
Efficient detection of multivariate correlations with different
correlation measures

Jens E. d’Hondt · Koen Minartz · Odysseas Papapetrou

September 2023

Abstract Correlation analysis is an invaluable tool in

many domains, for better understanding the data and

extracting salient insights. Most works to date focus on

detecting high pairwise correlations. A generalisation

of this problem with known applications but no known

efficient solutions involves the discovery of strong mul-

tivariate correlations, i.e., finding vectors (typically in

the order of 3 to 5 vectors) that exhibit a strong depen-

dence when considered altogether. In this work, we pro-

pose algorithms for detecting multivariate correlations

in static and streaming data. Our algorithms, which

rely on novel theoretical results, support four differ-

ent correlation measures, and allow for additional con-

straints. Our extensive experimental evaluation exam-

ines the properties of our solution and demonstrates

that our algorithms outperform the state-of-the-art, typ-

ically by an order of magnitude.

Keywords Similarity search · Multivariate correla-

tions · Time series · Streaming data

1 Introduction

Correlation analysis is one of the key tools in the arse-

nal of data analysts for understanding the data and ex-

tracting insights. For example, in neuroscience, a strong

correlation between activity levels in two regions of

Jens E. d’Hondt
Eindhoven University of Technology
De Zaale 1, 5600 MB Eindhoven
E-mail: j.e.d.hondt@tue.nl
https://orcid.org/0000-0001-9069-0591

Odysseas Papapetrou
E-mail: o.papapetrou@tue.nl

Koen Minartz
E-mail: k.minartz@tue.nl

the brain indicates that these regions are strongly in-

terconnected [21]. In finance, correlation plays a cru-

cial role in finding portfolios of assets that are on the

Pareto-optimal frontier of risk and expected returns

[30], and in genetics, correlations help scientists detect

cause factors for potentially hereditary syndromes.1 In

databases, similarity measure like correlations are oc-

casionally used in theta joins to allow for softer joining

conditions than pure object equality [22]. Furthermore,

when treated as a generalization of functional depen-

dencies, correlations are also used for optimizing access

paths in databases [47].

Multivariate correlations, also known as high-order cor-

relations, extend the concept of pairwise correlations to

relationships among three or more variables. These vari-

ables may represent various forms of data, such as time
series or other high-dimensional data stored as vectors.
2 Multivariate correlations should not be confused with

pairwise correlations of multivariate time series. The

former refers to correlations involving three or more

distinct variables/vectors, whereas the latter deals with

correlations of only two multivariate time series. In the

last few years, multivariate correlations found extensive

use in diverse domains. Detection of ternary correla-

tions in fMRI time series improved the understanding of

how different brain regions work in cohort for executing

different tasks [3,4]. For instance, the activity of the left

middle frontal region was found to have a high correla-

tion with the total activity of the right superior frontal

1 A prime example is the Spark project for discovering gene
properties related to the manifestation of the autism spec-
trum disorder, which led to a list of genes and their correlated
symptoms [18].
2 Although we will mostly refer to the more general case of

vectors in this paper, the data often consists of time series –
possibly with live updates.

https://orcid.org/0000-0001-9069-0591

2 Jens E. d’Hondt et al.

and left inferior frontal regions while the brain was pro-

cessing audiovisual stimulus. This insight suggests that

the left middle frontal has an integrative role of assim-

ilating information from the other two regions, which

was not possible to find by looking only at pairwise cor-

relations. In climate science, a ternary correlation led

to the characterization of a new weather phenomenon

and to improved climate models [29]. In machine learn-

ing, multivariate information-theoretic measures have

increasingly served as learning objectives or regulariz-

ers for training of neural networks aimed at optimizing

the correlation among multiple variables. Usage of such

regularizers lead to improved robustness, generalizabil-

ity, and interpretability of the models [5,8,9]. It is also

stipulated that a more thorough look at multivariate

correlations will open doors in the fields of genomics [7,

52] and medicine [28,32].

Accordingly, several measures and algorithms for dis-

covering strong multivariate correlations have been pro-

posed, such as Tripoles [3], Multipoles [4], Canonical

Correlation Analysis (CCA) [24], and Total Correla-

tion (TC) [35,36,46,52]. However, the proposed algo-

rithms do not sufficiently address the fundamental im-

pediment on the discovery of strong multivariate corre-

lations, which is the vast search space – all combinations

of vectors that need to be examined. Unfortunately,

apriori-like pruning techniques do not apply for the

general case of multivariate correlations. For example,

consider the three time series from finance, presented in

Figure 1. In this example, the pairwise correlation be-

tween all pairs of the three time series is comparatively

low, whereas the time series created by averaging QAN

and RDF is strongly correlated to MCP. 3 Therefore, a

correlation value of any pair of vectors does not provide

sufficient information as of whether these vectors may

participate together in a ternary (or higher-order) cor-

relation. Simultaneously, an exhaustive algorithm that

iterates over all possible combinations implies combina-

torial complexity, and cannot scale to reasonably large

datasets. Indicatively, in a small data set of 100 vec-

tors, detection of all ternary high correlations requires

iterating over 1 million candidates, whereas finding qua-

ternary high correlations on 1000 vectors involves 1 tril-

lion combinations. The mere generation and enumera-

tion of these combinations already becomes challenging.

Therefore, smart algorithms are needed to drastically

reduce the search space and computational complexity.

Existing algorithms follow at least one of the following

approaches: (a) they consider constraining definitions

of multivariate correlations that enable apriori-like fil-

3 Weighted averages of stock prices are commonly consid-
ered in risk management to evaluate portfolio performance,
diversity, and volatility [38].

Fig. 1: Normalized daily closing prices for stocks traded

at the Australian Securities Exchange

tering [4,35,52], (b) they rely on hand-crafted assump-

tions of the user query, which may be too constraining

for other application scenarios [3,4,52], or, (c) they of-

fer approximate results, with no guarantees [3,4]. Even

though these algorithms are very useful for their par-

ticular use cases, they are not generally applicable.

In this work, we follow a more general direction. First,

we also consider correlation measures that are not suit-

able for apriori-like pruning. Second, in contrast to some

of the earlier work, we abide by Ockham’s razor: we pri-

oritise discovery of the less complex multivariate cor-

relations – the ones that contain the smallest number

of vectors. We opt for this approach since correlations

between a few variables are more intuitive and inter-

pretable than their counterparts with many variables.

Third, we consider different algorithmic variants: an ex-

act threshold variant that returns all correlations higher

than a threshold τ , and an exact top-κ variant that re-

turns the top-κ highest correlations. We also discuss

the case of progressively finding results, and extend the

proposed algorithms to a dynamic context, for handling

streaming updates.

We evaluate our algorithms on 7 datasets and compare

them to the state-of-the-art. Our evaluation demon-

strates that we outperform the existing methods, fre-

quently by several orders of magnitude. Finally, we show

that the progressive version of the algorithm produces

around 90% of the answers in 10% of the time.

The remainder of the paper is structured as follows. In

the next section we formalize the problem, and discuss

the preliminaries and related work. We then propose

the algorithmic variants for the case of static data (Sec-

tion 3), and the streaming extension of the algorithm

(Section 4). Section 5 summarizes the experimental re-

sults. We conclude in Section 6.

2 Preliminaries

We start with a discussion of the multivariate correla-

tion measures that we will be considering in this work.

Efficient detection of multivariate correlations with different correlation measures 3

We then formalize the problem and discuss prior work

on similar multivariate correlation measures.

2.1 Correlation Measures

Our work focuses on both types of multivariate cor-

relation measures: (a) bivariate correlations over aggre-

gated vectors (two-sided), and (b) specialized multivari-

ate measures (one-sided).

Bivariate correlations over aggregates. Given two

sets of vectors X and Y , a bivariate correlation over

aggregated vectors is defined as

Corr(X,Y) = Corr(Agg(X), Agg(Y)) (1)

with Corr being a bivariate correlation function such as

Pearson Correlation, and Agg(X) being a linear com-

bination of the vectors in X. In this work, we consider

element-wise averaging combined with Pearson Corre-

lation and Euclidean Similarity [42], referred to as PC

and ES, respectively. Pearson Correlation is defined as

ρ(x, y) = cov(x,y)
σxσy

with σx denoting the standard devia-

tion of some vector x, and is a widely used measure for

measuring the linear dependence between two variables.

Euclidean Similarity is defined as ES(x, y) = 1
1+d(x,y)

with d(·, ·) denoting the Euclidean distance, and is ex-

tensively used for k-nearest neighbors queries and range

queries [14,16].

Multipole. The multipole correlationMP(X) measures

the linear dependence of an input set of vectors X [4].

Specifically, let x̂1, . . . , x̂n denote n z-normalized in-

put (column) vectors, and X = [x̂1, . . . , x̂n] the matrix

formed by concatenating the vectors. Then:

MP(X) = 1− min
v∈Rn,∥v∥2=1

var(X · vT) (2)

The value of MP(X) lies between 0 and 1. The measure

takes its maximum value when there exists perfect lin-

ear dependence, meaning that there exists a vector v

with norm 1, such that var(X·vT) = 0. Notice that mul-

tipoles is not equivalent to, nor a generalization of PC

or ES. By definition, MP assumes optimal weights (vec-

tor v is such that the variance is minimized), whereas

for PC and ES, the aggregation function for the vectors

(e.g., averaging) is determined at the definition of the

measure. Furthermore, MP(·) expresses the degree of

linear dependence within a single set of vectors, whereas

for bivariate measures, two distinct, non-overlapping

vector sets are considered.

Total Correlation. Total correlation TC(X) (also known

as multi-information [43] or multivariate constraint [19])

is a generalization of the (pairwise) mutual information

measure. It measures the redundancy or dependence

among a set of n random variables X = {X1, . . . , Xn}
as the KL-divergence from the joint distribution p(X1,

. . . , Xn) to the product of the marginal distributions

p(X1) . . . p(Xn) [46]. This can be reduced to the dif-

ference of entropies:

TC(X) =

n∑
i=1

H(Xi)−H(X1, . . . , Xn) (3)

with H(Xi) denoting Shannon’s entropy of Xi ∈ X.

2.2 Problem Definition

Consider a set V = {v1,v2, . . .vn} of d-dimensional

vectors, and a multivariate correlation measure Corr,

both provided by the data analyst. Function Corr ac-

cepts either one or two vector sets (subsets of V) as in-
put parameters, and returns a scalar. Hereafter, we will

be denoting the correlation function with Corr(X,Y),

with the understanding that for the definitions of Corr

that expect one input (i.e., MP and TC), Y will be

empty. We consider two query types:

Query 1: Threshold query: For a user-chosen cor-

relation function Corr, correlation threshold τ , and pa-

rameters pl, pr ∈ N, find all pairs of sets (X ⊂ V, Y ⊂
V), for which Corr(X,Y) ≥ τ , X ∩Y = ∅, |X| ≤ pl and

|Y | ≤ pr.

Query 2: Top-κ query: For a user-chosen correlation

function Corr, and parameters κ, pl, pr ∈ N, find the

κ pairs of sets (X ⊂ V, Y ⊂ V) that have the highest

values Corr(X,Y), such that X ∩ Y = ∅, |X| ≤ pl, and

|Y | ≤ pr.

The combination of pl and pr controls the desired com-

plexity of the answers. Smaller pl + pr values yield re-

sults that are easier to interpret, and arguably more

useful to the data analyst.

Complementary to the two query types, users may also

want to specify additional constraints, relating to the

targeted diversity and significance of the answers. We

consider two different constraints, but other constraints

(e.g., the weak-correlated feature subset constraint of [52])

can also be integrated in the algorithm into a similar

manner:

Irreducibility constraint: For each (X,Y) in the re-

sult set, there exists no (X ′, Y ′) in the result set such

that X ′ ⊆ X, Y ′ ⊆ Y , and (X ′, Y ′) ̸= (X,Y). Intu-

itively, if Corr(X ′, Y ′) ≥ τ , then no supersets of X ′

and Y ′ should be considered together. This constraint

prioritizes simpler answers.

Minimum jump constraint: For each (X,Y) in the

result set, there exists no (X ′, Y ′) such that X ′ ⊆ X,

Y ′ ⊆ Y , (X ′, Y ′) ̸= (X,Y), and Corr(X,Y)− Corr(X ′, Y ′)

< δ. This constraint, which was first proposed in [3],

4 Jens E. d’Hondt et al.

discards solutions where a vector in X ∪ Y contributes

less than δ to the increase of the correlation.

For top-κ queries, these constraints are ill-defined. For

example, consider the irreducibility constraint, and as-

sume Corr(X,Y) = 0.9, and Corr(X ′, Y ′) = 0.8, where

X ′ ⊂ X and Y ′ ⊂ Y . In this case, the definition of top-

κ does not dictate which of (X,Y) or (X ′, Y ′) should

be in the answer set.

For conciseness, we will use Corr(pl) and Corr(pl, pr)

to denote the combination of the correlation measure,

and the user-chosen values of pl and pr. For example,

PC(2, 1) will identify the combinations of sets of vectors

of size 2 and 1 with high Pearson correlation, whereas

pattern MP(4) will identify the combinations of 4 vec-

tors with high multipole correlation.

2.3 Related Work

Several algorithms exist for efficiently finding highly

correlated pairs in large data sets of high-dimensional

vectors, e.g., time series. For example, StatStream [53]

and Mueen et al. [34] both map pairwise correlations to

Euclidean distances. They then exploit Discrete Fourier

Transforms, grid-based indexing and dynamic program-

ming to reduce the search space. Other works also en-

able indexing of high-dimensional vectors in the Eu-

clidean space [12,41]. However, these works are not ap-

plicable for multivariate correlations, since two vectors

may have a low pairwise correlation with a third vec-

tor, whereas their aggregate may have a high correlation

(see, e.g., the example of Fig. 1). Prior work address-

ing multivariate correlations propose algorithms that

rely on additional constraints for their pruning power.

Agrawal et al. investigate the problem of finding highly-

correlated tripoles [3]. Tripoles is a special case of the

PC measure, where |X| = 2 and |Y | = 1 (i.e., PC(2, 1)).

Their algorithm, named CoMEt, relies on the mini-

mum jump constraint for effective pruning. Compared

to tripoles, our work handles the more general definition

of Pearson correlation over aggregated vectors, allowing

more vectors on the left- and right-hand side. Moreover,

our work relies on novel theoretical results to prune the

search space and can scale to larger datasets regardless

of the introduction of any additional constraints (e.g.,

minimum jump or irreducibility).

