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ABSTRACT
Given a set of points, the Best Region Search problem finds the

optimal location of a rectangle of a specified size such that the

value of a user-defined scoring function over its enclosed points

is maximized. A recently proposed top-k algorithm for this prob-

lem returns results progressively, while also incorporating addi-

tional constraints, such as taking into consideration the overlap

between the set of selected top-k rectangles. However, the algo-

rithm is designed for a centralized setting and does not scale to

very large datasets. In this paper, we overcome this limitation by

enabling parallel and distributed computation of the results. We

first propose a strategy that employs multiple rounds to progres-

sively collect partial top-k results from each node in the cluster,

while a coordinator handles the aggregation of the global top-k
list, dealing with overlapping results. We then devise a single-

round strategy, where the algorithm executed by each node is

enhanced with additional conditions that anticipate potential

overlapping solutions from neighboring nodes. Additional op-

timizations are proposed to further increase performance. Our

experiments on real-world datasets indicate that our proposed

algorithms are efficient and scale to millions of points.

1 INTRODUCTION
The amount of geospatial data generated from social networks,

sensors, smart phone applications, tracking devices and so on is

constantly increasing [9]. Analyzing big geospatial data at scale

is of paramount importance for numerous applications in various

areas such as geomarketing, mobile advertisement, urban plan-

ning, tourism and logistics. In many cases, the analysis involves

identifying areas where the intensity of a studied phenomenon is

maximized. This involves, for example, finding hot spots of user
check-ins, commercial activities, crime incidents, etc. Various

traditional methods exist and have been used for such purposes,

such as computing global and local spatial autocorrelation [2] or

finding density-based clusters [10], while several recent studies

have also focused on problems related to finding areas of interest

according to certain keyword-based and size-based criteria and

constraints [3, 4, 7, 8, 15].

In this context, several types of optimal location selection prob-

lems have been studied. Range aggregate queries [18] have been

proposed for scenarios where users are interested in summarized

information about objects in a given region. Such queries return

an aggregate score over the objects enclosed within a given re-

gion, and can be efficiently processed using aggregate spatial
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indices. However, these methods can not be efficiently applied

when the problem is to find where the best regions are located.

A typical and widely studied formulation of this problem is the

MaxRS (Maximizing Range Sum) problem [6], which, given a set

of 2-dimensional weighted points, aims at finding the optimal

location of a fixed-size rectangular region that maximizes the

sum of weights of the points enclosed in it.

In this paper, we focus on the Best Region Search (BRS) prob-

lem [11], which is a generalization of the MaxRS problem. Simi-

larly, the input is a dataset D of spatial objects represented as

weighted points in a 2-dimensional space, and two parameters

a,b ∈ IR
+
, denoting the width and height of the region to be

found. The goal is to identify the optimal location of an axis-

aligned a × b rectangular region R that maximizes the value of

a scoring function f computed over the enclosed points. Hence,

the difference lies in the fact that in MaxRS, f is restricted to the

sum of weights of the points within R, while in BRS it can be

any submodular monotone function. The MaxRS problem and

its extensions and variants have their roots in problems studied

in the past by the computational geometry community [14, 16],

and have received much attention recently by the database com-

munity [1, 4, 6, 11, 12, 20, 21].

The BRS problem has numerous applications related to loca-

tion planning. For instance, assume a company that is searching

for the optimal location to open a new store. In that case, an a ×
b region R can be used to approximate the area from which the

new store is expected to draw its potential customers. Assuming

that a suitable scoring function f is provided, which computes a

utility score for each candidate region R based on its contents,

the solution to the BRS problem indicates the optimal location

for placing this new store. Similar examples can also be found,

for instance, when recommending regions to travelers. Given the

size of the region that a user is willing to explore, modeled by

an a × b rectangle, and a function f quantifying the utility of a

region with respect to the user’s preferences (e.g., presence of

museums, restaurants, shops, etc.), the BRS problem computes

the best region to be recommended.

The k-BRS problem has been introduced in [19], presenting

an algorithm that can compute top-k best regions progressively.
While doing so, we have also observed that in many real-world

datasets, where spatial objects are typically not uniformly dis-

tributed in space, these top-k results tend to highly overlap, even

for very large values of k . This is expected, since by slightly

shifting a region R horizontally and/or vertically it is possible

to obtain a new region R′ that covers almost the same area as R
and thus achieves very similar utility score to it. Yet, results of

such type offer essentially no new insight over the explored data.

Hence, to tackle this problem, we have introduced an additional

constraint that either completely prohibits overlaps among the
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Figure 1: Illustrative example. The green and blue regions
are those returned by Ni and Nj , respectively. The under-
lined results are those finally selected by the coordinator.
The red ones are the correct top-3 results.

returned results or reduces the degree of overlap by allowing but

penalizing partial overlaps among the returned top-k regions.

