Decision Procedure

1. Check whether $\mathcal{I} \cdot \bar{i} = \mathcal{I} \cdot \bar{f}$
2. Check whether $\mathcal{I} \cdot x = \bar{0}$ has only the trivial solution on \mathbb{N}^P.
3. Check proper termination for Γ
Computing Γ - example

- $(4, 1, 1, 4) \cdot \bar{i} = (4, 1, 1, 4) \cdot \bar{f}$
- $(4, 1, 1, 4) \cdot x = \bar{0}$ implies $x = \bar{0}$
- $\mathcal{H} = \{ a \cdot \bar{i} + F \cdot \nu \mid a \in \mathbb{Q}^{+}, \nu \in \mathbb{Q}^{T} \} \cap (\mathbb{Q}^{+})^{P} = (A + B) \cap \{ \bar{i}, \bar{f}, \bar{a}, \bar{b} \}$, $A = \{ \bar{i} \}$ and $B = \{ \pm (3 \cdot \bar{a} + \bar{b} - \bar{i}), \pm (\bar{a} + \bar{b}), \pm (\bar{i} - \bar{a} - 3 \cdot \bar{b}) \}$
- $E = \{ \bar{i}, \bar{f}, \bar{a}, \bar{b} \}$
- $E_G = \{ \bar{i}, \bar{f}, 8 \cdot \bar{a}, 8 \cdot \bar{b} \}$
- $|\Gamma| = 44$

Γ is very large
Computing Γ - example

Γ is very large

$(4, 1, 1, 4) \cdot \vec{i} = (4, 1, 1, 4) \cdot \vec{f}$

$(4, 1, 1, 4) \cdot x = \vec{0}$ implies $x = \vec{0}$

$\mathcal{H} = \{ a \cdot \vec{i} + F \cdot v | a \in \mathbb{Q}^+, v \in \mathbb{Q}^T \} \cap (\mathbb{Q}^+)^P = (A + B) \cap \{ \vec{i}, \vec{f}, \vec{a}, \vec{b} \}$,

$A = \{ \vec{i} \}$ and $B = \{ \pm(3 \cdot \vec{a} + \vec{b} - \vec{i}), \pm(\vec{a} + \vec{b}), \pm(\vec{i} - \vec{a} - 3 \cdot \vec{b}) \}$

$E = \{ \vec{i}, \vec{f}, \vec{a}, \vec{b} \}$

$E_G = \{ \vec{i}, \vec{f}, 8 \cdot \vec{a}, 8 \cdot \vec{b} \}$

$|\Gamma| = 44$
Reducing the number of proper termination checks

Lemma

\[m > m', m \in G_i, m' \in G_j \implies i > j \]

Theorem

Let \(\Upsilon \) is the set of minimal markings of \(G^+ = G - G_0 \). Then:

1. \(N \) is generalized sound iff every marking \(m \in \Upsilon \) terminates properly.
2. Each marking \(m \in \Upsilon \) satisfies \(m \leq (\max_i \{ e_i \}, \ldots, \max_i \{ e_{P_i} \}) \).
3. \(\Upsilon \subseteq \Gamma \).
Reducing the number of proper termination checks

Lemma

\[m > m', m \in G_i, m' \in G_j \implies i > j \]

Theorem

Let \(\Upsilon \) is the set of minimal markings of \(G^+ = G - G_0 \). Then:

1. N is generalized sound iff every marking \(m \in \Upsilon \) terminates properly.
2. Each marking \(m \in \Upsilon \) satisfies \(m \leq (\max_i \{ e^i_1 \}, \ldots, \max_i \{ e^i_{|P|} \}) \).
3. \(\Upsilon \subseteq \Gamma \).
New Decision Procedure

- Check whether $\mathcal{I} \cdot \vec{i} = \mathcal{I} \cdot \vec{f}$
- Check whether $\mathcal{I} \cdot \vec{x} = \vec{0}$ for $\vec{x} \in (\mathbb{Q}^+)^P$ has only trivial solution
- Check proper termination for a finite minimal set of markings of \mathcal{G}:
 1. Find a set of generators E of the polyhedral cone \mathcal{H}
 2. Compute the set of rescaled generators $- E_G$
 3. Find a set of minimal markings Υ of \mathcal{G}:
 \[
 \Upsilon = \min\{m | m \in \mathcal{G}^+ \land m \leq M\}
 \]
 where $M = (\max_i \{e^i_1\}, \ldots, \max_i \{e^i_{|P|}\})$
 4. Check proper termination for all markings of Υ using a backward reachability algorithm
Backward reachability check

Input: \(N = (P, T, F) \), \(\Upsilon \), \(J = \{w(m) \mid m \in \Upsilon\} \)