Algorithms for discovering high correlations according

to the Multipole measure (Eqn. 2) were first proposed

in [4], with the introduction of the CoMEtExtended

algorithm. Both CoMEt and CoMEtExtended are ap-

proximate and rely on clique enumeration to efficiently

explore the search space. Their efficiency depends on

a parameter ρ that trades off result completeness for

performance. The minimum jump constraint also be-

comes relevant to reduce computational effort. For set-

tings of ρ that result in reasonable computation times,

the two algorithms yield a substantially more complete

result set compared to methods like l1 - regularization

and structure learning based techniques. Still, the two

algorithms do not come with completeness or accuracy

guarantees. In contrast, our work is exact – it always re-

trieves all answers – and outperforms both algorithms.

With respect to Total Correlation, Nguyen et al. [35]

propose an algorithm for groups of columns in a database

with high Total Correlation. The method analyzes pat-

terns in pairwise correlations (i.e., mutual-information)

to identify quasi-cliques of highly correlated column

groups, and compute lower bounds on their total cor-

relation. However, it misses strongly correlated groups

with low pairwise correlations, which are arguably the

most interesting cases. As such, the method is effec-

tively an approximation algorithm. In another work,

Zhang et al. developed an algorithm that discovers sets

of binary vectors with a high total correlation value [52].

However, the method is again approximate, limited to

data with binary features only, and relies on a limit-

ing weak-correlated subset constraint. In contrast, our

work returns a guaranteed complete set of results and

works on all major data types.

In the supervised learning context, subset regression

appears to be closely related to multivariate correla-

tion mining. The goal of this feature selection problem

is to select the best p predictors out of n candidate fea-

tures [11]. Our problem differs from the above in that

we aim to find interesting patterns in the data, rather

than finding the best predictors for a given dependent

variable. Furthermore, instead of finding only the high-

est correlated vector set, our goal is to find a diverse set

of results as we argue that that will help domain expert

assess the results more on qualitative aspects, gaining

more insights.

Another similar problem is that of similarity search on

multivariate time series [49,50]. Here, the goal is to find

all pairs of multivariate time series (e.g., weather sen-

sors measuring both temperature and wind speed) with

a high similarity value, based on some specialized mea-

sure such as the PCA similarity factor [45], or the ex-

tended Frobenius norm [48]. Effectively, this extends

classic similarity search by adding a degree of freedom

(DoF) in the number of variables per time series, in-

creasing the search space cardinality from O(n2) to

O((pn)2) for p-variate time series. In contrast, our prob-

lem extends classic similarity search by adding a DoF

in the number of time series per combination, growing

the search space to O(np). Although this problem seems

similar, its challenges differ significantly from similar-

Efficient detection of multivariate correlations with different correlation measures 5

ity search on multivariate time series and can lead to

different results and insights.

Table 1 summarizes the properties of the most closely

related work out of the discussed ones.

3 Detection of Multivariate Correlations in

Static Data

The main challenge in detecting strongly correlated vec-

tor sets stems from the combinatorial explosion of the

number of candidates that need to be examined. In a

dataset of n vectors, there exist at least O
(∑pl+pr

p=2

(
n
p

))
possible combinations for a correlation pattern Corr

(pl,pr). Even if each possible combination can be checked

in constant time, the enumeration of all combinations

still requires significant computational effort.

Our algorithm – Correlation Detective, abbreviated as

CD – exploits the insight that vectors often exhibit

(weak) correlations between each other. For example,

securities of companies that participate in the same con-

glomeration (e.g., Fig. 2a, GOOGL and GOOG) or are

exposed to similar risks and opportunities (e.g., STMi-

croelectronics and ASML) typically exhibit a high cor-

relation between their stock prices. CD exploits such

correlations, even if they are weak, to drastically re-

duce the search space. CD works as follows: rather than

iterating over all possible vector combinations that cor-

respond to the correlation pattern, CD clusters the vec-

tors based on their similarity, and enumerates the com-
binations of only the cluster centroids. For each of these

combinations, CD computes upper and lower bounds on

the correlations of all vector combinations in the Carte-

sian product of the clusters. Based on these bounds, CD

decides whether or not the combination of clusters (i.e.,

all combinations of vectors derived from these clusters)

should be added to the result set, can safely be dis-

carded, or, finally, if the clusters should be split into

smaller subclusters for deriving tighter bounds. This

approach effectively reduces the number of combina-

tions that need to be considered, making CD at least

an order of magnitude faster than existing methods.

In the remainder of this section, we will present the

key elements of CD, explaining how the two types of

queries presented in Section 2 are handled. We will

start with a brief description of the initialization phase,

which includes data pre-processing and clustering. In

Sections 3.2 and 3.3 we will describe how CD answers

threshold and top-κ queries respectively.

3.1 Initialization and clustering

First, all vectors are normalized using a measure-specific

(e.g., PC,ES,MP,TC) normalization technique (dis-

cussed in Section 3.2).

The second part of the initialization phase considers

constructing a hierarchical clustering of all vectors, again

using a measure-specific distance measure (shown in

Table 2). We will discuss the selection of distance mea-

sures in Section 3.2.2.

The clustering algorithm operates in top-down fashion.

A root cluster containing all vectors is first created to

initialize the hierarchy. The algorithm then consists of

three steps. First, K vectors are picked from the root

cluster and used as the initial top-level centroids in the

hierarchy. These vectors are picked using the seeding

strategy of K-means++ [6]. The use of K-means++ (as

opposed to sampling K random vectors) ensures that

these initial centroids are well-distributed over the met-

ric space, and not very close to each other. In the sec-

ond step, we run the standard K-means algorithm for

at most r1 iterations, or until convergence using the

average function to recompute the cluster centroids af-

ter each iteration. The clustering is evaluated using the

Within-Cluster Sum of Squares (WCSS) (the sum of the

variances within all clusters). In the third step, steps

one and two are repeated r2 times (i.e., with different

centroids), and the clustering with the lowest WCSS

is kept as the final clustering assignment for the first

level of the hierarchy. These three steps are executed

recursively on each individual cluster with non-zero ra-

dius, to construct the second, third, etc. levels of the

hierarchy, until all leaf nodes contain only one vector.

There is a clear tradeoff between the cost of the clus-

tering algorithm and the clustering quality. Increasing

the values of r1 and r2 will generally result in a higher

clustering quality (lower WCSS), but will take longer

to compute. However, the quality of the clustering does

not affect the correctness of CD – in fact, regardless

of the employed hierarchical clustering algorithm, CD

always returns the same correct result set. A poor clus-

tering only affects the computational efficiency of CD.

Still, our experiments show that as long as the cluster-

ing is reasonable, a suboptimal clustering is not detri-

mental to CD’s efficiency. More precisely, we found that

the value of r1 (max. iterations of K-means, after the

initial centroids were decided) had no observable effect

on CD’s efficiency. Therefore, we simply set r1 = 1.

The same generally holds for r2, although to prevent

ruinous effects due to coincidentally very poorly chosen

initial centroids, we set r2 = 50. Still, the clustering

takes at most a few seconds in our experiments, which

6 Jens E. d’Hondt et al.

Completeness Require Constraints Correlation Measures Query Types Data formats
[3] No Yes PC(1, 2) Threshold Static
[4] No Yes MP(·) Threshold Static
[35] No No TC(·) Threshold Static
[52] Yes Yes TC(·) (binary data) Threshold Static
Ours Yes No PC(·, ·),ES(·, ·),MP(·),TC(·) Threshold,Top-κ,Progressive Static, Streaming

Table 1: Comparison to the most relevant related work for multivariate correlations.

a
b

c
d

e
f gh

a d beh c

C2 C3

C4 C10C5 C6 C7 C8

a
d b

e
h

c
f g

f g
C9

C1

(a) (b) (c)

Fig. 2: (a) Two groups of closely related stocks: ASML and STMicroelectronics are exposed to similar risks, while

GOOG and GOOGL participate in the same conglomeration; (b) Running example in 2 dimensions: the centroids

of each cluster are depicted with darker background. All clusters are labeled for easy reference; (c) Illustration of

pessimistic pairwise bounds of Lemma 1.

Measure/abbrev. Normalization Clustering distance
Pearson (PC) Z-norm. Angular
Euclidean (ES) None Euclidean
Multipoles (MP) Z-norm. Angular
Total (TC) None Normalized inform. [27]

Table 2: Properties of the supported multivariate cor-

relation metrics

is negligible compared to the total execution time of the

algorithm.

3.2 Threshold queries

CD receives as input the cluster tree produced by the

hierarchical clustering algorithm, a correlation pattern,

and a correlation threshold τ . It then forms all possible

combinations of the correlation pattern with the child

clusters of the root. In the example of Fig. 2b, for a

desired correlation pattern of PC(2, 1), the following

combinations of clusters are examined:

∀Cx,Cy,Cz∈{C1,C2,C3}((Cx, Cy), Cz)

Note that we now present the algorithm for finding all

interesting triplets following correlation pattern PC(2, 1).

In reality, CD also considers all sub-patterns of the

queried correlation pattern (e.g., PC(1, 1)) by re-running

the same algorithm on those sub-patterns.

A combination of clusters compactly represents the com-

binations created by the Cartesian product of the vec-

tors inside the clusters. For example, assuming that

|Cx| = 4 and |Cy| = 3, the cluster combination (Cx, Cy)

represents a set of 12 vector combinations, which we

will refer to as its materializations. For each cluster

combination, the algorithm computes lower and upper

bounds on the correlation of its materializations, de-

noted with LB and UB respectively (Alg. 1, line 1).

These bounds guarantee that any possible materializa-

tion of the cluster combination, i.e., replacing each clus-

ter with any one of the vectors in that cluster, will al-

ways have a correlation between LB and UB.

The next step is to compare the bounds with the user-

chosen threshold τ (lines 2, 4, 6). If UB < τ , the com-

bination is decisive negative – no materialization yields

a correlation higher than the threshold τ . Therefore,
this cluster combination does not need to be examined

further. If LB ≥ τ , the combination is decisive posi-

tive, guaranteeing that all possible materializations of

this cluster combination will have a correlation of at

least τ . Therefore, all materializations are inserted in

the result. Finally, when LB < τ and UB ≥ τ , the

combination is indecisive. In this case, the algorithm

(lines 7-11) chooses the cluster Cmax with the largest

radius 4, and recursively checks all combinations where

Cmax is replaced by one of its sub-clusters. In the exam-

ple of Figure 2b, assume that the algorithm examined

an indecisive combination of clusters C1, C2, C3, and

C2 is the cluster with the largest radius. The algorithm

will drill down to consider the three children of C2, and

examine their combinations with C1 and C3. The re-

cursion continues until each combination is decisive.

We will refer to this process as traversing the com-

parison tree. Decisive combinations are typically found

4 Radii are computed using the distance metrics in Table 2

Efficient detection of multivariate correlations with different correlation measures 7

Algorithm 1: ThresholdQuery(Sl, Sr,

Corr, τ)
Input: Sets of clusters Sl and Sr that adhere to the

user-defined correlation pattern including a
correlation measure Corr, correlation
threshold τ .

1 (LB,UB)← CalcBounds(Sl,Sr,Corr)
2 if LB ≥ τ then
3 Add (Sl,Sr) to the result set
4 else if UB < τ then
5 Discard (Sl,Sr)
6 else

// Replace largest cluster with subclusters and
recurse

7 Cmax ← argmax
C∈Sl∪Sr

{C.radius}

8 Set SC ← Cmax.subclusters
9 for S ∈ SC do

10 (S′
l ,S′

r)← (Sl,Sr) with Cmax replaced by S
11 ThresholdQuery((S′

l ,S′
r) ,Corr, τ)

at high levels of the cluster tree, thereby saving many

comparisons. In the following, we will discuss two dif-

ferent approaches for deriving LB and UB for arbi-

trary correlation patterns. The first approach (theoret-

ical bounds) has constant complexity in the number

of materializations a cluster combination covers. The

second approach (empirical bounds) extends the the-

oretical bounds with additional information. It has a

slightly higher cost, but typically leads to much tighter

bounds.

3.2.1 Theoretical bounds

We first present a lemma for bounding the cosine simi-

larity between only two clusters, which serves as a step-

ping stone for bounding multivariate correlations.

Lemma 1 Let cos(θx,y) denote the cosine similarity

between two vectors x and y, with θx,y being the an-

gle formed by these vectors. Consider four vectors u1,

u2, v1, and v2, such that θv1,u1 ≤ θ1 and θv2,u2 ≤ θ2.

Then, cosine similarity cos(θu1,u2) can be bounded as

follows:

cos(θmax
u1,u2

) ≤ cos(θu1,u2) ≤ cos(θmin
u1,u2

)

where

θmin
u1,u2

=max (0, θv1,v2 − θ1 − θ2)

θmax
u1,u2

=min (π, θv1,v2 + θ1 + θ2)

Proof All proofs are included in Appendix A of the

Technical Report [13]

Lemma 1 bounds the cosine similarity between two vec-

tors u1 and u2 that belong to two clusters with cen-

troids v1 and v2 respectively, by using: (a) the angle

between the two centroids, and, (b) upper bounds on

the angles between u1 and v1, and between u2 and v2.

For instance, in the running example (Fig. 2b), we can

bound the cosine between a and b if we have the cosine

of the two cluster centroids d and e, the cosines of a

with d, and of h with e (as h is the furthest point in C2

from the centroid e). The bounds are tightened if the

maximum angle formed by each centroid with its cor-

responding cluster vectors is reduced. We now extend

our discussion to cover multivariate correlations, which

involve three or more clusters.

Theorem 1 (Bounds for PC) For any pair of clus-

ters Ci, Cj, let l(Ci, Cj) and u(Ci, Cj) denote lower/upper

bounds on the pairwise correlations ρ between the clus-

ter pair’s materializations, i.e., l(Ci, Cj) ≤ min
x∈Ci,y∈Cj

ρ(x,y) and u(Ci, Cj) ≥ max
x∈Ci,y∈Cj

ρ(x,y). Consider sets

of clusters Sl = {Cl
i}

pl

i=1 and Sr = {Cr
j }

pr

j=1. Let L(S1,S2)

=
∑

Ci∈S1,Cj∈S2
l(Ci, Cj), and U(S1,S2) =

∑
Ci∈S1,Cj∈S2

u(Ci, Cj).