Being able to retrieve top-k results progressively, instead of

simply computing the overall best region, as well as avoiding

overlapping results that provide near-duplicate information, has

many advantages in data exploration scenarios. Still, the state-of-

the-art solution proposed in [19] operates in a centralized setting

and cannot scale as the input dataset size grows; indicatively, it

needs around 30 seconds to identify the top-10 non-overlapping

regions of size 200 × 200 m
2
even on moderate-size datasets –

around 100 thousand points.

To efficiently address the k-BRS problem when dealing with

big geospatial data, an approach is needed that can scale out, i.e.,

distribute and parallelize the computation over multiple workers

(computing nodes) in a cluster. In this paper, we address this prob-

lem by proposing different methods for parallel and distributed

top-k best region search while taking into account the criterion

of overlap among the returned results. In particular, we consider

a setting where the input dataset is partitioned across several

workers that perform local computations in parallel, while a co-

ordinator node is assigned the task to coordinate the execution

and merge local results to produce the global top-k result list.

Most contemporary Big Data platforms, e.g., Spark, are naturally

represented by the aforementioned setting.

Before we describe our approach, we explain the main chal-

lenge to this problem, which arises when non-overlapping (or

only partially overlapping) results are requested. Specifically, the

challenge arises from the fact that, under this constraint, the

global top-k results are not contained in the union of the local

top-k results computed at each node. Therefore, simply comput-

ing the local top-k results at each node and merging these top-k
lists at the coordinator can lead to incorrect results in many cases.

We illustrate this with the following example.

Example 1. Consider the example illustrated in Fig. 1, assuming
that the data is split in two partitions, each one assigned to a differ-
ent worker, represented as Ni and Nj . Assume that the top-8 regions
with highest scores in both partitions (regardless of overlaps) are
those shown in the figure, with the index of each region indicating
its rank (i.e., R1 having the highest score). Suppose that each region
belongs to (i.e., is computed by) the worker that contains its center.

Assume that the user requests the top-3 non-overlapping results.
Node Ni will progressively compute its results, and will return to
the coordinator the regions R2, R5 and R8. R3 is skipped since it
overlaps with R2 which has a higher rank. Similarly, Nj will return
to the coordinator the results R1, R4 and R7. Again, R6 is skipped as
it overlaps with R4. Based on these two sets of local top-3 results, the
coordinator will compute the global top-3 list excluding overlapping
regions, thus returning R1, R4 and R5.

However, the above result is incorrect. The correct global top-3
results should have been R1, R3 and R6. As we can see, R3 is a
false negative – it was missed because Ni skipped it, as it was
overlapping with R2; however, R2 was eventually discarded by the
coordinator because it was overlapping with a better result R1 from
the neighboring node. R4 and R5 are false positives – their respective
nodes considered them as valid results; however they should have
been discarded because eventually a better result R3 that overlaps
with both of them should have been present. R6 is again a false
negative, for reasons similar to R3.

As revealed by the above example, the root cause of false

results is the fact that the admission of a local top-k region in the

global top-k list is precluded by the existence of a higher ranked

region that overlaps with it. Since the latter may arise from a

different worker than the former, a worker cannot independently

reason regarding the validity of its own results, i.e., which of

these results will eventually “survive” at the coordinator. To

make matters worse, candidates that were rejected locally due to

the existence of a better local overlapping result R, may actually

have a place in the global top-k list if R is later dismissed at the

coordinator.

Since overlapping regions between two neighboring workers

occur at the borders, an intuitive – yet insufficient – approach

to overcome this problem would be to replicate the contents of

two neighboring nodes around the borders. In that case, in the

example of Fig. 1, it could be possible for Ni to know, for instance,

that R1 overlaps with R2 and has higher score than it. However,

it may turn out that R1 is disqualified in Nj , if it overlaps with

an even better result not located in the border with Ni , in which

case Ni would still have no knowledge of this. Even replicating

the whole contents of Nj to Ni would not suffice, since the results

of Nj may similarly be affected by its other neighbors as well.

In this paper, we explore different solutions to overcome this

problem. First, we propose a multi-round algorithm (MR), where
the problem of dealing with conflicts is mainly handled by the

coordinator. The advantage of MR is that workers can readily

exploit the local k-BRS algorithm with minor adaptations, since

the decisions for forming the global top-k list are made at the

coordinator level. The downside is that when overlapping re-

sults are identified, and hence discarded, at the coordinator, a

new round has to be executed, where the relevant workers are

informed about these results and are requested to compute new

results accordingly. To overcome this drawback, we devise a

single-round algorithm (SR). This requires formulating appropri-

ate conditions to reason about the uncertainty of the validity of

the local results. In SR, each worker proactively anticipates which
results may be disqualified because of overlaps with regions from

other nodes, and what the respective effects are in each case, and

produces a sufficiently extended local set of results to guarantee

a single round of communication. However, the computation

of these extended results imposes additional overhead on each

worker, implying potentially significantly higher execution time

of the local processes. Eventually, we propose a hybrid algorithm

(HY ), which strikes a balance between the pros and cons of the

multi-round and single-round strategies.