Output: “the BWF-net is sound” or “the BWF-net is not sound, \(m, k \)” where \(m \in G_k \), \(m \xrightarrow{\ast} k \cdot \bar{f} \) and \(k = \min\{\ell \mid m \in \Upsilon: \ell \cdot i \overset{\sigma}{\rightarrow} m \not\xrightarrow{\ast} \ell \cdot \bar{f}\} \)

for \(j \in J \) do
 \(B_j = \{j \cdot \bar{f}\} \);
 repeat
 \(B_j = B_j \cup \{m - F_t \mid \forall p \in P: m(p) \geq F(p, t) \land m \in B_j \land t \in T\} \)
 until a fixpoint is reached or \(\Upsilon_j \subseteq B_j \);
 if \(\Upsilon_j \not\subseteq B_j \) then
 pick \(m \in \Upsilon_j \setminus B_j; \ell = 1 \);
 loop
 if \((j + \ell) \cdot \bar{i} \in B_{j+\ell}\) then
 return(“the BWF-net is not sound”, \(m, j + \ell \))
 end
 else \(\ell++ \)
 loop
end
return(“the BWF-net is sound”)
Backward reachability check

Input: \(N = (P, T, F) \), \(\Upsilon \), \(J = \{w(m) \mid m \in \Upsilon\} \)

Output: “the BWF-net is sound” or “the BWF-net is not sound, \(m, k \)” where

\[
m \in G_k, \quad m \not\rightarrow^* k \cdot \bar{f} \quad \text{and} \quad k = \min\{\ell \mid m \in \Upsilon : \ell \cdot i \not\rightarrow m \not\rightarrow \ell \cdot \bar{f}\}
\]

for \(j \in J \) do

\[B_j = \{j \cdot \bar{f}\};\]

repeat

\[B_j = B_j \cup \{m - F_t \mid \forall p \in P : m(p) \geq F(p, t) \land m \in B_j \land t \in T\}\]

until a fixpoint is reached or \(\Upsilon_j \subseteq B_j \);

if \(\Upsilon_j \not\subseteq B_j \) then

pick \(m \in \Upsilon_j \setminus B_j \); \(\ell = 1 \);

loop

| if \((j + \ell) \cdot i \in B_{j+\ell} \) then
| return(“the BWF-net is not sound”, \(m, j + \ell \))

end

else \(\ell++ \)

loop

end

end

return(“the BWF-net is sound”)
Backward reachability check

Input: \(N = (P, T, F), \) \(\Upsilon, J = \{ w(m) \mid m \in \Upsilon \} \)

Output: “the BWF-net is sound” or “the BWF-net is not sound, \(m, k \)” where \(m \in G_k, m \xrightarrow{*} k \cdot \bar{f} \) and \(k = \min \{ \ell \mid m \in \Upsilon : \ell \cdot \bar{i} \not\rightarrow m \not\rightarrow \ell \cdot \bar{f} \} \)

for \(j \in J \) **do**

\[
B_j = \{ j \cdot \bar{f} \};
\]

repeat

\[
B_j = B_j \cup \{ m - F_t \mid \forall p \in P : m(p) \geq F(p, t) \land m \in B_j \land t \in T \}
\]

until a fixpoint is reached or \(\Upsilon_j \subseteq B_j \);

if \(\Upsilon_j \not\subseteq B_j \) **then**

pick \(m \in \Upsilon_j \setminus B_j; \) \(\ell = 1; \)

loop

\[
\text{if } (j + \ell) \cdot \bar{i} \in B_{j+\ell} \text{ then return("the BWF-net is not sound", } m, j + \ell) \]

end

else \(\ell++ \)

loop

end

return("the BWF-net is sound")
Example

\[E = \{ \bar{i}, \bar{f}, \bar{a}, \bar{b} \} \]
\[E_G = \{ \bar{i}, \bar{f}, 8 \cdot \bar{a}, 8 \cdot \bar{b} \} \]
\[\Upsilon = \{ 8 \cdot \bar{a}, 8 \cdot \bar{b}, \bar{a} + 3 \cdot \bar{b}, 3 \cdot \bar{a} + \bar{b}, \bar{i}, \bar{f} \} \]
\[|\Upsilon| = 6; |\Gamma| = 44 \]

- \(8 \cdot \bar{b} \in \mathcal{R}(2 \cdot \bar{i}) \)
- \(8 \cdot \bar{b} \not\rightarrow 2 \cdot \bar{f} \)
Example

\[E = \{ \bar{i}, \bar{f}, \bar{a}, \bar{b} \} \]
\[E_G = \{ \bar{i}, \bar{f}, 8 \cdot \bar{a}, 8 \cdot \bar{b} \} \]

\[\Upsilon = \{ 8 \cdot \bar{a}, 8 \cdot \bar{b}, \bar{a} + 3 \cdot \bar{b}, 3 \cdot \bar{a} + \bar{b}, \bar{i}, \bar{f} \} \]
\[|\Upsilon| = 6; |\Gamma| = 44 \]