Then, for any two sets of z-normalized vectors 5 X =

{x̂1, . . . , x̂pl
}, Y = {ŷ1, . . . , ŷpr} such that x̂i ∈ Cl

i ,

ŷi ∈ Cr
i , multivariate correlation PC(X,Y), can be

bounded as follows:

1. if L(Sl,Sr) ≥ 0 : PC(X,Y) ∈[
L(Sl,Sr)√

U(Sl,Sl)
√
U(Sr,Sr)

,
U(Sl,Sr)√

L(Sl,Sl)
√

L(Sr,Sr)

]
2. if U(Sl,Sr) ≤ 0 : PC(X,Y) ∈[

L(Sl,Sr)√
L(Sl,Sl)

√
L(Sr,Sr)

,
U(Sl,Sr)√

U(Sl,Sl)
√
U(Sr,Sr)

]
3. else: PC(X,Y) ∈[

L(Sl,Sr)√
L(Sl,Sl)

√
L(Sr,Sr)

,
U(Sl,Sr)√

L(Sl,Sl)
√
L(Sr,Sr)

]
As Pearson correlation is equivalent to cosine similarity

when computed over z-normalized vectors, we can use

Lemma 1 to compute bounds on the pairwise correla-

tions between any pair of clusters, which allows us to

compute the bounds in Theorem 1. Consequently, we

can bound the multivariate correlation of any cluster

combination that satisfies the PC correlation pattern,

without testing all its possible materializations. For ex-

ample, for combination ((C1, C2), C3) from our running

example, we first use Lemma 1 to calculate bounds for

all cluster pairs in O(1) per pair, which leads to values

for L(·, ·) and U(·, ·). The bounds on PC((C1, C2), C3)

then follow directly from Theorem 1.

5 Z-normalization involves shifting and scaling a vector
such that they have zero mean and unit standard deviation.

8 Jens E. d’Hondt et al.

Theorem 2 (Bounds for MP) For any pair of clus-

ters Ci, Cj, let l(Ci, Cj) and u(Ci, Cj) denote lower /

upper bounds on the pairwise correlations between the

cluster’s materializations, i.e., l(Ci, Cj) ≤ min
x∈Ci,y∈Cj

ρ(x,y) and u(Ci, Cj) ≥ max
x∈Ci,y∈Cj

ρ(x,y). Consider the

set of clusters S = {Ci}pi=1. Furthermore, let L and

U be symmetric matrices such that Lij = l(Ci, Cj)

and Uij = u(Ci, Cj) ∀1 ≤ i, j ≤ p. For any set of

z-normalized vectors X = {x̂1, x̂2, . . . , x̂p} such that

x̂i ∈ Ci, multipole correlation MP(X) can be bounded

as follows:

MP (X) ∈ 1− λmin

(
L+U

2

)
± 1

2
||U− L||2

where λmin

(
L+U

2

)
is the smallest eigenvalue of matrix(

L+U
2

)
.

Similar to Theorem 1 for PC, we can use Lemma 1 to

compute the bounds on the pairwise correlations be-

tween any pair of clusters, which allows us to compute

the bounds of Theorem 2, and to analyze the MP values

of all materializations of the cluster combination in one

go.

Theorem 3 (Bounds for ES) For any pair of clus-

ters Ci, Cj, let l(Ci, Cj) and u(Ci, Cj) denote lower /

upper bounds on the dot products ⟨·, ·⟩ between the clus-

ters’ materializations, i.e., l(Ci, Cj) ≤ min
x∈Ci,y∈Cj

⟨x,y⟩

and u(Ci, Cj) ≥ max
x∈Ci,y∈Cj

⟨x,y⟩. Consider the sets of

clusters Sl = {Cl
i}

pl

i=1 and Sr = {Cr
j }

pr

j=1. Let L(S1,S2)

=
∑

Ci∈S1,Cj∈S2
l(Ci, Cj), and U(S1,S2) =

∑
Ci∈S1,Cj∈S2

u(Ci, Cj). Then, for any two sets of vectors X = {x1,

. . . ,xpl
}, Y = {y1, . . . ,ypr} such that xi ∈ Cl

i , yi ∈
Cr

i , multivariate correlation ES(X,Y), can be bounded

as follows: ES(X,Y) ∈

[
(1 +

√
U(Sl,Sl)

p2l
+

U(Sr,Sr)

p2r
− 2

L(Sl,Sr)

plpr
)−1,

(1 +

√
L(Sl,Sl)

p2l
+

L(Sr,Sr)

p2r
− 2

U(Sl,Sr)

plpr
)−1

]
Since ⟨x,y⟩ = cos(θx,y)∥x∥2∥y∥2, we can again use

Lemma 1 to compute bounds on L(·, ·) and U(·, ·), which
allow us to compute the bounds of Theorem 3. This is

done by first computing bounds on cosines with Lemma 1

for all cluster pairs in O(1) per pair, and combining

those with bounds on the l2-norms of each cluster. 6

6 Similar to z-normalization for PC and MP, the l2-norm of
each vector can be computed and cached as a preprocessing
step, after which bounds on the norms per cluster can be
quickly derived on cluster initialization.

Theorem 4 (Bounds for TC) For any pair of clus-

ters Ci, Cj, let l(Ci, Cj) and u(Ci, Cj) denote lower /

upper bounds on the joint (Shannon) entropy H(·, ·) be-
tween the clusters’ materializations, i.e., l(Ci, Cj) ≤

min
x∈Ci,y∈Cj

H(x,y) and u(Ci, Cj) ≥ max
x∈Ci,y∈Cj

H(x,y).

Similarly, let l(Ci) and u(Ci) denote lower/upper bounds

on the marginal entropies of vectors in the cluster Ci.

Consider the set of clusters S = {Ci}pi=1 with Si de-

noting the i-th cluster in the set. Then, for any set of

vectors X = {x̂1, . . . , x̂p} such that xi ∈ Ci, multi-

variate correlation TC(X), can be bounded as follows:

TC(X) ∈

[p∑
i=1

l(Ci)−
p−1∑
i=1

(min
1≤j≤i

u(Ci+1|Cj))− u(C1),∑
Ci∈S

u(Ci)− max
Ci,Cj∈S

l(Ci, Cj)
]

Theorems 1-3 are built on the observation that the

multivariate correlation of a set of vectors can be ex-

pressed as a function of the pairwise relations exhibited

by the vectors in that set. Then, this (exact) expression

of a multivariate correlation among individual vectors

is extended to bounds on the multivariate correlation

among clusters of vectors, which are in turn bounded

by Lemma 1.

Although the Total Correlation of a set of vectors X

cannot be expressed as a function of cosine similarities,

it can be bounded by other pairwise relations, namely

conditional entropies with two variables [35]. This en-

ables us to express bounds the TC-value of a set of vec-

tors as a function of correlation bounds between pairs

of clusters, similar to the previous Theorems [52]. How

these bounds on cluster pairs are computed (and tight-

ened) in the absence of Lemma 1 will be discussed in

the following section.

Note that Theorem 4 bounds apply to both discrete

and continuous data, using differential entropy for the

latter case. In case exact probability functions are un-

known for continuous data, one can derive empirical

distribution functions through discretization.

3.2.2 Tightening the bounds

Empirical pairwise bounds. The bounds of Lemma 1

– which are used for deriving the bounds of Theorems 1,

2, and 3 – tend to be pessimistic, as they always account

for the worst theoretical case. In the example of Fig. 2c,

the theoretical lower bound (resp. upper bound) ac-

counts for the case that hypothetical vectors (depicted

in pink) are located on the clusters’ edges, resulting in

the smallest (resp. largest) possible distance between

any pair of points in the clusters.

Efficient detection of multivariate correlations with different correlation measures 9

Tightening the bounds on cosine similarities will in turn

tighten the bounds on PC, MP, and ES, which will

lead to more aggressive pruning power of the algorithm

described earlier in this section. The empirical bounds

approach builds on the observation that the cosine sim-

ilarities of any pair of vectors xi,xj drawn from a pair of

clusters Ci, Cj respectively is typically strongly concen-

trated around (l(Ci, Cj) + u(Ci, Cj))/2, especially for

high-dimensional vectors. The approach works as fol-

lows. At initialization, we compute all (pairwise) cosines

and store these in an upper-triangular matrix. Then,

during execution of Alg. 1, we compute l(Ci, Cj) and

u(Ci, Cj), when required, as follows:

l(Ci, Cj) = min
x∈Ci,y∈Cj

cos(θx,y)

and

u(Ci, Cj) = max
x∈Ci,y∈Cj

cos(θx,y)

with cos(θx,y) retrieved from the upper-triangular ma-

trix. The computed l(Ci, Cj) and u(Ci, Cj) are also

cached and reused whenever (Ci, Cj) is encountered in

another cluster combination.

It is important to note that the empirical bounds do

not induce errors, since they trivially satisfy the re-

quirements of Theorems 1-3 that l(Ci, Cj) ≤ min
x∈Ci,y∈Cj

cos(θx,y) and u(Ci, Cj) ≥ max
x∈Ci,y∈Cj

cos(θx,y). There-

fore, the bounds of multivariate correlations derived

using these empirical bounds are still correct. Finally,

they are at least as tight as the bounds of Lemma 1,

since they account only the vectors that are actually

present in the clusters and not the hypothetical worst

case.

There is a clear tradeoff between the cost of computing

the empirical pairwise bounds (worst case, quadratic to

the number of vectors), and the performance improve-

ment of CD from the tighter bounds. Indicatively, in

our experiments, the theoretical pairwise bounds com-

puted from Lemma 1 were typically between two to

eight times wider compared to the empirical pairwise

bounds. Exploiting the tighter empirical bounds led to

a reduction of the width of the bounds of Theorem 1

by 50% to 90% (for PC(1, 2)), which empowered CD to

reach to decisive combinations faster. As a result, total

execution time of the algorithm with empirical bounds

was typically an order of magnitude less than the time

with the theoretical bounds. Therefore, all reported re-

sults will be using the empirical bounds.

Lastly, note that the empirically-bounded versions of

Theorem 1 and 2 do not require z-normalization. Still,

it is performed in both cases to optimize pairwise cache

computation and to ensure that MP ∈ [−1, 1], as sug-

gested in [4]. However, z-normalization does not impact

Algorithm 2: TCPermHeuristic(H)
Input: A priority queue H with all marginal and

conditional entropy upper bounds for a set of
clusters S = {Ci}pi=1

Output: Upper bound on the joint entropy of
materializations of S

1 U ← {}, HX = 0
2 while |U | < p do
3 H(Ci|Cj)←H.pop()
4 if Ci /∈ U ∧ Cj /∈ U then
5 HX = HX +H(Ci|Cj)
6 U ← U ∪ Ci

7 return HX

relative distances and therefore the top-κ query answers

are identical.

Total Correlation bounds. The empirical bounding

approach can also be used to compute bounds on the

(conditional) entropies between pairs of clusters, which

are key in computing the TC bounds of Theorem 4. As

H(A|B) = H(A,B) − H(B), this can be done by (a)

pre-computing and caching all marginal entropies and

(pairwise) joint entropies of vectors, and, (b) iterating

over the Cartesian products of clusters to derive bounds

on the entropies of cluster materializations.

Notice that the lower bound of TC(X) (see Theorem 4)

involves iterating over S in sequence, which indicates a

dependency on the ordering of clusters in S. Thereby,
finding the optimal permutation of S that produces the

tightest bound will increase the lower bound without in-

troducing errors in the result set. The total number of

permutations is O(p!), where p is the number of vectors

in the correlation pattern. Here we introduce a heuris-

tic that costs O(p2). The heuristic, shown in Alg. 2,

computes a tight upper bound on the joint entropy

H(X) 7, by iterating over the sorted list of marginal

and conditional entropies to find a selection of entropies

that closely estimatesH(X). Note that, for conciseness,

Alg. 2 line 3 indicates we always fetch a conditional en-

tropy H(Ci|Cj) from the head of the queue H. How-

ever, as H also contains marginal entropies H(Ci), the

condition may also be empty.

Choosing a distance measure for clustering. The

empirical pairwise bounds tighten the bounds on cor-

relations between cluster pairs, leading to also tighter

multivariate correlation bounds, and improved efficiency

of CD. Tightness of the empirical bounds depends on

the cluster radius – clusters with large radii lead to

weaker, albeit correct, bounds. This is clear for PC ,

ES , andMP , where triangle inequality is also present in

the theoretical bounds (see Section 3.2.1). However, our

7 H(X) is upper bounded by the factor∑p−1
i=1 (min

1≤j≤i
u(Ci+1|Cj))− u(C1) in TCLB(X)

10 Jens E. d’Hondt et al.

experiments have shown that tuning the clustering dis-

tance measure also benefits TC queries, even though TC

does not satisfy the triangle inequality. Therefore, the

clustering distance measure always impacts the pruning

power of the algorithm.

As Lemma 1 is based on angular distance, clustering

for PC and MP employs the clustering loss function

(WCSS) with angular radii. For ES, Euclidean distance

is the obvious choice, since it also considers vector norms,

which are not captured with the angular radii but are

included in Theorem 3. Finally, for TC, our experiments

showed that the normalized information distance met-

ricD(X,Y) = 1− I(X,Y)
H(X,Y) (first introduced in [27]) leads

to tight multivariate correlation bounds. The intuition

behind this observation is that D(X,Y) measures in-

formation proximity, similar to TC – in fact, D(X,Y)

is simply a transformation of the pairwise total correla-

tion (i.e., mutual information) between two variables to

a strict distance metric ranging between 0 and 1 [26].

Table 2 summarizes these choices.

3.2.3 Handling of additional constraints

CD supports both the irreducibility and minimum jump

constraints, as described in Section 2. For irreducibility,

the process of identifying whether a simpler combina-

tion exists requires testing whether a combination of

any of the subsets of Sl and Sr is already contained in

the answers.

To avoid the cost of enumerating all O(2|Sl|+|Sr|) sub-

sets during the execution of Alg. 1, only the pairwise

correlations between any two clusters Cl ∈ Sl and Cr ∈
Sr are examined.

Precisely, we use l(Cl, Cr), which is already computed

for Theorems 1-4. If there exist Cl, Cr s.t. l(Cl, Cr) ≥
τ , then any solution that can be derived from further

examining the combination (Sl,Sr) cannot satisfy the

irreducibility constraint. Therefore, (Sl,Sr) can be dis-

carded. The case of minimum jump is analogous: if any

l(Cl, Cr) ≥ UB− δ, where UB is calculated as in line 1

of Alg. 1, then the combination is discarded.

By considering only the pairwise correlations during the

pruning process may lead to inclusion of answers that

do not satisfy the constraints. Such combinations are

filtered from the query result before returning it to the

user. Since the number of answers is typically in the

order of a few tens to thousands, this final pass takes

negligible time.

Both MP and TC have the property that correlation

can only increase when adding an extra variable (i.e.,

TC(X ∪ {y}) ≥ TC(X). We refer to this property as

the monotonicity over increasing pattern length. This

reduces the relevance of MP and TC threshold queries

without any constraints, as for any TC(X) ≥ τ with

X ⊂ V, all supersets of X will be in the result set,

making it more cluttered. Therefore, we disallow such

queries forMP and TC, defaulting to the addition of the

irreducibility constraint. Note that we could still answer

unconstrained queries on MP and TC, essentially cost-

free, by expanding the result set R as follows:

{X ∪A : A ⊆ V, X ∈ R
∣∣|A| ∈ [1, p− |X|] ⊂ N+}

However, we refrain from doing so as these additional

results do not provide new insights to the user.