In the example described above, we assumed that the proposed

regions must not overlap. Other conditions are also possible, e.g.,

the user might accept overlapping regions as long as their overlap

is below a threshold, or even score the overlapping regions differ-

ently. Our methods support arbitrarily complex scoring functions,

enabling different configurations concerning the overlap.



Summarizing, the paper makes the following contributions:

• We study the top-k best region search problem, identifying

and pointing out the challenges that arise when attempting

to compute non-overlapping (or partially overlapping) top-

k results in a distributed and parallel setting.

• We explore the solution space of the problem, and propose

two different distributed algorithms for efficiently solving

it. The first is a multi-round algorithm, with the number of

rounds bounded by the value of parameter k . The second
is a single-round algorithm, which guarantees that the

top-k best regions can be identified within a single round

of interactions.

• The above two algorithms represent the two extremes

in terms of number of rounds, and come with different

performance tradeoffs. We thus proceed to explore the

configuration space between them, leading to different

optimizations, and to a hybrid, fixed-rounds algorithm

that combines the benefits of the two.

• We implement all proposed algorithms in Spark and we

thoroughly evaluate them using real-world datasets. Our

evaluation results demonstrate the scalability and benefits

of the proposed algorithms, and analyze their tradeoffs on

queries and datasets of different properties.

The rest of the paper is structured as follows. Section 2 sum-

marizes related work. Section 3 presents the problem definition

and background. We introduce the multi-round and single-round

algorithms in Sections 4 and 5, respectively. Section 6 presents

our experimental evaluation, and Section 7 concludes the paper.

2 RELATEDWORK
The Best Region Search problem has its roots in computational ge-

ometry problems relating to intersecting rectangular regions. An

intersection graph of rectangles in the 2-dimensional space with

sides parallel to the axes is defined in [14]. It is constructed by

representing each rectangle with a vertex and connecting two ver-

tices by an edge if the corresponding rectangles intersect. Then,

finding the connected components and the maximum clique on

this graph is investigated. Moreover, given a set of points in a

2-dimensional space, the problem of finding the placement of a

rectangular region P of specified size such that it encloses the

maximum or minimum number of points is investigated in [16].

The proposed algorithm is based on an interval tree.

More recently, the problem has attracted interest in spatial

databases. Specifically, theMaxRS problem has been defined in [6]

as follows: given a set ofweighted points, and a rectangular region
R of specified size, find the placement of R that maximizes the

sum of the weights of all enclosed points. An external-memory

algorithm is proposed that is optimal in terms of I/O complexity,

based on an external version of the plane-sweep algorithm [13].

Furthermore, the (1-ϵ)-approximate MaxRS problem has been

studied in [20], which returns a rectangle whose covered weight

is at least(1-ϵ)m∗, wherem∗ is the optimal covered weight and ϵ
is an arbitrarily small constant between 0 and 1.

The MaxRS problem has also been investigated in a streaming

setting. In [1], an algorithm that exploits a graph in a grid index

is proposed, using also an upper-bounding technique to avoid

unnecessary update computation. A sweep-line based algorithm

has also been proposed for the continuous detection of Bursty Re-
gions [12]. This is a variation of the continuous MaxRS problem,

where the burst score of a region is defined over two consecutive

sliding windows, and spatial objects in different windows con-

tribute differently to the burst score. Moreover, the continuous

maintenance of range-sum heat maps over dynamically updating

data objects has been studied in [17].

The Best Region Search problem generalizes the MaxRS prob-
lem by allowing the objective score function used to quantify a

rectangle’s score to be any submodular monotone function over

the enclosed points, instead of the sum of their weights [11]. Each

point is represented by a fixed-size rectangle centered at it. Then,

the best region is identified by finding the maximal intersections

of these rectangles. To this end, the input space is partitioned

in vertical slices that run parallel to the y-axis. Each slice is pro-

cessed by executing a bottom-up scan over it using a horizontal

sweep line to identify so-calledmaximal slabs. The maximal slabs

are then processed using a vertical sweep line to identify maxi-
mal regions. The best region is guaranteed to be centered inside

one of those maximal regions. A progressive algorithm for top-k
Best Region Search has been proposed in [19]. This algorithm

is used in this paper to retrieve local top-k results at each node;

hence, it is described in more detail in Section 3.2.

Variants of the MaxRS problem have also been considered

in road networks. The length-constrained maximum-sum region
query is introduced in [4]. An approximation algorithm is pro-

posed, utilizing a technique that scales node weights into integers,

as well as a heuristic and a greedy algorithm. A unified frame-

work that addresses three variants of optimal location queries in

road networks is presented in [22]. Given a set of existing facili-

ties and a set of clients, these queries compute the location for a

new facility that optimizes a certain cost metric defined based

on the distances between the clients and the facilities. Finally,

continuous Best Region Search in spatial data streams in road

networks has been addressed in [5], proposing several pruning

strategies and a branch-and-bound algorithm.