- \(8 \cdot \bar{b} \in \mathcal{R}(2 \cdot \bar{i}) \)
- \(8 \cdot \bar{b} \not\rightarrow 2 \cdot \bar{f} \)
Example

\[E = \{ \bar{i}, \bar{f}, \bar{a}, \bar{b} \} \]
\[E_G = \{ \bar{i}, \bar{f}, 8 \cdot \bar{a}, 8 \cdot \bar{b} \} \]

\[\Upsilon = \{ 8 \cdot \bar{a}, 8 \cdot \bar{b}, \bar{a} + 3 \cdot \bar{b}, 3 \cdot \bar{a} + \bar{b}, \bar{i}, \bar{f} \} \]

\[|\Upsilon| = 6; \quad |\Gamma| = 44 \]

- \[8 \cdot \bar{b} \in R(2 \cdot \bar{i}) \]
- \[8 \cdot \bar{b} \not\rightarrow 2 \cdot \bar{f} \]
Example

$E = \{\bar{i}, \bar{f}, \bar{a}, \bar{b}\}$

$E_G = \{\bar{i}, \bar{f}, 8 \cdot \bar{a}, 8 \cdot \bar{b}\}$

$\Upsilon = \{8 \cdot \bar{a}, 8 \cdot \bar{b}, \bar{a} + 3 \cdot \bar{b}, 3 \cdot \bar{a} + \bar{b}, \bar{i}, \bar{f}\}$

$|\Upsilon| = 6; |\Gamma| = 44$

- $8 \cdot \bar{b} \in R(2 \cdot \bar{i})$
- $8 \cdot \bar{b} \not\rightarrow 2 \cdot \bar{f}$
Example

\[E = \{ \bar{i}, \bar{f}, \bar{a}, \bar{b} \} \]
\[E_G = \{ \bar{i}, \bar{f}, 8 \cdot \bar{a}, 8 \cdot \bar{b} \} \]

\[\Upsilon = \{ 8 \cdot \bar{a}, 8 \cdot \bar{b}, \bar{a} + 3 \cdot \bar{b}, 3 \cdot \bar{a} + \bar{b}, \bar{i}, \bar{f} \} \]
\[|\Upsilon| = 6; \ |\Gamma| = 44 \]

- \(8 \cdot \bar{b} \in \mathcal{R}(2 \cdot \bar{i}) \)
- \(8 \cdot \bar{b} \not\rightarrow 2 \cdot \bar{f} \)
Example

\[E = \{ \bar{i}, \bar{f}, \bar{a}, \bar{b} \} \]
\[E_G = \{ \bar{i}, \bar{f}, 8 \cdot \bar{a}, 8 \cdot \bar{b} \} \]

\[\Upsilon = \{ 8 \cdot \bar{a}, 8 \cdot \bar{b}, \bar{a} + 3 \cdot \bar{b}, 3 \cdot \bar{a} + \bar{b}, \bar{i}, \bar{f} \} \]

\[|\Upsilon| = 6; |\Gamma| = 44 \]

- \(8 \cdot \bar{b} \in \mathcal{R}(2 \cdot \bar{i}) \)
- \(8 \cdot \bar{b} \not\rightarrow 2 \cdot \bar{f} \)
Parma Polyhedra Library - PPL for finding \(\Upsilon \)

Results

| File name | Description | \(|P|/|T| | Size(\(\Upsilon\)) | Time |
|-----------|-----------------|-----------------|-------------------|----------|
| consm | sound | 23/27 | 75 (\(\Upsilon = E_g\)) | 19909 ms |
| smwf | sound | 18/22 | 70 (\(\Upsilon = E_g\)) | 8005 ms |
| ref | sound | 12/12 | 14 (\(\Upsilon = E_g\)) | 131 ms |
| smp | sound | 9/10 | 9 (\(\Upsilon = E_g\)) | 16 ms |
| soundm | sound | 9/9 | 10 (\(\Upsilon = E_g\)) | 26 ms |
| snotws | sound | 7/8 | 7 (\(\Upsilon = E_g\)) | 9 ms |
| snet | sound | 9/6 | 10 (\(\Upsilon = E_g\)) | 48 ms |
| sound | sound | 6/6 | 6 (\(\Upsilon = E_g\)) | 9 ms |
| fcs | sound | 7/5 | 6 (\(\Upsilon = E_g\)) | 5 ms |
| snet2 | 1 not 2-sound | 5/6 | 5 (\(\Upsilon = E_g\)) | 5 ms |
| soundp | sound | 5/5 | 6 | 7 ms |
| exn2 | 1 not 2-sound | 4/3 | 6 | 8 ms |
Conclusions and Future work

We give an improved procedure for verifying generalized soundness that:

- reduces the number of proper termination checks
- gives a counterexample in case the net is not sound

Future work

- optimize the algorithm
- investigate the use of the algorithm for checking soundness in a compositional way
- verification of temporal logic properties of Petri nets (not necessarily WF-nets) using such a reduction technique
- build sound by construction nets in a hierarchical manner