3.3 Top-k queries

The top-κ variant addresses this issue by allowing users

to set the desired number of results, instead of τ . The

answer then includes the κ combinations of vectors with

the highest correlation that satisfy the correlation pat-

tern.

Assuming an oracle that can predict the τ that would

yield exactly κ results, the top-κ queries could be trans-

formed to threshold queries and answered with the stan-

dard CD algorithm. Since such an oracle is impossi-

ble, many top-κ algorithms (e.g., Fagin’s threshold al-

gorithm [17]) start with a low estimate for τ , and pro-

gressively increase it, by observing the intermediate an-

swers. The performance of these algorithms depends on

how fast they can approach the true value of τ , thereby

filtering candidate solutions more effectively.

The top-κ variant of CD (see Alg. 3) follows the same

idea. The algorithm has the same core as the threshold-

based variant, and relies on three techniques to rapidly

increase τ .

Top-κ pairwise correlations First, at initialization,

input parameter τ is set to the value of the κ’th highest

pairwise correlation. Since all pairwise correlations are

computed for the empirical bounds, this causes zero

additional cost.

Exploiting (soft) monotonicity. The second tech-

nique is inspired by the property of monotonicity of

MP and TC, which implies that multivariate correla-

tions can only increase when adding an additional vari-

able (i.e., vector) to the set (i.e., correlation pattern).

Thereby, given the top-κ combinations of size s, Rs,

one can guarantee that any combination of size s + 1

that is a superset of a combination in Rs will have a

correlation greater than the lowest correlation in Rs,

and will lead to an increase of threshold τ .

This observation is exploited by exhaustively comput-

ing the correlations of all possible supersets of size s+1

after finding Rs, in order to quickly increase τ before

traversing the comparison tree with combinations of

Efficient detection of multivariate correlations with different correlation measures 11

size s + 1 to construct Rs+1. This technique showed

to be very effective for all correlation measures (despite

PC and ES not possessing the monotonicity property),

as many of the supersets ofRs were also includedRs+1.

Prioritization of candidates The last technique is

an optimistic refinement of the upper bound, aiming

to prioritize the combinations with the highest correla-

tions. The algorithm is executed in two phases. In the

first phase, similar to Alg. 1, the algorithm traverses

the comparison tree in a Breadth-First manner (BFS),

and computes the upper and lower bound per combi-

nation. However, it now artificially tightens the bounds

by decreasing the value of the upper bound as follows;

UBshrunk = (1− γ)
UB + LB

2
+ γUB

where γ ∈ [−1, 1] is a shrink factor parameter with a

default value of 0. Now, decisiveness of cluster combi-

nations is determined based on (LB,UBshrunk) anal-

ogous to Alg. 1, with an exception of the case where

UBshrunk ≤ τ < UB (Alg. 3 lines 3,7,12). In this case,

the cluster combination is postponed for further inspec-

tion, and placed in a priority queue based on the combi-

nation’s critical shrink factor γ∗ – the minimum value

of γ for which UBshrunk surpasses τ (lines 12-14). In-

tuitively, a small γ∗ means that the combination (i.e.,

branch in the comparison tree) is more promising to

lead to higher correlation values as a large portion of

its bound range (UB − LB) exceeds τ . In the second

phase (lines 15-18), postponed branches are traversed

in a Depth-First manner (DFS) by invoking Alg. 1 on

each combination sequentially. Since τ continuously in-

creases, and the first branches are likely to contain the

highest correlation values, most lower-priority branches

do not need many cluster splits to reach decisive combi-

nations. Similar to the previous optimizations, the value

of γ only impacts efficiency of the algorithm, and not

completeness of the results. Our experiments (see Sec-

tion 5) have shown that values of gamma around 0 lead

to a good balance between DFS and BFS exploration.

3.4 Progressive queries

The prioritization technique of Alg. 3 can also be used

as a basis for a progressive threshold algorithm. Pre-

cisely, Alg. 3 can be initialized with a user-chosen τ

and with κ → ∞. This will prioritize the combina-

tions that will yield the strongest correlations, and thus

also the majority of correlations larger than τ . Priori-

tization is frequently useful in exploratory data analyt-

ics: the user may choose to let the algorithm run until

completion, which will yield results identical to Alg. 1,

Algorithm 3: Top-κ-Query(Sl, Sr, Corr, τ ,

κ, γ)
Input: Sets of clusters Sl and Sr that adhere to the

user-defined correlation pattern. correlation
measure Corr, starting threshold τ , desired
output set size κ, shrinkfactor γ.

1 (LB,UBshrunk)← CalcBounds(Sl,Sr, Corr, γ)
2 B ← new priority queue
3 if LB ≥ τ then
4 Add the contents of (Sl,Sr) to the result set R
5 R← SORT(R)[1:κ]
6 τ ← min

(X,Y)∈R
Corr(X,Y)

7 else if UBshrunk ≥ τ then
// Replace largest cluster with subclusters and

recurse with Top-κ-Query (similar to lines 7-11
of Alg. 1)

12 else

13 γ∗ = τ−µ
UB−µ

14 B.add ((Sl,Sr), γ∗)

// Phase 2 -- starts when Phase 1 is completed

for (Sl,Sr) ∈ B do // Traverse comp-tree DFS

15 ThresholdQuery(Sl, Sr, Corr, τ)
16 R← SORT(R)[1:κ]
17 τ ← min

(X,Y)∈R
Corr(X,Y)

or interrupt the algorithm after receiving sufficient an-

swers. Recent work also established accurate (any-time)

prediction of result completeness and distance for kNN

queries [15]. Although valuable, their methods require

significant adaptations for our queries and are thus de-

ferred to future work. We evaluate CD on all proposed

query types in Section 5.2.

4 Detection of Multivariate Correlations in

Streaming Data

Data is frequently observed as a live stream. For exam-

ple, in finance, asset prices may need to be monitored in

real-time for detecting strong correlations in a market,

for portfolio diversification [40]. In weather monitoring,

real-time detection of correlations may reveal interest-

ing short-term weather events, whereas in server mon-

itoring, detection of unexpected correlations, e.g., on

server requests originating from many different IP ad-

dresses, may reveal attempts of attacks [44]. Similarly,

in neuroscience, real-time analysis of fMRI streams to

detect correlations brings novel exploitation opportuni-

ties, e.g., for neurofeedback training [23,54,31].

Our streaming algorithm, called CDStream, builds on

top of CD such that it maintains CD’s solution over a

sliding window as new data arrives. CDStream does this

efficiently by storing the decisive cluster combinations

in a custom index, which can subsequently be used after

each streaming update to quickly identify the potential

12 Jens E. d’Hondt et al.

changes to the result set. Clearly, the main challenge

is to construct, maintain, and utilize this index effi-

ciently, for processing streams with high update rates.

CDStream supports PC and ES correlation measures.

In the remainder of this section, we will explain the un-

derlying stream processing model and CDStream algo-

rithm in detail. We will also present an extension to CD-

Stream named CDHybrid, which dynamically switches

between CDStream and repeated execution of CD in

order to adapt to sudden events and concept drift, and

improve robustness.

4.1 Stream processing model

CDStream builds on the basic windows model, which is

widely used for processing of data streams, e.g., in [20,

25,51,53]. The model works as follows: the sliding win-

dow, of length w, is partitioned to a set of smaller, fixed-

length sub-windows (often called basic windows), each

of length b. All stream updates received within a basic

window are processed (typically aggregated), to gener-

ate a single value for that basic window. In other words,

the basic windows define the time resolution handled by

the algorithm.

The introduction of basic windows offers several bene-

fits: (a) it makes the results robust to outliers, noise in

the data, and time series with small-period oscillations,

e.g., stocks with high trading volumes, (b) it allows

for handling time-misaligned and out-of-order arrivals,

which are fairly common in real-life data streams (e.g.,

stock ticks, sensors with variable measurement inter-

vals, weak/slow network connections), and (c) it allows

efficient handling of streams with high update rates. At

the same time, this approach introduces a – potentially

significant – delay on the results, which can be as large

as b time units. The latter constraint becomes limiting

when processing periods of high activity (e.g., in high-

volatility periods of a stock market, or when a network

is under a DDoS attack), where it is critical that the

user observes intermediary results as soon as possible.

CDStream alleviates this limitation by disentangling

the period of recomputing the results (the key reason

behind the stale results) with the length of the basic

window b. The model, called BW+ hereafter, offers an

extra knob to the user, called epoch, which controls the

acceptable delay/lag for the algorithm to account for

new data. When epoch is set to be equal to b, BW+ de-

generates to the standard basic windows model, e.g., as

used in [53]. However, by setting epoch to be less than

b, the algorithm is instructed to recompute the results

more than once within the period of a basic window, ac-

counting also for the new arrivals in the incomplete ba-

sic window. The aggregation unit remains unchanged,

6*

2 3 8 10 9

100806040200 105

1 2 3 4 5 13 28 30 ...13 28 30
23.7

Fig. 3: Example of a stream representation with the

BW+ model with w = 100, b = 20, epoch = 5. With

red we denote the index/position of the basic window.

The blue numbers correspond to the values of the cor-

responding windows. The updates in the running basic

window and running epoch are shown in green color.

i.e., the basic window of size b, which allows meaning-

ful handling of time misalignment, noise and outliers.

Furthermore, all completed basic windows are not im-

pacted by the epoch – hence their aggregate values are

not recomputed. However, whenever an epoch is com-

pleted, the algorithm updates the aggregate value for

the incomplete basic window and updates the multi-

variate correlations, to include these new values.

As an example, consider the stream depicted in Fig. 3.

Assume that epoch is set to 5 msec, and the basic and

sliding window lengths, b and w, are set to 20 and 100

msec respectively. Then, at time 100, BW+ will have

identical results to the standard basic windows model.

At time 105, BW+ will recompute the results, account-

ing for the values that arrived in basic windows 1 to 5,

and within the first five seconds of the (still incomplete)

basic window 6. Therefore, if in the period between time

100 and 105, there were drastic changes that led to up-

dates of the results, these will be detected by BW+.

The same process will be repeated at times 110 and

115, whereas at time 120, basic window 1 will expire

and the results of BW+ will again become identical to

the output of the standard basic windows model (not

shown in figure). It is important to note that BW+

with an epoch less than b is not equivalent to running

the standard basic windows algorithm with b = epoch.

BW+ keeps the completed basic windows intact – it

does not change their boundaries when an epoch is com-

plete. As we will explain in the following section, this

is leveraged by CDStream to optimize performance by

avoiding to store, or recompute, fine-grained partial re-

sults. We will come back to the discussion about the

properties of BW+, and its impact in terms of com-

putational efficiency and accuracy/completeness of the

results of the algorithm in Section 4.4.

Time-based vs arrival-based epoch. Even though

our previous discussion assumed that epochs are de-

fined in time units (seconds, minutes, etc.), this does

not constitute a requirement of the model. Epochs can

Efficient detection of multivariate correlations with different correlation measures 13

Algorithm 4: HandleEpoch(S,A,C, I, τ)
Input: Set of streams S, set of arrivals A , pairwise

correlations cache C, DCC Index I,
correlation threshold τ

1 for (i, v) ∈ A do // (i: stream id, v: value)

2 Recompute Si’s last basic window’s aggregate
3 for j = 1 to n do // Update pairwise cache C
4 C[i, j]←Corr(Si, Sj)

5 for (i, v) ∈ A do // Check for violations

6 V ← QueryIndex(i, I) // Query violations

7 for (Sl,Sr) ∈ V do // Recompute and re-index

8 ThresholdQuery(Sl,Sr, Corr, τ)
9 UpdateIndex(Sl,Sr, Corr, τ, I)

also be defined in number of arrivals (e.g., every 10 ar-

rivals). A definition based on number of arrivals may

be preferred in use cases where the arrival rate of the

streams changes abruptly, e.g., during a market crash.

4.2 Algorithm core

We start with a high-level description of CDStream be-

fore going over the details of the underlying custom in-

dex, which is instrumental for increasing the through-

put of the algorithm. CDStream receives as an input

the set of streams, and the configuration parameters

of the algorithm – length of the sliding window w and

basic window b, epoch, and query threshold. The algo-

rithm starts by executing CD on the last w arrivals in

the given streams, and prints the initial results to the

user. A byproduct of CD is an upper-diagonal matrix

that stores the pairwise correlations between all pairs
of streams. We will refer to this as the pairwise corre-

lations cache. Then, CDStream enters the monitoring

phase. In this phase, whenever an epoch is completed,

the algorithm (shown in Alg. 4) first detects all streams

that have at least one update and recomputes the corre-

sponding aggregate for the last (potentially still incom-

plete) basic window (line 2). It then refreshes the cache

of pairwise correlations, to account for the new arrivals

(lines 3-4). Notice that this step does not recompute

the correlations from scratch; it updates them from the

previous correlation values and the change in aggregate

value for the running basic window. Following, the al-

gorithm goes through all updates within the epoch, and

checks whether these could lead to changes in the result

set (either new additions in the result or removals). This

process is supported by a custom-build index, which re-

turns all decisive cluster combinations with bounds im-

pacted by the newly arrived updates. These impacted

bounds are then reassessed using Algorithm 1, in order

to detect the potential changes in the result set, and

to update the index (Alg. 4 lines 5-9). 8 The described

steps are repeated for ⌊epoch/b⌋ epochs, after which a

basic window is completed. In that case, CDStream will

additionally remove the expired basic window, add the

newly-completed basic window, and keep repeating the

above process (not depicted in Alg. 4).

In the remainder of this section we will look at the

custom index, and how this is maintained and utilized

by CDStream.

The DCC index In short, the index is used for storing

a collection of thresholds, that, when fired, signify a po-

tential change in the answer set.9 Particularly, the core

idea is to store decisive cluster combinations (abbrevi-

ated as DCCs) for all clusters, and enable re-validating

only these after every stream update. Recall that each

stream s belongs to a hierarchy of clusters. For example,

vector e in Fig. 2b belongs to C2 and C7. For a stream

s, we denote the set of these clusters as C(s). By con-

struction, the algorithm takes a decision concerning any

stream s based solely on the decisive combinations in-

cluding any cluster in C(s) (see the theoretical results in
Section 3.2.1). As long as those decisive combinations

are still valid, the final result will remain correct and

complete.

A naive approach would be to construct an inverted in-

dex that maps each cluster to the decisive cluster com-

binations it participates in. Then, after any update of a

stream s, we would look at all clusters in C(s), and find

and re-validate all their decisive combinations from the

index. The use of this index could become too slow for

some use cases, particularly for large correlation pat-

terns, due to the potentially large number of decisive

combinations associated with each cluster that need to

be checked. Two key observations can be exploited to

optimize the use of this index: (a) the empirical cor-

relation bounds described in Section 3.2.2 do not de-

pend on all streams contained in the cluster, but are

determined solely by l(Ci, Cj) and u(Ci, Cj), the min-

imum and maximum pairwise correlations between all

involved clusters in the combination, and (b) the pre-

vious applies independent of the number of the clusters

contained in the left and right side of the cluster com-

bination. Therefore, the DCC index is designed around

these minimum and maximum pairwise correlations.