3 PRELIMINARIES
In this section, we first provide a formal definition of the problem

addressed in this paper, and then we briefly outline the k-BRS
algorithm [19], which is exploited in our algorithms to compute

the local results at each node.

3.1 Problem definition
Assume a set D of points in a 2-dimensional space. Let f be a

scoring function that assigns a score f (R) to any axes-aligned

rectangle R, based on its enclosed points. We assume monotone

scoring functions, such that if the contents of a rectangle R′ are
a superset of those of R, then f (R′) ≥ f (R). Based on these, the

problem of computing the top-k overlap-aware best regions can
be formally defined as follows:

Problem 1 (Top-k Overlap-Aware Best Regions). Given
a two-dimensional point dataset D, a monotone scoring function
f , width and height parameters w , h, and an integer k , the goal
is to compute a ranked list of k axis-aligned rectangles Ri with
dimensions w × h, such that for each i , j, 1 ≤ i < j ≤ k , it holds
that:
• f (Ri ) ≥ f (Rj ), i.e., the rectangles are ranked in decreasing
order of their score,
• Ri ∩Rj = ∅, i.e., Rj does not overlap with any higher ranked
result Ri , and
• any other rectangle R′ either has score f (R′) ≤ f (Rk ), or
there exists another rectangle Ri in the top-k list such that
f (Ri ) ≥ f (R′) and R′ overlaps with Ri .



Note that this definition can be relaxed to allow results that

partially overlap, up to a user-specified threshold. In fact, this

boolean condition can be generalized even further, by allowing

overlaps but penalizing the score of a region by a factor depend-

ing on its degree of overlap with a higher-ranked region, as

described in [19] using the notion of marginal gain. To simplify

presentation, in this paper we focus on the boolean case, but it

is straightforward to adapt the proposed algorithms to handle

cases where the score of a region is penalized based on its degree

of overlap with previous results.

Our goal is to compute top-k overlap-aware best regions in a

parallel and distributed setting. A progressive algorithm for top-k
overlap-aware best regions has been presented in [19]. However,

it operates in a centralized setting and does not scale to big

geospatial datasets containing millions of points. Transferring

this solution to a distributed environment is not straightforward,

because, as shown in Section 1, deriving global top-k results from

the union of local top-k ones leads to incorrect answers. Hence,

in this paper, we focus on overcoming this problem.

3.2 The k-BRS algorithm
Next, we briefly outline the k-BRS algorithm [19], which is used

in this paper as the basis for retrieving local top-k results in each

partition. The process is summarized in Alg. 1.

The algorithm starts (Lines 2–3) by constructing a grid with

cells of sizew ×h, i.e., with the same dimensions as the regions to

be discovered. For each cellC , an upper boundUB(C) is computed

for the score of any region R centered inside C . This is based on

the fact that R can enclose at most those points located within C
or its neighboring cells. The cells are then inserted into a priority

queue Q in decreasing order of their upper bound.

Whenever a cell is extracted from Q (Lines 6–8), it is scanned

bottom-up using a horizontal sweep line. This generates a series

of maximal slabs, each one associated with a respective upper

bound, according to which they are inserted into Q. Moreover,

the series of slabs leading up to a maximal slab are organized in

a slab tree, so that these sub-maximal slabs can be visited later

if needed. This permits the algorithm to backtrack and explore

other results in case the one found is inadmissible due to overlap.

Whenever a maximal slab is extracted from Q (Lines 9–12),

it is scanned from left to right using a vertical sweep line. This

generates a series ofmaximal regions, each one associated with an
upper bound, according to which they are added to Q. In addition,

one level of the associated slab tree is traversed, generating one or

two new slabs, which now becomemaximal, and are thus inserted

inQ, alongwith the reduced slab tree, to be processed accordingly.

Maximal regions are also associated with a corresponding region
tree, operating similarly to the slab tree.

Finally, whenever a maximal region is extracted from Q (Lines

13–16), a result is produced, comprising the next region with

the highest utility score in the local top-k list. At this point, a

check is performed to determine whether this result overlaps

with a previously accepted result, and thus determine whether

it is admissible or not. New maximal regions are also generated

from the region tree and added to Q for future consideration.

4 MULTI-ROUND ALGORITHM
Our first method is an incremental, multi-rounds algorithm (MR)
that gradually builds the global top-k list of results by retriev-

ing local top-k results from each worker at each round. While

aggregating the local top-k results received at the end of each

Algorithm 1: Local k-BRS algorithm.

1 Function Local(k)
2 L ← ∅ ; G ← ConstructGrid()
3 Q ← InitializePriorityQueue(G)
4 while |L| < k & |Q| > 0 do
5 E ← Q.nextEntry()

6 if E.type = “Cell” then
7 S ← GenerateSlabs(E)
8 Q.addAll(S)
9 else if E.type = “Slab” then
10 R ← GenerateRegions(E)
11 S ← GetNextSlabs(E.slabTree)
12 Q.addAll(R ∪ S)
13 else if E.type = “Region” then
14 if overlapAcceptable(L, E) then L.add(E)
15 R ← GetNextRegions(E.reдionTree)
16 Q.addAll(R)
17 return L

round, the coordinator resolves overlaps, and, if needed, contacts

again the affected workers, informing them about the occurred

overlaps and asking them for accordingly revised top-k results.

This process may take up to k rounds to complete. The steps are

outlined in Alg. 2. We start our discussion with data partitioning,

and then we explain the querying algorithm.

Data partitioning. Data points are spatially partitioned by a

uniform grid with partition widthwp and height hp (Lines 2–3).

Each point with coordinates (x,y) is mapped to partition Pi , j ,
with i = ⌈x/wp ⌉ and j = ⌈y/hp ⌉. Data partitioning is performed

offline. In Spark, this entails a simple map and groupByKey se-

quence that parses the original data and generates a new pair

RDD with key being the partition id, and value the list of points

belonging to this partition. Partitions are held by N nodes (in our

case, the Spark workers). Typically, the number of nodes is much

less than the number of partitions. It is assumed thatwp >> w
and hp >> h, wherew and h denote the width and height of the

query rectangle.

The node holding each partition is responsible for processing

the partition to identify the top-k regions with a top-left corner
1

within the partition. The border cells of the partitions are of

particular interest. Notice that a candidate region may intersect

two neighboring partitions (e.g., r8 in Fig. 2). To enable detection

of these regions from exactly one partition, and to be able to

compute their score, border cells belonging to the top and left

borders of each partition are replicated to all partitions they share

a border with (for example, the blue-colored cells of P2,3, P3,3
and P3,2 of Fig. 2 are the ones replicated to the node holding P2,2).
This replication may happen either at query time, whenw and h
are determined, or may occur offline, assuming that a maximum

value forw and h is supported.

Query execution. Upon receiving the query, each partition P
is processed in parallel to compute local top-k results (Line 6).

The local top-k algorithm (Alg. 1) is used for this purpose, with a

1
An implementation detail is that, in the k-BRS algorithm [19], each input point

p is represented by aw × h rectangle Rp centered at it. The rationale is that any

region centered inside Rp encloses p . Now, identifying a result by its top-left corner
instead of its center involves a minor adaptation: Rp must have its bottom-right

corner (instead of its center) at p . In this way, it still holds that any result R having

its top-left corner inside Rp will enclose p .



Algorithm 2: MapReduce implementation of the Multi-

round algorithm.

1 Function AtCoordinator(k)
/* Data partitioning */

2 data ← input .map(poi to <partitionIndex,poi>)

3 data ← data.дroupByKey(partitionIndex)

4 list дlobalAns ← ∅

/* Querying */

5 while |Ans | ≤ k do
6 localAns ← data.map(Local(k,дlobalAns))

7 roundAns ← localAns .reduce((a,b) =⇒

AддFunc(a,b,k))

8 дlobalAns ← дlobalAns ∪ roundAns

/* Reduce-based aggregation of results */

9 Function AggFunc(res1, res2, k)
10 minAcceptableScore ←

max(min(res1 scores),min(res2 scores))

11 localAns ← res1 ∪ res2
12 localAns ← SortDesc(localAns)
13 output ← ∅

14 for pos=1 to k do
15 if overlapAcceptable(localAns[pos], roundAns) &

sc(localAns[pos]) > minAcceptableScore then
16 output ← output ∪ localAns[pos]

17 else
18 break

19 return output

minor tweak such that it accepts as input the list of global results

computed so far (дlobalAns). This list is taken into consideration

in Alg. 1 (Line 14), so that now the overlap condition is checked

with respect to L ∪ дlobalAns instead of L.

The local results per partition are then passed to an aggre-

gation function AддFunc , such that a single list of top-k results

ends up at the coordinator. The function takes as input two lo-

cal results, constructs their union, sorts it, and retains the top-k
of them, as long as these do not overlap each other. If a non-

acceptable overlap is found, or if the minimum score of the two

lists surpasses the score of the current region, then the aggre-

gation interrupts and retains only the output produced so far.

The logic behind this is that, after any of these cases is observed,

any further results returned by the aggregation process are not

guaranteed to be correct or complete. This aggregation is asso-

ciative and commutative. Therefore, it is executed as a reduction

in Spark (Line 7), which means that the whole processing (both

maps and reductions) is fully parallelized, and the coordinator

never constitutes a bottleneck for the algorithm’s performance.

Finally, after the reduced results are returned to the coordinator,

the coordinator merges them with the results of the previous

rounds (if any), and loops through the previous map/reduce steps

until it collects a total of k results.