Fig. 4a depicts an example of the internal organization

of the DCC index. At the outer layer, the index is an

inverted index that maps each stream s to a list of ex-

trema pairs. A pair of streams is called an extremum

pair if there exists at least one cluster combination for

8 In practice, method UpdateIndex is coded inside a cus-
tom implementation of Algorithm 1, to avoid duplicate work.
9 Similar indices were used in earlier works, e.g., [33], but

for bounding the values of individual correlations.

14 Jens E. d’Hondt et al.

which this pair constitutes a determining pair, i.e., it is

the pair determining the value of l(Ci, Cj) or u(Ci, Cj).

For example, in Fig. 2c, the minimum and maximum ex-

trema pairs for (C2, C3) are ⟨h,g⟩ and ⟨b, f⟩, determin-

ing the minimum value l(Ci, Cj) and maximum value

u(Ci, Cj) respectively. At the inner layer, for each ex-

tremum pair ep we keep a list of all opposite clusters,

i.e., the clusters that do not include s, and participate in

at least one decisive cluster combination having ep as an

extremum pair. For example, focusing at c in Figure 4a,

we see that one of its extrema pairs is ⟨b, f⟩, which is

reused by both clusters C2 and C8. The clusters are

stored in decreasing size, i.e., the cluster at position i+1

will be a sub-cluster of the cluster at position i. For each

cluster, we store all decisive combinations, and whether

these are positive or negative. In our running example,

for cluster C2 we have a negative combination (C2, C3)

and a positive combination (C1, (C2, C3)). This way of

indexing and querying ensures that we only re-validate

DCCs with an actual change in bounds, and that this

set is complete (i.e., we do not miss any violations).

When an update is observed at stream s, the first step

is to use the index for retrieving all extrema pairs that

involve a cluster in C(s). For each extremum pair, we

check the pairwise cache whether the pair has changed

as a result of the last update. This will happen, e.g., if

the update of s has caused s to form a new extremum

pair with another stream, replacing an older pair. If the

extremum pair has not changed, we can skip all contents

grouped under this pair altogether. In our running ex-

ample, if c has been updated, but ⟨b, f⟩ is still a valid

extremum pair for cluster C2, no further validations are

needed for any of the combinations involving C2. Fur-

thermore, no validations are required for the combina-

tions involving C8 (and any other clusters following C2

with the same extremum pair), since C8 is a strict sub-

set of C2 (recall that the clusters are ordered based on

their size). If, on the other hand, the update has inval-

idated an extremum pair, the algorithm drills into the

contents of the inner layer, and goes over the clusters

sharing this extremum pair. If, e.g., c was updated and

⟨b, f⟩ is no longer an extremum pair for C2, we need

to check and adjust all combinations stored for C2 (in

this example, (C2, C3) and (C1, (C2, C3))). This is done

by adjusting the extrema pairs and bounds using Theo-

rems 1 and 3, re-validating whether the combination is

still decisive – positive or negative, and updating the so-

lution accordingly. In this step, the algorithm may even

need to break a cluster to two or more sub-clusters, un-

til it again reaches to decisive combinations. However,

again, as soon as we find a cluster for which the ex-

tremum pair does not change after the update, we can

move to the next extremum pair.

4.3 User constraints and top-κ queries

To support the minimum jump and irreducibility con-

straints, additional triggering functionalities, further de-

scribed below, are added to the index of CDStream.

Irreducibility constraint. LetX,Y,X ′, Y ′ denote sets

of clusters. Consider combinations (X,Y), and (X ′ ⊆
X,Y ′ ⊆ Y), with |X∪Y | > |X ′∪Y ′|, i.e., irreducibility
excludes (X,Y) from the results if (X ′, Y ′) is in. We

need to detect two additional cases: (1) (X,Y) needs

to be removed from the result set because (X ′, Y ′) just

surpassed τ , and, (2) (X,Y) needs to be added in the

result set, because (X ′, Y ′) was just removed from the

result set because its correlation dropped below τ . Both

cases can be triggered by an update of a vector from X

or Y (hence, also from X ′ and Y ′).

Without the irreducibility constraint, the index con-

tains the following extrema pairs: (a) for the negative

decisive combinations, the pairs required for upper bound-

ing the correlation, (b) for the positive decisive combi-

nations, all pairs required for lower-bounding the corre-

lation. The irreducibility constraint requires also moni-

toring of the upper bounds of positive decisive combina-

tions (e.g., for case (1), when an increase of Corr(X ′, Y ′)

will cause the following condition to hold: Corr(X ′, Y ′)

> τ which will mean that (X,Y) need to be removed

from the result set) and the lower bounds of negative de-

cisive combinations with any Corr(X ′, Y ′) > τ . These

decisive combinations are also added in the index, un-

der the extrema pairs, and checked accordingly.

Minimum jump constraint. Monitoring for the min-

imum jump constraint is analogous to the irreducibil-

ity contraint. The following cases need to be consid-

ered: (1) (X,Y) needs to be removed from the result

set because Corr(X ′, Y ′) + δ > Corr(X,Y), and (2)

(X,Y) needs to be added in the result set because

Corr(X ′, Y ′) + δ < Corr(X,Y). Both cases are iden-

tified using the discussed method for monitoring the

irreducibility constraint.

Top-κ queries Recall that CDStream is initialized with

the result of CD. For a top-κ query, CDStream queries

CD for a slightly larger number of results κ′ = bk ∗ κ,
where bk is a small integer, greater than 1. CDStream

finds the minimum correlation in these results, and uses

it as a threshold τ in the streaming algorithm. As long

as the size of the result set is at least κ, the true top-κ

results will always have a correlation higher than τ and

will be contained in the top-κ′ results maintained by

the algorithm. Therefore, the top-κ out of the detected

top-κ′ correlations are returned to the user.

Scaling factor bk controls the tradeoff between the ro-

bustness of the streaming algorithm for top-κ queries,

and its efficiency. Setting bk = 1 may lead to the situa-

Efficient detection of multivariate correlations with different correlation measures 15

 ...

...

...

...

...

...

...

... 0

2

4

6

8

10

Ex
. t

im
e

pe
r

b.
w

. [
s]

0 20 40 60 80 100
Simulation time

100

200

300

N
um

be
r

of
 r

es
ul

ts

#Results BW+

#Results Basic model
#Results Ground truth

Ex. time BW+

Ex. time Basic model

Fig. 4: (a) Visualization of the decisive combination index; (b) Number of results and execution time per basic

window, with BW+ and the standard basic window model. BW+ is configured with epoch size 1. The results

correspond to the Stocks dataset, with n = 1000, w = 120000, and b = 20.

tion that, due to an update, fewer than κ results exist

with correlation greater than or equal to τ . CDStream

then fails to retrieve enough results, and resorts to CD

for computing the correct answer, and updating its in-

dex. Conversely, a large bk will lead to a larger number

of intermediary results, and to more effort for comput-

ing the exact correlations of these results, which is nec-

essary for retaining the top-κ results. Our experiments

with a variety of datasets have shown that bk = 2 is

already sufficient to provide good performance without

compromising the robustness of CDStream. We evalu-

ate CDStream in Section 5.3.

4.4 Impact of the extended basic window model on

CDStream

Recall that CDStream leverages the proposed extended

basic window stream processing model (abbrev. asBW+)

in order to identify updates on the result set earlier. By

construction, BW+ is at least as good as the standard

basic windows model in terms of completeness of the

result set, since it replicates its behavior every time a

basic window is completed. The further improvement

that we can expect from BW+– compared to the stan-

dard basic windows model – depends on the volatility of

the input streams. In periods where the input streams

contain negligible changes, BW+ will detect very few

additional correlations (if any), compared to the stan-

dard model. In periods of high volatility, such as market

crashes, BW+ will detect updates and new correlations

faster.

To examine the importance of BW+ and evaluate its

impact on the computational efficiency of CDStream,

we compared the results of CDStream, with and with-

out BW+. Figure 4b presents the number of results

(left axis) and runtime (right axis) of CDStream of the

two models. The results correspond to processing of

a stream with minute-granularity stock prices of 1000

stocks on 16 March 2020 (the dataset is further de-

scribed in Section 5). This day was selected because it

was the day of the largest price drop in the 2020 Covid

crash [1]. As ground truth, we used the results of CD

on the same input dataset (without basic windows), re-

computed at the end of each epoch.

We see that BW+ is able to identify jumps in the num-

ber of results significantly earlier than BW. Compar-

ison with the ground truth revealed that BW+ main-

tained a recall of 97.8% during this period while BW

recall decreased to 69.0%. From epoch 0 to 60 (prior

the crash), the recall of BW+ was 100%.

It is also interesting to consider execution time per basic

window. Since the new model subsumes the basic win-

dow model, it is slightly more expensive to maintain.

However, extra computation is only around 10%, for

the more-detailed epoch. This extra computation can

of course be adjusted, by increasing the epoch length.

Therefore, all experiments hereafter will only focus on

the BW+ model.

4.5 CDHybrid: Combining CD and CDStream

Recall that CDStream handles the stream updates in

epochs. The algorithm exhibits high performance when

the updates do not drastically change the results set.

In streams where the answer changes abruptly, it may

be more efficient to simply run CD after the comple-

tion of each epoch and recompute the solution from

scratch, instead of maintaining CDStream’s index and

the result through time. CDHybrid is an algorithm that

orchestrates CD and CDStream, transparently manag-

ing the switch between the two algorithms based on the

properties of the input stream.

To decide between CD and CDStream, CDHybrid needs

to estimate the cost of both approaches for handling

an epoch. A good predictor for this is the number of

arrivals in the epoch – more arrivals tend to cause

16 Jens E. d’Hondt et al.

more changes in the result, which takes longer for CD-

Stream to handle. Therefore, CDHybrid starts with a

brief training period, where it collects statistics on the

observed arrival count and execution time of the two al-

gorithms. Simple (online) linear regression is then used

to model the relationship between execution time and

the observed number of arrivals. Note that the coeffi-

cients of a simple linear regression model can be main-

tained in constant time and space. Therefore, the re-

gression model is continuously updated, even after the

training phase. Switching from one algorithm to the

other works as follows.

Switching from CDStream to CD. We cache the

current results of CDStream (we will refer to these as

RCDStream) and stop maintaining the index. When an

epoch is completed, the vectors are updated and passed

to CD for computing the result.

Switching from CD to CDStream. Since the stream

index was not updated for some time, we need to update

it before we can use it again. We compute the symmet-

ric difference ∆ of the current results of CD (denoted

as RCD) with the last results of CDStream RCDStream.

Any result r contained in ∆ ∩ RCDStream is due to a

positive decisive combination that has now become neg-

ative, whereas any r contained in ∆ ∩ RCD leads to a

new positive decisive combination. In both cases, the

algorithm updates the index accordingly. There is also

the case that a decisive combination becomes indeci-

sive. In this case, the algorithm recursively breaks the

combination further, as shown in Alg. 1. We evaluate

CDHybrid in Section 5.3.3.

5 Evaluation

The purpose of our experiments was twofold: (a) to as-

sess the scalability and efficiency of our methods, and,

(b) to compare them to a series of baselines. The base-

lines include the state-of-the-art algorithms for multi-

variate correlation discovery [3,4], two variants of an

exhaustive search algorithm , as well as multiple mod-

ern database management systems (DBMS) that can

be used to detect multivariate correlations. Our evalua-

tion does not consider the practical significance of mul-

tivariate correlations, as this was already extensively

demonstrated in earlier works and case studies from

different domains, e.g., [3,4,29] (see Section 1 for more

examples). Still, to ensure that our evaluation is con-

ducted on data where detection of multivariate corre-

lations has practical significance, we also compare our

methods with the data used in these past case studies

(or data of the same type, where the original data was

inaccessible).

Hardware and implementations. All experiments,

except for the comparison with the DBMS systems,

were executed on a server equipped with two Xeon E5-

2697v2 12-Core 2.70 GHz processors, and 500GB RAM.

For CoMEtExtended and CONTRa, we used the orig-

inal implementations, which were kindly provided by

the authors [3,4]. We additionally configured the imple-

mentation of CoMEtExtended in order to use all avail-

able cores of our server. Consequently, all implemen-

tations, except CONTRa and two DBMS, were multi-

threaded. Algorithm performance comparisons are ex-

clusively made under matching execution styles (e.g.,

comparing single-threaded CD only to CONTRa and

DBMS). All implementations, except of the UNOPT

exhaustive search baseline, cached and reused the pair-

wise correlation computations, using our results pre-

sented in Section 3.2. This caching was always benefi-

cial for performance. The reported execution time for

CD and CDStream corresponds to the total execution

cost including the steps of normalizing, clustering and

calculating pairwise correlations. All reported results

correspond to medians after 10 repetitions. Due to per-

mission constraints on the server, the DBMS experi-

ments were executed on another machine, with an In-

tel i7-10750H 12-Core 2.60GHz processor, 32GB RAM,

running Ubuntu 22.04.1 LTS.

Datasets. We present extensive evaluation results on

seven datasets, coming from distinct disciplines (neu-

roscience, finance, crypto trading, climate science, and

machine learning). See GitHub for download links, pre-

processing steps, instructions, and code for reading and

processing the data.

• Stocks. Daily closing prices of 28678 stocks over the

period Jan. 2, 2016 to Dec. 31, 2020 leading to 1309

observations. For the streaming experiments, we used

the minute closing prices of the stocks.

• fMRI. Functional MRI data of a person watching a

movie. 10 Five datasets were extracted by mean-pooling

the data with kernels of different size, leading to 237,

509, 1440, 3152, and 9700 time series respectively, all

of 5470 observations. A similar dataset was used in the

case study of [3].

• SLP & TMP. Segment of the ISD weather dataset [37]

containing sea level pressure (SLP) and atmospheric

temperature (TMP) readings of 3222 sensors. CD was

evaluated on the daily average values between January

1, 2016 and December 31, 2020, leading to 2927 read-

10 Available online at https://openneuro.org/

datasets/ds002837/versions/2.0.0. We used file
sub-1_task-500daysofsummer_bold_blur_censor, which
already includes the recommended pre-processing for
voxel-based analytics.

https://github.com/CorrelationDetective/public
https://openneuro.org/datasets/ds002837/versions/2.0.0
https://openneuro.org/datasets/ds002837/versions/2.0.0

Efficient detection of multivariate correlations with different correlation measures 17

Static Streaming

Dataset n d κ γ K n
Epoch
size

Basic
window
size

w
(hours)

Aggr.
Method

Threshold
PC

Threshold
ES

Stocks 1440 1309 100 0 10 1000 1 min 2 hours 2000 sum 0.95 0.15
fMRI 1440 5470 100 0 10 1440 1 sec 1 sec 0.5 last 0.9 0.12
SLP 1440 2927 100 0 10 1000 1 hour 6 hours 2160 avg 0.99 0.7
TMP 1440 2927 100 0 10 1000 1 hour 6 hours 2160 avg 0.99 0.7
Crypto 1440 713 100 0 10 1000 1 min 1 hour 216 sum 0.95 0.15
Deep 1440 96 100 0 10 - - - - - - -

Table 3: Default parameters for the experiments with static and streaming data

ings per time series. Streaming experiments were run

on hourly sensor measurements.

• SLP-small. Sea Level Pressure data [39], as used in

the case study of [4]. The dataset contains 171 time

series, each with 108 observations.

•Crypto. 3-hour closing prices of 7075 crypto-currencies,

each with 713 observations, covering the period from

April 14, 2021 to July 13, 2021. Streaming experiments

were run on minute-level closing prices.

• Deep. A billion vectors of length 96, obtained by

extracting the embeddings from the final layers of a

convolutional neural network [2].

Whenever needed, we obtain subsets of these datasets

with random sampling. To avoid repetition, in the fol-

lowing we will mention the experimental configuration

only when this deviates from the default configuration,

described in Table 3. The remaining section is organized

as follows. We start with a comparison of our meth-

ods to the baselines (Section 5.1), and then conduct an

extensive sensitivity analysis of CD (Section 5.2) and

CDStream (Section 5.3).

5.1 Comparison to the baselines

We start by comparing CD to the baselines: (a) two

algorithms based on exhaustive search, (b) commercial

and open-source modern database management systems,

(c) CoMEtExtended [4], and (d) CONTRa [3]. Our ex-

periments compare both efficiency and recall of all sys-

tems for threshold queries.

Comparison to exhaustive search baselines No

other solution covers CD’s range of queries and corre-

lations. For reference on the complexity of the prob-

lem, we constructed two baselines (UNOPT and OPT)

that exhaustively compute all multivariate correlations

by iterating over all possible combinations of vectors.

OPT reuses cached pairwise correlations (exploiting our

results presented in Section 3.2), whereas UNOPT re-

computes them for every combination. This comparison

only focuses on execution time, as all methods have per-

fect precision and recall.

Figure 5 plots the time required from CD, UNOPT,

and OPT to execute a threshold query on different sub-

sets of Stocks, with sizes up to 12,800 vectors. All al-

gorithms were given at most 8 hours to complete. The

thresholds were selected such that all correlation mea-

sures bring approximately the same number of results

on each dataset. Our first observation is that execu-

tion time of CD grows at a much slower rate compared

to both baselines, for all correlation measures. Further-

more, the difference in efficiency increases with dataset

size, which stresses the importance of having an efficient

solution like CD. Therefore, CD can handle significantly

larger datasets than the baselines.

Comparing OPT to UNOPT, we see that caching of

the pairwise correlations improves performance for ES,

PC, and MP, but not for TC. This is because TC is

not amenable to the caching optimization, i.e., the TC

of three or more vectors cannot be expressed as a lin-

ear combination of the pairwise TC values. Yet, even

for the other three measures, OPT still times out for

larger datasets. The fact that CD scales better than

OPT indicates that its core performance boost comes

from the way it utilizes the cluster bounds.

Comparison to contemporary DBMS CD’s oper-

ation can be expressed as an SQL query, as shown in

Fig. 6a, which shows a PC(1, 2) threshold query on a

(z-normalized) table named “fmri” in SQL. This obser-

vation allows us to compare performance of CD with

general-purpose state-of-the-art RDBMS. Our experi-

ment used four off-the-shelf databases, all configured

with RAM-stored tables for equitable evaluation, given

CD’s RAM usage. DBMS1 and DBMS3 supported ar-

ray attributes, so we developed array functions for Pear-

son correlation calculation. The other DBMSs stored

data in long format (with columns corresponding to

a primary key, vector id, time, and value), utilizing a

GROUP BY clause for Pearson correlation. Due to limited

multi-threading support, all approaches, including CD,

ran single-threaded with an eight-hour query limit.

Fig. 6b shows the execution times for each system to

detect PC(1, 2) on different resolutions of the fMRI

dataset. The reported DBMS times do not include the

18 Jens E. d’Hondt et al.

0 3200 6400 9600 12800
Number of vectors n

100
101
102
103
104

Ex
ec

ut
io

n
ti

m
e

[s
]

0 3200 6400 9600 12800
Number of vectors n

100
101
102
103
104

Ex
ec

ut
io

n
ti

m
e

[s
]

0 3200 6400 9600 12800
Number of vectors n

100
101
102
103
104

Ex
ec

ut
io

n
ti

m
e

[s
]

0 3200 6400 9600 12800
Number of vectors n

100
101
102
103
104

Ex
ec

ut
io

n
ti

m
e

[s
]

Fig. 5: Scalability of CD and exhaustive baselines for threshold queries on subsets of Stocks. Notice that the Y

axis is in logarithmic scale. (a) ES(1, 2), τ = 0.85; (b) MP(3), τ = 0.85; (c) PC(1, 2), τ = 0.85; (d) TC(3), τ = 1.7

one-off costs of loading the dataset in the DBMS and

creating the indices. We see that CD outperforms all

DBMS by several orders of magnitude, and the dif-

ference between CD and the baselines increases with

dataset size. In particular, time complexity for all DBMS

seems to follow O(n3) for performing a triple nested

loop (n is the number of vectors), whereas CD’s exe-

cution time grows at a much slower rate. Furthermore,

the results indicate that all DBMS perform similarly to

an exhaustive search algorithm, iterating over the full

search space.

Comparison to CoMEtExtended Our next exper-

iment was designed to compare CD with CoMEtEx-

tended [4]. CoMEtExtended’s goal differs slightly from

our problem statement. First, CoMEtExtended is ap-

proximate without guarantees. Still, its recall can be

tuned by parameter ρCE, which takes values between

-1 and 1. Values around 0 offer a reasonable tradeoff

between efficiency and recall [4]. In contrast, CD deliv-

ers complete answers, making execution time and re-

call both relevant in our comparison. Second, CoME-

tExtended focuses on maximal strongly correlated sets,

whereas CD finds all such sets (up to a specified car-

dinality). To ensure a fair comparison for CoMEtEx-

tended, we also considered all subsets of the sets re-

turned by CoMEtExtended. When a subset of a CoME-

tExtended answer satisfied the query, we added it to

the results, thereby increasing CoMEtExtended’s re-

call. This post-processing step was not included in the

execution time of CoMETExtended, i.e., it did not pe-

nalize its performance. Table 4 presents the number of

results and execution time of CoMEtExtended and CD

on the same dataset (SLP-small) and the configuration

parameters used in [4]. We only consider the MP mea-

sure, since CoMEtExtended does not support the other

three measures.

We see that CD is consistently faster than CoMEtEx-

tended – at least an order of magnitude – and often re-

turns substantially more results. Indicatively, forMP(4),

CoMEtExtended with ρCE = 0 (resp. ρCE = 0.02)

is one to two (resp. two to three) orders of magni-

tude slower than CD. Notice that for queries with δ =

0.1, ρCE = 0.02 and τ = 0.4, CoMEtExtended also

found 281 results with 6 vectors, and one with 7. These

amount to ∼ 0.3% of the total amount of discovered

results. These were not discovered by CD, which was

executed with pl = 5, prioritizing the simpler and more

interpretable results. Nevertheless, even for these set-

tings, CD still found 25% more results than COME-

tExtended, and in one third of the time. Moreover, the

case studies presented in [3,4] amongst others on this

dataset demonstrate the usefulness and significance of

relatively simple relationships, involving at most four

time series. Other works on multivariate correlations

also emphasize the discovery of relationships that do

not contain too many time series [10]. For these cases,

with a fixed lmax, CD is guaranteed to find a superset of

COMEtExtended’s result set, at a fraction of its cost.

Comparison to CONTRa We also compared CD to

CONTRa [3] for discovery of tripoles (i.e., PC(1, 2) ≥
τ). To ensure a fair comparison, CD was parameterized

to find the same results as CONTRa and to utilize the

same hardware, as follows: (a) CD was executed with

τ = 0, i.e., pruning was solely due the minimum jump

constraint, and (b) CD was configured to utilize at most

one thread/core, since the implementation of CONTRa

was single-threaded. CONTRa was configured to return

exact results.

Table 5 includes execution time and number of results

per method.11 We see that CD is more efficient than

CONTRa for detecting identical results, even with τ =

0. However, τ = 0 yields an impractically large amount

of results. As such, we also evaluate CD with τ = 0.5

(corresponding to the lowest correlation reported in the

case studies of [3]), and with τ = 0.9, which gives a more

reasonable amount of results. This further decreases the

execution time of CD by one to two orders of magni-

tude, while preventing an overwhelming number of re-

sults.

11 For this experiment, the minimum jump parameter δ is
defined as in [3], to represent the minimum difference between
the squared correlations.

Efficient detection of multivariate correlations with different correlation measures 19

WITH corrs(vid1, vid2, corr) AS (

SELECT v1.vid, v2.vid, pearson(v1.vec, v2.vec)

FROM fmri v1, fmri v2 WHERE v1.vid < v2.vid),

pc12(vid1, vid2, vid3, c12, c13, c23, mcorr) AS (

SELECT c12.vid1, c12.vid2, c13.vid2, c12.corr, c13.corr, c23.corr,

(c12.corr + c13.corr) / SQRT(2 + 2*c23.corr)

FROM corrs c12, corrs c13, corrs c23

WHERE c12.vid1 = c13.vid1 AND c12.vid2 = c23.vid1

AND c13.vid2 = c23.vid2 AND c12.vid1 != c23.vid1

AND c12.vid1 != c23.vid2)

SELECT * FROM pc12 WHERE mcorr > 0.8; 237 509 1440 3152
Number of vectors n

101

103

Ex
ec

ut
io

n
ti

m
e

[s
]

CD
DBMS1

DBMS2
DBMS3

DBMS4

Fig. 6: (a) PC(1, 2) threshold query, implemented with SQL. The correlation measure is implemented as a stored

function. (b) Comparison of CD with contemporary DBMS, PC(1, 2), τ = 0.8, δ = 0.1, fMRI.

CoMEtExtended Correlation Detective

τ , δ
ρCE = 0 ρCE = 0.01 ρCE = 0.02 MP(4) MP(5)

time #res. time #res. time #res. time #res. time #res.
0.4, 0.1 604 62663 1318 67110 3530 70921 7 71083 1132 88305
0.4, 0.15 511 7244 1218 7300 3393 7343 5 7559 579 7562
0.4, 0.2 501 2166 1210 2171 3327 2174 4 2183 248 2183
0.5, 0.1 459 30632 1099 33718 2836 36457 5 34592 635 51391
0.5, 0.15 398 3646 1006 3702 2760 3745 4 3961 355 3964
0.5, 0.2 390 1434 1006 1439 2701 1442 3 1451 193 1451
0.6, 0.1 246 7823 598 8892 1592 9859 3 9204 289 17349
0.6, 0.15 223 1569 577 1606 1559 1635 3 1840 177 1843
0.6, 0.2 219 771 568 776 1532 779 2 788 112 788

Table 4: Comparison of CD with CoMEtExtended on

SLP-small dataset: execution time (seconds) and number

of retrieved results.

CONTRa
CD

(τ = 0)
CD

(τ = 0.5)
CD

(τ = 0.9)
time(#res) time(#res) time(#res) time(#res)

δ = 0.1:
>24hrs(23e6) 11510(23e6) 1908(21e6) 401(432)
δ = 0.15:
11160(73e4) 4927(73e4) 1569(73e4) 391(102)
δ = 0.2:
5324(21e3) 1983(21e3) 1281(21e3) 441(24)

Table 5: Comparison of CD with CONTRa on

fMRI dataset (n = 9700): execution time

(seconds) and number of retrieved results.

Summary. Comparison of CD with two state-of-

the-art algorithms, two exhaustive baselines, and

four DBMS demonstrates that CD consistently out-

performs all competitors, requiring at least an or-

der of magnitude less time. This enables CD to find

more complex query patterns on larger datasets.

5.2 CD on static data

The following experiments are designed to evaluate the

efficiency of CD under different conditions (configura-

tions, datasets, and queries). We first examine the im-

pact of CD’s configuration parameters (the shrink fac-

tor and the clustering distance) to CD’s efficiency. We

do not consider recall, since CD is exact, always giving

complete answers. Then, we evaluate the performance

of CD for top-κ and threshold queries.

5.2.1 Optimizing configuration parameters

We also tested the impact of the values of γ and K

(shrink factor and number of sub-clusters per cluster)

on CD’s efficiency for different configurations. The re-

sults showed that both very small (γ = −0.8) and very

large (γ = 0.8) shrink factor values lead to sub-optimal

performance of CD (roughly 38%-72% slower than the

optimal γ value), as they delay the increase of the run-

ning threshold τ . Similarly, extreme values of K also

led to sub-optimal performance, with executions being

as much as 2x slower for ES , PC , and MP queries, and

up to 4x slower for TC queries, compared to the execu-

tion times with optimal K values. Detailed results can

be found in the technical report [13]. However, setting

γ = 0 and K = 10 led to near-optimal performance at

all configurations – at most 17% worse than the optimal

performance in each case. Therefore, for the following

experiments we set γ = 0 and K = 10.

5.2.2 Top-κ queries

Effect of κ. Fig. 7a-b show the execution time of CD

for different values of κ for Stocks and fMRI. We see

that a decrease of κ typically leads to increased effi-

ciency. A low value of κ allows for a rapid increase of the

running threshold τ , leading to more aggressive pruning

at Alg. 1, line 4. Interestingly, this effect is not equally

visible among all considered correlation measures. For

example, a reduction of κ gives a significant boost to

ES, but a much smaller boost for MP. This discrepancy

is attributed to the correlation values in the result set

and the tightness of the bounds. Indicatively, in this

20 Jens E. d’Hondt et al.

100 200 300 400 500
Top-k

0

5

10

15

20

Ex
ec

ut
io

n
ti

m
e

[s
]

100 200 300 400 500
Top-k

0

2

4

6

8

10

Ex
ec

ut
io

n
ti

m
e

ES
,M

P,
PC

 [
s]

100

200

300

400

Ex
ec

ut
io

n
ti

m
e

TC
 [

s]

CryptoDeep fMRI Stock SLP TMP
Dataset

101

102

Ex
ec

ut
io

n
ti

m
e

[s
]

EuclideanSimilarity
Multipole

PearsonCorrelation
TotalCorrelation

Fig. 7: Effect of κ values and dataset on execution time, with ES(1, 2), MP(3), PC(1, 2), TC(3). (a) Effect of κ,

Stocks; (b) Effect of κ, fMRI; (c) Top-κ on all datasets

experiment, the lowest MP value in the result set only

decreases from 0.998 (top-100) to 0.9972 (top-500) on

the Stocks dataset. In contrast, the lowest ES value in

the result set decreases from 0.694 (top-100) to 0.672

(top-500) on the same dataset.