As explained previously, we focus on the case that a boolean

condition is used to check whether a new result is admissible

with respect to existing results based on potential overlap. In

the algorithm, this condition is checked by the overlapAcceptable
function (Line 15). A generalization of this is to penalize the

score of overlapping regions using a marginal gain function, as

described in [19].

The above algorithm is amenable to configurations and opti-

mizations. First, the size of partitions is a system parameter, which

involves the following tradeoff. Very large partitions reduce the

area covered by border cells, thereby reducing the probability

that overlapping regions of two partitions require more rounds.

However, they also lead to scalability problems of the local algo-

rithm (the workers that hold dense partitions run out of memory,

swap aggressively, and eventually crash).

Also notice that the algorithm asks for k results per round,

per partition. It is however unlikely that the global top-k results

come from the same partition, which means that the local nodes

(the Spark workers) are likely producing many more results than

needed. To reduce this extra effort, the coordinator can instead

ask for the top-k ′ results per partition at each round, with k ′ < k
set either at the beginning, or progressively at each round, in

order to fine-tune the tradeoff between the number of rounds

and the local effort at the nodes: a high k ′ value favors towards
a lower number of rounds, whereas a lower k ′ reduces the effort
spent by the workers on computing results that are not really

useful, because of yet-unknown overlaps. The following lemma

formalizes this tradeoff.

Lemma 4.1. The multi-round algorithm requires at least ⌈k/k ′⌉
rounds and at most k rounds.

Proof. For the lower bound, consider the case where answers

are contained in a single partition. Since each partition generates

k ′ answers at each round, it is not possible to retrieve all results in
less than ⌈k/k ′⌉ rounds. For the upper bound, consider the top-1
region among all collected local results at a given round. This is

guaranteed to be admissible, since it has already been checked

locally against the currently existing results (globalAns). Hence,
at each round, at least one more result is produced. Consequently,

the process will terminate after k rounds. □

5 SINGLE-ROUND ALGORITHM AND
EXTENSIONS

The multi-round algorithm enables processing of datasets with

sizes that could not be practically processed by the centralized

algorithm. Still, the iterative nature of the algorithm (and overlap-

ping regions from different partitions) may lead to a potentially

high overhead and poor performance. To overcome this draw-

back, we now introduce a single-round algorithm. The algorithm

maintains auxiliary information per region that is used during

the reduction phase for handing overlapping regions from dif-

ferent partitions. We will then explore the space between the

single-round and the multi-round algorithm, proposing a hybrid
algorithm, and discussing additional optimizations.

5.1 Single-round algorithm
The intuition for the single-round algorithm (SR) is the following.
When processing each partition, a sufficient number of regions

(typically larger than k) will be computed and sent to the coordi-

nator, such that it is guaranteed that the coordinator will have all

candidates needed to assemble the global top-k results (discard-

ing non-admissible ones) without further communication to the

workers. The challenge is to determine how many, and which,

additional regions need to be sent, such that the coordinator is

guaranteed to hold sufficient information for extracting the final

answer. This challenge arises from the presence of overlaps be-

tween candidate regions that are detected in different partitions.

For example, in Fig. 2, region r1 of partition P2,2 overlaps with the



Figure 2: Identified regions within a node’s partition. The
regions are labeled in decreasing score, i.e., sc(r1) > sc(r2).

green region of partition P2,1, which has a higher score. There-

fore, r1 will not be in the final results (unless the green region

of P2,1 intersects with another region of P2,1 with higher score),

which will make r2 a possible result. Unfortunately, existence of
long chains of such overlaps prohibit local solutions that rely on

data replication (e.g., replicating the border cells).

The single-round algorithm addresses this issue by forming a

dependency graph of the identified candidate regions at each par-

tition. These graphs allow each node to establish a lower bound

on the number of regions contained in the local results that will

be accepted by the coordinator, if their score is sufficiently high.

We start by describing two core components of the algorithm,

the dependency graph and the extended dependency graph.

Definition 5.1 (Dependency graph). Let R = r1, r2, . . . denote
the list of candidate regions detected at a partition P , ordered by

their score, i.e., sc(ri ) ≥ sc(ri+1). Dependency graph G(R) is a
directed acyclic graph that contains all candidate regions from R

as vertices, and has an edge between any two regions ri and r j if
these overlap. The direction of the edge is from the region with

the higher score towards the region having the lower score (ties

between regions are broken in a consistent manner, by preferring

the region with the lowest x coordinate, and then the region with

the lowest y coordinate).

As an example, Fig. 3 depicts the dependency graph for the

detected regions (r1 to r8) in Fig. 2.