Effect of the correlation pattern Table 6 presents

execution time of CD for different correlation patterns.

As expected, increasing the complexity of the correla-

tion pattern leads to an increase of the computational

time. However, even though the size of the search space

follows O
((

n
pl+pr

))
, execution time of CD grows at a

much slower rate. Indicatively, for the fMRI dataset,

the search space size grows 5 orders of magnitude be-

tween PC(1, 2) and PC(1, 4), whereas CD’s execution

time increases by only three orders of magnitude, indi-

cating efficient pruning of the search space.

Experiments with different datasets Fig. 7c shows

the execution time of CD for all correlation measures on

different datasets. We see that efficiency of CD does not

vary significantly for ES and PC. However, performance

for queries involving TC fluctuates significantly across

datasets. This is again attributed to the inherent char-

acteristics of the datasets: analysis of the distributions

of the multivariate correlation values in the datasets

revealed that the correlations in each dataset followed

gamma-like distributions. For TC, it is sometimes the

case that the mean of this distribution is very close

to the minimum correlation in the answer set, i.e., the

correlation of the top-κ’th answer. In other words, to-

tal correlation is not sufficiently discriminating on these

datasets. These situations could be prevented by per-

forming exploratory analysis on the correlation value

distribution of a small sample of the dataset. If this

analysis does not indicate exceptionally high correla-

tions in the dataset, the data analyst could opt for an

alternative correlation measure.

5.2.3 Threshold queries

Effect of threshold Fig. 8 shows the effect of thresh-

old τ on the execution time of CD for the Stocks (left Y-

axis) and fMRI dataset (right Y-axis) for each correla-

tion measure, and for different constraints. Our first ob-

servation is that increasing the threshold leads to higher

efficiency for all correlation measures and both datasets.

This is expected, since a higher threshold enables more

aggressive pruning of candidate comparisons: the upper

bounds derived by Theorems 1-4 will be below τ more

often, leading to less recursions. For similar reasons, the

addition of stronger constraints (i.e., higher δ or intro-

duction of the irreducibility constraint) generally leads

to better performance due to increased pruning power.

Furthermore, CD is noticeably faster for PC compared

to MP for the same τ values. This is due to two reasons:

(a) the high complexity of the computation of eigenval-

ues of a matrix (cubic to pl), which is required for com-

puting the bounds for MP (Theorem 2), and, (b) MP

typically results in higher correlation values and more

answers for the same value of τ compared to PC.

Progressive variant of CD It is desired for pro-

gressive algorithms to collect the majority of results

quickly, in order to give early insights to the user about

the results, and to enable them to modify/adjust their

queries. To evaluate this characteristic of progressive

CD (Section 3.4), we modified our code such that it

saves the discovered results at different time points, and

compared these intermediary results with the ground

truth, in order to compute recall. In this set of experi-

ments, we focused exclusively on queries which take sig-

nificant time to complete, since these are the ones that

would mostly benefit from a progressive algorithm.

Figure 9 plots the number of results returned by pro-

gressive CD at different time points, for all correlation

measures on the Stocks dataset. We see that for all cor-

relation measures, CD retrieves more than 90% of the

results in the first few seconds – less than 10% of the

Efficient detection of multivariate correlations with different correlation measures 21

Pattern/
Dataset

ES MP PC TC
(1,2) (1,3) (1,4) (2,2) (2,3) (3) (4) (1,2) (1,3) (1,4) (2,2) (2,3) (3) (4)

fMRI 7 31 4819 168 14251 6 743 4 19 2808 20 8303 111 11
Stocks 6 12 629 39 2039 6 626 3 7 466 9 1112 12 1570

Table 6: Execution times of CD with different correlation patterns on Top-κ queries (seconds)

0.60 0.65 0.70 0.75 0.80
Threshold τ

0

100

200

300

400

Ex
ec

ut
io

n
ti

m
e

St
oc

ks
 [

s]

0

500

1000

Ex
ec

ut
io

n
ti

m
e

fM
RI

 [
s]

0.75 0.80 0.85 0.90 0.95
Threshold τ

700

800

900

Ex
ec

ut
io

n
ti

m
e

St
oc

ks
 [

s]

1000

1500

2000

Ex
ec

ut
io

n
ti

m
e

fM
RI

 [
s]

0.75 0.80 0.85 0.90 0.95
Threshold τ

10

20

30

40

50

Ex
ec

ut
io

n
ti

m
e

St
oc

ks
 [

s]

50

100

150

200

Ex
ec

ut
io

n
ti

m
e

fM
RI

 [
s]

1.1 1.2 1.3 1.4 1.5
Threshold τ

0

200

400

600

Ex
ec

ut
io

n
ti

m
e

St
oc

ks
 [

s]

Fig. 8: Effect of constraint and τ on query performance (Stocks and fMRI), (a) ES(2, 2); (b) MP(4); (c) PC(2, 2);

(d) TC(3)

total execution time. This property of CD is particu-

larly appealing for cases where approximate results will

suffice.

Summary. The default configuration parameters

for CD (number of clusters and shrink factor) pro-

vide near-optimal performance. Complexity of CD

grows at a much slower rate compared to size of

the search space, and CD is more efficient in sce-

narios where the chosen correlation measure and

threshold are discriminating for the dataset. Fi-

nally, progressive CD retrieves more than 90% of

the results within the first few seconds.

5.3 CDStream on streaming data

The third set of experiments was designed to evaluate

the performance of CDStream. We used the timestamps

contained in all datasets (except Deep, which did not

contain the notion of time) for generating the streams.

Hereafter, we will present detailed results for the Stocks

dataset, and include results with the other datasets only

when these provide additional insights. We start with

experiments with a time-based epoch definition (Sec-

tion 5.3.1), and then investigate the performance of

CDStream using arrival-based epochs (Section 5.3.2).

In the technical report [13] we present additional ex-

periments, including an analysis of the algorithm’s per-

formance when executed for a prolonged time period,

and an analysis of the impact of the sliding window size

on CDStream’s efficiency.

5.3.1 Experiments with time-based epochs

Effect of number of streams Figure 10a presents the

average processing time per epoch of CDStream, for dif-

ferent numbers of streams. Since there is no streaming

baseline for CDStream, the plot includes the average

execution time taken by CD, per epoch, to compute

the answers, using the same sliding window data (of

course, repeated executions of CD are needed to main-

tain the results with the streaming updates). We see

that CDStream is more efficient than CD for small cor-

relation patterns, requiring only a few milliseconds per

epoch – an order of magnitude less compared to CD for

both correlation measures. Also note that, even though

the search space grows at a combinatorial rate with the

number of vectors, the growth in execution time of CD-

Stream is substantially slower. This is attributed to the

grouping technique in the CDStream index, which ef-

fectively reduces the work for processing each update.

Also notice that CD outperforms CDStream on more

complex correlation patterns. This is because of the in-

dex maintenance cost of CDStream: for more complex

correlation patterns, the number of combinations that

need to be maintained in the index also grows, even-

tually surpassing the performance boost coming from

the index. Since CD does not depend on this index, it

avoids this cost. This observation clearly demonstrates

the importance of an automated algorithm (similar to

the hybrid algorithm proposed in Section 4.5) that can

dynamically switch between the two for optimizing per-

formance.

Effect of the query parameters Table 7 presents

the effect of τ and additional constraint values (mini-

mum jump and irreducibility) on CDStream’s perfor-

mance. We see that efficiency of CDStream is robust

to constraints – a constraint only causes a small differ-

ence in the number of decisive combinations that need

to be monitored. In contrast, an increasing value of τ

22 Jens E. d’Hondt et al.

0 50 100 150 200
Runtime [sec]

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

Result
Completion

0 200 400 600
Runtime [sec]

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

Result
Completion

0 50 100
Runtime [sec]

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

Result
Completion

0 50 100
Runtime [sec]

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

Result
Completion

Fig. 9: Number of retrieved results over execution time, for progressive execution of queries on the Stocks dataset.

(a) ES(1, 3) query,τ = 0.58, δ = 0.03; (b) MP(4) query, τ = 0.8, δ = 0.05; (c) PC(1, 3) query, τ = 0.7, δ = 0.12; (d)

TC(3) query,τ = 0.25, δ = 1.3

200 500 1000 1500 200 500 200
Number of vectors n

10−2

10−1

100

101

Av
g

ex
. t

im
e/

ep
oc

h
[s

ec
] corr(1, 2) corr(1, 3) corr(2, 3)

CD-ES CD-PC CDSTREAM-ES CDSTREAM-PC

1 2 5 10
Epochs per basic window

0.25

0.30

0.35

0.40

0.45
To

ta
l e

x.
 t

im
e/

b.
w

. [
s]

CD-ES
CD-PC

CDStream-ES
CDStream-PC

100 200 300 400 500
Top-k

10−2

10−1

100

101

Av
g

ex
. t

im
e/

ep
oc

h
[s

]

CD-ES
CD-PC

CDStream-ES
CDStream-PC

Fig. 10: (a) Effect of dataset size and correlation pattern, with τ = 0.95, Stocks, (b) Effect of epoch size (time-

based), PC(1, 2) with τ = 0.95, Stocks, (c) Effect of top-κ, PC(1, 2), Stocks

leads to better performance, as decisive combinations

are reached earlier, similar to the case of CD.

Effect of epoch size For the next experiment, we fixed

the basic window size to 10 minutes, and measured the

processing time per basic window (i.e., sum of epoch

execution times), for different epoch sizes. Since the

basic window size is fixed, epoch size also determines

the number of epochs per basic window. The results,

presented in Figure 10b for the Stocks dataset, demon-

strate that CDStream utilizes larger epochs to increase

efficiency: larger epochs (alternatively, fewer epochs per

basic window) allow CDStream to optimize the checks

on the affected DCCs, by combining multiple updates

and checking the affected DCC only once. Furthermore,

a larger epoch increases the probability that arrivals

with outlier values (potentially due to noise) – which

would otherwise cause temporary invalidations of DCCs

– are dampened by other arrivals on the same stream.

We also see that, for all configurations with ES , CD-

Stream requires less cumulative time per basic window

to maintain the results, compared to a single execu-

tion of CD at the end of the basic window. In other

words, CDStream updates the results more frequently

compared to CD (up to 10 times more frequently in

this experiment), and still requires less total execution

time. With PC , CDStream with 1 and 2 epochs per ba-

sic window has comparable performance with a single

execution of CD. Increasing the number of epochs fur-

ther enables CDStream to provide even more frequent

updates compared to CD, yet with a slight degradation

of efficiency (up to 20% more time). This discrepancy

of results for the two correlation measures is due to

the inherent distribution of the correlation values – the

results for PC change more rapidly compared to the re-

sults for ES in this dataset, which causes a higher cost

for maintaining the index.

Top-κ queries Fig. 10c plots the average processing

time per epoch for top-κ queries PC(1, 2) and ES(1, 2),

for different κ values. The results correspond to the

Stocks dataset with 1000 stocks. We see that process-

ing time for both algorithms increases with κ for both

correlation measures, but at a much slower rate for

CDStream compared to CD. In CD, execution time

grows almost linearly with κ (from 4.94 seconds to 17.20

seconds for ES(1, 2)), whereas for CDStream the time

increases by only 7% for the same queries. The rea-

son for this notable difference in efficiency is that CD-

Stream only maintains the top-κ solutions, already hav-

ing a good estimate for the threshold of the top-κ high-

est correlation from previous runs, whereas CD has to

start each run from scratch. Therefore, for CDStream,

the only increase in execution time for higher κ-values

comes from updating and sorting a slightly larger result

set and buffer set.

Efficient detection of multivariate correlations with different correlation measures 23

CD CDSTREAM
τ \ δ 0.0 0.05 0.1 0.15 irr 0.0 0.05 0.1 0.15 irr

ES(1, 2)
0.10 0.416 0.396 0.385 0.378 0.377 0.036 0.036 0.032 0.029 0.025
0.15 0.402 0.382 0.381 0.372 0.372 0.032 0.030 0.030 0.027 0.027
0.20 0.402 0.369 0.362 0.360 0.360 0.031 0.029 0.029 0.029 0.029

PC(1, 2)
0.80 1.025 0.903 0.772 0.756 0.723 0.234 0.226 0.214 0.206 0.206
0.90 0.441 0.426 0.412 0.412 0.402 0.085 0.079 0.069 0.069 0.070
0.95 0.370 0.366 0.365 0.346 0.342 0.051 0.045 0.045 0.046 0.045

Table 7: Effect of τ and δ on CD and CDStream’s average execution time per epoch (in seconds) with streaming

data, Stocks

1 2 4 8 10 20 40 80 160
Epoch size (Number of arrivals)

10−2

10−1

Av
g

ex
. t

im
e/

ar
ri

va
l [

s]

CD-es
CD-pc

CDStream-es
CDStream-pc

Crypto SLP Stock TMP fMRI
Dataset

0.00

0.01

0.02

0.03

0.04

Av
g

ex
. t

im
e/

ar
ri

va
l [

s] CDSTREAM-ES CDSTREAM-PC

Fig. 11: Effect of query parameters on CDStream’s per-

formance with an arrival-based epoch. (a) Effect of

epoch size, with τ = 0.95, Stocks; (b) Effect of dataset

5.3.2 Experiments with arrival-based epochs

Effect of epoch size Figure 11a plots the average pro-

cessing time per arrival, for varying epoch sizes. As a

reference, the plot also includes the average processing

time for a periodic re-execution of CD after the end of

every epoch (amortized on the epoch’s arrival).

We see that increasing the epoch size also increases

CDStream’s performance. This behavior is expected,

since a larger epoch provides more opportunities to CD-

Stream for reducing the number of DCCs that need to

be checked. Therefore, similar to the case of time-based

epochs (Section 5.3.1), epoch size provides a knob to

the user for fine-tuning the trade-off between freshness

of results and CPU/total execution time.

Also observe that the execution time per arrival for

CD approaches that of CDStream as the epoch size

increases. In the case of PC, the processing time for

the two algorithms crosses at epoch size 80, whereas

for ES, this crossing happens at epoch size 160. This

difference is due to the inherent distribution of correla-

tions according to the two correlation measures in this

dataset.

Effect of dataset Figure 11b presents the average

execution time per arrival (i.e., epoch size of 1), for

PC(1, 2) and ES(1, 2) threshold queries on all datasets.