Constructing the dependency graph for each partition Px ,y
is a local process, since it utilizes only the partition’s data and

the data in the border cells of the neighboring partitions Px+1,y ,
Px ,y+1, and Px+1,y+1 which is replicated in the node holding

the partition. Recall, however, that the regions that overlap the

border cells of each partition (gray-shaded cells in Fig. 2) may

overlap with candidate regions detected in adjacent partitions

(e.g., the green region from P2,1 which overlaps with r1 of P2,2).
The dependencies induced by these regions cannot be depicted

in the dependency graph. Thus, to represent these dependencies,

r1 r2 r3 r4

r5 r6r7 r8

Figure 3: Dependency graph.
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Figure 4: Extended dependency graph.

the dependency graph is extended by adding artificial dependen-
cies for all (locally unknown) candidate regions that potentially

overlap with regions detected at neighboring partitions.

Definition 5.2 (Extended dependency graph). The extended de-

pendency graph X(R) of a partition is a DAG containing: (a)

G(R), and (b) for each vertex v ∈ G(R) with an upper-left corner

contained in a border cell (i, j), one vertex v ′ for each one of the

cells adjacent to (i, j) that belongs to a different partition, and an

edge pointing from v ′ to v .

Intuitively, the extended dependency graph encodes the possi-

ble dependencies from regions detected at other partitions. Since

these regions are unknown at the node constructing the graph,

they are represented with the coordinates of the cell that would

contain their upper-left corner. For example, region r1 of parti-
tion P2,2 has an upper-left corner at cell (9, 9). The adjacent cells

of (9, 9) belonging in other partitions are the cells (8, 8), (8, 9),

(8, 10), (9, 8), and (10, 8) of partitions P1,1, P1,2, and P2,1. Any
region from another partition that has a non-empty overlap with

r1 will have its upper-left corner at one of these cells. Figure 4
depicts the extended dependency graph of partition P2,2.

The significance of the extended dependency graph is that it

allows to establish an upper bound on the number of regions in

the partition that may be excluded from the results due to (chains

of) overlapping regions contained in other partitions. Conversely,

it allows each partition to derive a lower bound on the number

of safe regions, i.e., the regions that will not be invalidated from

the contents of other partitions, even by long chains of overlaps.

The progressive construction of the extended dependency

graph takes place alongside the local algorithm introduced in

Alg. 1, and is summarized in Alg. 3. Precisely, we slightly modify

the local algorithm in two ways: (a) for every identified region

that passes the filter of acceptable overlap (Line 14), the modified

algorithm invokes a function addReдion, to add the region and its
dependencies in the extended dependency graph, (b) it terminates

when addReдion has detected sufficient safe regions.

In more detail, before processing a partition, the node initial-

izes an empty extended dependency graph G, three sets Safe,
Unsafe, and detectedRegions for keeping the regions, a setM for

keeping the identified dependencies, and a counter for the num-

ber of identified safe regions safeCnt. Upon invocation, addRegion



checks the new region to decide whether it is safe, unsafe, or

inadmissible, and to maintain a lower bound for the number of

safe regions (variable safeCnt).2 This process is governed by a

set of rules. Precisely, for a candidate region rx , the node checks
for three different cases:

Case 1: rx does not overlap with other identified regions (either
safe or unsafe), or with the border cells. rx is a safe region, i.e.,

it will be included in the final answer if its score is sufficiently

high. We increase safeCnt by one, and add it in the Safe set and
in the extended dependency graph with no dependencies. r7 is
one such example from Fig. 2.

Case 2: rx overlaps with a safe region ry , which is already in-
cluded in the Safe set. Since ry is already identified, its score is

higher than the score of rx . Therefore, node discards rx and con-

tinues. As an example, consider r5 and r6 from Fig. 2 – since r5 is
safe and has a higher score than r6, the latter will be discarded.

Case 3: rx overlaps with a border cell, or with an unsafe region
ry included in the Unsafe set. In this case, rx is also unsafe. rx is

added in the Unsafe set, and in the extended dependency graph,

with dependency from ry and/or the adjacent cells of the other

partitions. Let D(rx ) denote the set of all dependencies for rx
contained in the dependency graph after this process. We have

two further sub-cases:

Case 3a: If none of the regions contained in D(rx ) is included
inM, none of these has been considered before. Therefore, ei-

ther rx or a region from D(rx ) will be part of the top-k regions,

assuming that their score is sufficiently high. To capture this, rx
and the regions inD(rx ) are added toM, and counter safeCnt is
increased by one. From Fig. 2, r1 and r8 will belong in this cate-

gory. Out of these, the coordinator will later detect that r1 has
an overlap with the green-marked region detected at partition

P2,1 (i.e., the green region will be included in the results instead),

whereas r8 will be included in the results if is score is sufficiently

high (hence the increase on safeCnt for both of them). Another

example is region r3, which depends on r2: since r2 overlaps with
r1 which will be included inM, r2 will not be included inM.

This means that r3 and its dependencies will be included inM,

and safeCnt will be increased by one.

Case 3b: If any of the regions contained in D(rx ) is already
included in setM, then safeCnt is not increased and rx is not

added in M. As an example, consider regions r2 and r1 from

Fig. 2. Region r1 will be identified first, and already contained in

M when r2 is identified. Therefore, identification of r2 will not
lead to an increase of safeCnt.