The cost of a periodic execution of CD at the end of

every epoch is also included in the figure, as a refer-

ence. We see that, even though arrivals are processed

in at most 50 msec, processing cost is noticeably higher

for the two weather sensor datasets (SLP and TMP)

compared to all others. This can be attributed to the

lower time resolution in these two datasets(minimum

arrival rate for these datasets is 1 hour, compared to

seconds/minutes for the others). This leads to a sub-

stantially higher volatility of the result set, and conse-

quently, to more frequent updates in the DCC index.

5.3.3 Evaluation of CDHybrid

For the final set of experiments, we test the ability of

CDHybrid to switch seamlessly and efficiently between

CD and CDStream, in order to minimize processing

cost in the presence of stream bursts. Since our streams

did not present significant bursts that could cause no-

ticeable differences to CDStream throughout the run-

time of CDStream, we introduced an artificial burst at

all streams between epochs 70 and 90, by temporarily

increasing the arrival rate by a factor of 30 (i.e., speed-

ing up all streams during these epochs). CDHybrid was

allowed a small warmup period of 40 epochs, where it

was processing the updates, but was also switching be-

tween CD and CDStream in order to collect initial mea-

surements and train the cost regression model.

Algorithm effectiveness Figure 12a depicts the pro-

cessing time per epoch (moving averages over 5 epochs),

for processing Stocks with CD, CDStream, and CDHy-

brid. The figure also includes the number of arrivals

within each epoch (right Y axis). We observe that when

the burst starts – at around epoch 70 – CDStream be-

comes substantially slower than CD, whereas perfor-

mance of CD is not impacted. CDHybrid immediately

recognizes the burst and switches to CD, thereby main-

taining peak performance. After the burst is completed

(shortly after epoch 90), CDHybrid switches back to

CDStream. This switch includes a small additional over-

head for updating the DCC index. However, this over-

head is insignificant.

Effect of dataset Figures 12b-c show the average pro-

cessing time per epoch for CD, CDStream, and CD-

Hybrid on all datasets (excluding the warm-up time),

for ES(1, 2) and PC(1, 2) queries, respectively. We see

that CDHybrid consistently outperforms both CD and

24 Jens E. d’Hondt et al.

0 50 100 150 200
Epoch

0.0

0.5

1.0

M
ov

in
g

av
g.

 (
5)

 e
x.

 t
im

e
[s

] CD
CDStream

CDHybrid
#Arrivals

0

100

200

300

400

N
um

be
r

of
 a

rr
iv

al
s

Crypto SLP Stock TMP fMRI
Dataset

10−1

100

Av
g

ex
. t

im
e/

ep
oc

h
[s

]

Crypto SLP Stock TMP fMRI
Dataset

10−1

100

Av
g

ex
. t

im
e/

ep
oc

h
[s

]

Fig. 12: (a) Efficiency of CDHybrid over time, PC(1, 2), n = 1000, Stocks, (b) Impact of dataset on CDHybrid

efficiency, ES(1, 2), (c) Impact of dataset on CDHybrid efficiency, PC(1, 2)

CDStream. This means that neither CD nor CDStream

is the best algorithm for processing the whole stream.

Yet, CDHybrid efficiently switches between the two as

a response to the varying arrival rate, thereby providing

near-optimal performance for each epoch.

Summary. CDStream outperforms CD in most

scenarios for processing of streams. Epoch size pro-

vides a useful knob to the user, for balancing through-

put of CDStream with freshness of results. Finally,

CDHybrid seamlessly combines the execution of

CD and CDStream, offering consistently better per-

formance than both.

6 Conclusions

We considered the problem of detecting high multi-

variate correlations with four correlation measures, and

with different constraints. We proposed three algorithms:

(a) CD, optimized for static data, (b) CDStream, which

focuses on streaming data, and (c) CDHybrid for stream-

ing data, which autonomously chooses between the two

algorithms. The algorithms rely on novel theoretical re-

sults, which enable us to bound multivariate correla-

tions between large sets of vectors. A thorough experi-

mental evaluation using real datasets showed that our

contribution outperforms the state of the art typically

by an order of magnitude.

The current methods are limited to correlations over

linear combinations of vectors. Future work should ex-

tend them to also accommodate non-linear aggrega-

tions like MIN and MAX, which find applications in

the discussed domains. Furthermore, detailed analysis

showed that caching pairwise statistics (through ’em-

pirical bounds’) greatly boosted CD’s performance. While

all proposed measures suited these bounds, future ones

might not. Thus, optimizing the application of the more

general theoretical bounds will be vital as the proposed

techniques evolve.

Acknowledgements This work has received funding from
the European Union’s Horizon Europe research and innova-
tion programme STELAR under grant agreement No. 101070122.

References

1. 2020 stock market crash - wikipedia. URL https://en.

wikipedia.org/wiki/2020_stock_market_crash
2. Skoltech computer vision — deep billion-scale indexing.

URL https://sites.skoltech.ru/compvision/noimi/
3. Agrawal, S., Atluri, G., Karpatne, A., Haltom, W., Liess,

S., Chatterjee, S., Kumar, V.: Tripoles: A new class of
relationships in time series data. In: Proc. SIGKDD’17

4. Agrawal, S., Steinbach, M., Boley, D., Chatterjee, S.,
Atluri, G., Dang, A.T., Liess, S., Kumar, V.: Mining novel
multivariate relationships in time series data using cor-
relation networks. TKDE 32(9), 1798–1811 (2020)

5. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep
variational information bottleneck. In: ICLR’17

6. Arthur, D., Vassilvitskii, S.: K-Means++: the advantages
of careful seeding. In: Proc. SODA’07

7. Örjan Carlborg, Haley, C.S.: Epistasis: too often ne-
glected in complex trait studies? Nature Reviews Ge-
netics 5(8), 618–625 (2004)

8. Chen, X., Duan, Y., Houthooft, R., Schulman, J.,
Sutskever, I., Abbeel, P.: Infogan: Interpretable repre-
sentation learning by information maximizing generative
adversarial nets. In: NIPS’16

9. Cheng, P., Min, M.R., Shen, D., Malon, C., Zhang, Y., Li,
Y., Carin, L.: Improving disentangled text representation
learning with information-theoretic guidance. In: Proc.
ACL’20

10. Chiang, R.H., Huang Cecil, C.E., Lim, E.P.: Linear cor-
relation discovery in databases: a data mining approach.
Data & Knowledge Engineering 53(3), 311–337 (2005)

11. Das, A., Kempe, D.: Algorithms for subset selection in
linear regression. In: Proc. STOC’08

12. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.:
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In: Proc. SCG’04

13. d’Hondt, J., Papapetrou, O., Minartz, K.: Efficient de-
tection of multivariate correlations with different corre-
lation measures. Tech. rep. (2023). Available in https:

//github.com/CorrelationDetective/public
14. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X.,

Keogh, E.: Querying and mining of time series data: ex-
perimental comparison of representations and distance
measures. In: Proc. VLDB’08

https://en.wikipedia.org/wiki/2020_stock_market_crash
https://en.wikipedia.org/wiki/2020_stock_market_crash
https://sites.skoltech.ru/compvision/noimi/
https://github.com/CorrelationDetective/public
https://github.com/CorrelationDetective/public

Efficient detection of multivariate correlations with different correlation measures 25

15. Echihabi, K., Tsandilas, T., Gogolou, A., Bezerianos, A.,
Palpanas, T.: Pros: Data series progressive k-nn simi-
larity search and classification with probabilistic quality
guarantees. The VLDB journal 32, 763–789 (2023)

16. Echihabi, K., Zoumpatianos, K., Palpanas, T., Ben-
brahim, H.: The lernaean hydra of data series similarity
search: An experimental evaluation of the state of the
art. In: Proc. VLDB’18

17. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation al-
gorithms for middleware. J. Comput. Syst. Sci. 66(4),
614–656 (2003)

18. Foundation, S.: SPARK for autism. https://

sparkforautism.org/portal/page/autism-research/
19. Garner, W.R.: Uncertainty and structure as psychological

concepts. Wiley (1962)
20. Gedik, B., Bordawekar, R.R., Yu, P.S.: CellJoin: a paral-

lel stream join operator for the cell processor. The VLDB
journal 18, 501–519 (2009)

21. Handwerker, D.A., Roopchansingh, V., Gonzalez-
Castillo, J., Bandettini, P.A.: Periodic changes in fMRI
connectivity. NeuroImage 63(3), 1712–1719 (2012)

22. He, Y., Ganjam, K., Chu, X.: Sema-join: joining
semantically-related tables using big table corpora. In:
Proc. VLDB’15

23. Heunis, S., Lamerichs, R., Zinger, S., Caballero-Gaudes,
C., Jansen, J.F., Aldenkamp, B., Breeuwer, M.: Quality
and denoising in real-time functional magnetic resonance
imaging neurofeedback: A methods review. Human Brain
Mapping 41(12), 3439–3467 (2020)

24. Härdle, W.K.: Applied Multivariate Statistical Analysis,
2 edn. Springer (2007)

25. Jiang, L., Kawashima, H., Tatebe, O.: Incremental win-
dow aggregates over array database. In: Proc. IEEE Big-
Data 2014

26. Kraskov, A., Grassberger, P.: Mic: Mutual information
based hierarchical clustering. Information theory and sta-
tistical learning pp. 101–123 (2009)

27. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The
similarity metric. IEEE Trans. Inf. Theory 50(12), 3250–
3264 (2004)

28. Licher, S., Ahmad, S., Karamujić-Čomić, H., Voortman,
T., Leening, M.J.G., Ikram, M.A., Ikram, M.K.: Genetic
predisposition, modifiable-risk-factor profile and long-
term dementia risk in the general population. Nature
Medicine 25(9), 1364–1369 (2019)

29. Liess, S., Agrawal, S., Chatterjee, S., Kumar, V.: A
teleconnection between the west siberian plain and the
ENSO region. Journal of Climate 30(1), 301 – 315 (2017)

30. Mangram, M.E.: A simplified perspective of the
markowitz portfolio theory. Global Journal of Business
Research 7(1), 59–70 (2013)

31. Megumi, F., Yamashita, A., Kawato, M., Imamizu, H.:
Functional MRI neurofeedback training on connectivity
between two regions induces long-lasting changes in in-
trinsic functional network. Frontiers in Human Neuro-
science 9 (2015)

32. Mitra, I., Lavillaureix, A., Yeh, E., Traglia, M., Tsang,
K., Bearden, C.E., Rauen, K.A., Weiss, L.A.: Reverse
pathway genetic approach identifies epistasis in autism
spectrum disorders. PLOS Genetics 13, 1–27 (2017)

33. Mueen, A.: Enumeration of time series motifs of all
lengths. In: Proc. ICDM’13

34. Mueen, A., Nath, S., Liu, J.: Fast approximate correla-
tion for massive time-series data. In: Proc. SIGMOD’10

35. Nguyen, H.V., Müller, E., Andritsos, P., Böhm, K.: De-
tecting correlated columns in relational databases with
mixed data types. In: Proc. SSDBM’14

36. Nguyen, H.V., Müller, E., Vreeken, J., Efros, P., Böhm,
K.: Multivariate maximal correlation analysis. In: Proc.
ICML’14

37. Oceanic, N., Administration, A.: NOAA integrated
surface dataset. https://www.ncei.noaa.gov/access/

search/dataset-search

38. O’sullivan, A., Sheffrin, S.M.: Economics: Principles in
action. Pearson Prentice Hall (2003)

39. RE, K., Kalnay, E., Collins, W., Saha, S., White, G.,
Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu,
M., Kousky, V., Dool, H., RL, J., Fiorino, M.: The
NCEP/NCAR 50-year reanalysis: monthly means CD-
ROM and documentation. Bulletin of the American Me-
teorological Society 82, 247–268 (2001)

40. Rostoker, C., Wagner, A., Hoos, H.: A parallel workflow
for real-time correlation and clustering of high-frequency
stock market data. In: Proc. IPDPS’07

41. Satuluri, V., Parthasarathy, S.: Bayesian locality sensi-
tive hashing for fast similarity search. In: Proc. VLDB’12

42. Segaran, T.: Programming collective intelligence: build-
ing smart web 2.0 applications. O’Reilly Media, Inc.
(2007)

43. Studenỳ, M., Vejnarová, J.: The multiinformation func-
tion as a tool for measuring stochastic dependence.
Learning in graphical models 89, 261–297 (1998)

44. Tan, Z., Jamdagni, A., He, X., Nanda, P., Liu, R.P.:
A system for denial-of-service attack detection based on
multivariate correlation analysis. IEEE Trans. Parallel
Distributed Syst. 25(2), 447–456 (2014)

45. Wang, J., Zhu, Y., Li, S., Wan, D., Zhang, P.: Multivari-
ate time series similarity searching. The Scientific World
Journal 2014(1) (2014)

46. Watanabe, S.: Information theoretical analysis of multi-
variate correlation. IBM Journal of Research and Devel-
opment 4(1), 66–82 (1960)

47. Wu, Y., Yu, J., Tian, Y., Sidle, R., Barber, R.: Design-
ing succinct secondary indexing mechanism by exploiting
column correlations. In: Proc. SIGMOD’19

48. Yang, K., Shahabi, C.: A PCA-based similarity measure
for multivariate time series. In: Proc. ACM-MMDB’04

49. Yang, K., Shahabi, C.: An efficient k nearest neighbor
search for multivariate time series. Information and Com-
putation 205(1), 65–98 (2007)

50. Yu, C., Luo, L., Chan, L.L.H., Rakthanmanon, T., Nu-
tanong, S.: A fast LSH-based similarity search method
for multivariate time series. Information Sciences 476,
337–356 (2019)

51. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S.,
Stoica, I.: Discretized streams: fault-tolerant streaming
computation at scale. In: Proc. SOSP’13

52. Zhang, X., Pan, F., Wang, W., Nobel, A.: Mining non-
redundant high order correlations in binary data. In:
Proc. VLDB’08

53. Zhu, Y., Shasha, D.: Statstream: Statistical monitoring
of thousands of data streams in real time. In: Proc.
VLDB’02

54. Zilverstand, A., Sorger, B., Zimmermann, J., Kaas, A.,
Goebel, R.: Windowed correlation: A suitable tool for
providing dynamic fmri-based functional connectivity
neurofeedback on task difficulty. PLOS ONE 9(1), 1–13
(2014)

https://sparkforautism.org/portal/page/autism-research/
https://sparkforautism.org/portal/page/autism-research/
https://www.ncei.noaa.gov/access/search/dataset-search
https://www.ncei.noaa.gov/access/search/dataset-search

	Introduction
	Preliminaries
	Detection of Multivariate Correlations in Static Data
	Detection of Multivariate Correlations in Streaming Data
	Evaluation
	Conclusions