After completion of addRegion, the control returns to the modi-

fied local algorithm, which breaks the loop when safeCnt reaches
k . The local results for the partition are contained in detectedRe-
gions, and the extended dependency graph is saved in G.

Similar to the case of the multi-round algorithm, implemen-

tation of the single-round algorithm over Spark requires a way

to hierarchically merge/reduce the local results (the dependency

graphs) in order to get a final dependency graph with no further

artificial dependencies in the coordinator, for extracting the final

answer. Conceptually, the required merging involves the follow-

ing steps: (1) we form the union of the two graphs, (2) if the two

graphs share a border, we identify the artificial dependencies

in the union graph that can now be eliminated, or replaced by

2
The problem of counting the number of safe regions is not equivalent to the prob-

lem of actually detecting the safe regions. Addressing the latter problem typically

leads to less regions marked as safe, which translates to larger dependency graphs

and degradation of the algorithm’s performance.

Algorithm 3: Single-round algorithm – progressive con-

struction of extended dependency graph.

1 G ← ∅ , Safe← ∅ , Unsafe← ∅ , detectedRegions← ∅ ,
M ← ∅ , safeCnt← 0

2 Function addRegion(reдion)
3 if region does not overlap with any region in Safe,

Unsafe, and border cells then
4 G.addNode(reдion)
5 Safe← Safe ∪ region
6 safeCnt← safeCnt + 1

7 else if region overlaps with a region in Safe then
8 continue

9 else if region overlaps with a region in Unsafe or
border cells then

10 G.addNode(region)
11 G.addDependencies(region)
12 Unsafe← Unsafe ∪ region
13 if region dependencies is included inM then
14 continue

15 else
16 safeCnt← safeCnt + 1

17 M ← M∪( region dependencies)

18 detectedRegions← Safe ∪ Unsafe

dependencies on real regions, (3) we propagate the effect of each

dependency elimination or replacement (e.g., switching a region

from unsafe to safe), by performing a depth-first traversal of the

graph starting from the affected region, and, (4) we reduce the

graph by finding the score of the top-k safe region, and removing

all regions with a lower score.

Notice that the effect of the propagation step (step 3) relies on

the same rules that we introduced earlier to determine whether

a region is safe, unsafe, or can be safely removed. Therefore, a

simple way to implement the above process is to initialize an

empty graph, and keep adding the regions of the two partitions

in descending order of score by invoking addRegion function of

Alg. 3. The adding process can stop when safeCnt exceeds k .

Theorem 5.3. The final dependency graph produced by the
algorithm only contains safe regions, which are the answer to the
user’s query.

Proof sketch: Since the final dependency graph contains the

input from all partitions, it will no longer contain artificial depen-

dencies, which cause the unsafe regions (notice that inadmissible

regions are not included in the graph – see lines 7-8 of Alg. 3).

Also, regions are added in this graph in order of descending score,

and the graph is completed as soon as the graph contains k nodes.

The proof can be formalized with induction. □
The discussed algorithm is amenable to several optimizations

and extensions for reducing network load and/or wallclock time.

We present these in the following.

5.2 Spatial-aware tree-based aggregation
The aggregation function at the single-round algorithm is com-

mutative and associative, similar to the multi-round algorithm.

Therefore, it can be expressed in Spark as a reduction, enabling

the Spark engine to fully distribute this part of the algorithm as

well. Notice however that Spark does not take spatial proxim-

ity of partitions into account when executing the reducers. As



Algorithm 4: MapReduce implementation of Single-

round algorithm. Parameters res1, res2, res3, . . . repre-
sent the results grouped by the same key.

1 Function AtCoordinator(k)
2 data← input .map(poi to <partitionIndex,poi>)

3 data ← data.дroupByKey(partitionIndex)

/* first compute the local results per

partition */

4 localAns← data.map(modified Alg1.Local(k))

/* recursive hierarchical aggr. */

5 for i=1 to treeHeiдht do
6 localAns ←

localAns .map(recomputePartitionIndexes(b))
.дroupByKey(partitionIndex).map(mergeRegions(k))

7 Ans ← localAns

8 Function mergeRegions(<res1, res2, res3, . . . >, k)
9 G ← ∅

10 pos ← 0

11 unionRes ← sortDesc(res1 ∪ res2 ∪ res3 . . .)

12 while (G.sa f eCnt < k) do
13 G.addReдion(unionRes .дet(pos))

14 pos ← pos + 1

15 return G

such, for a 16-partitions example of Fig. 5, one possible reduc-

tion order could be the following (where ⊕ denotes the reduc-

tion/aggregation function of the results): (((1 ⊕ 16) ⊕ (5 ⊕ 11)) ⊕

(9 ⊕ 7)) ⊕ (4 ⊕ 13) . . .. This random-order reduction precludes

a core optimization, since merging distant partitions (e.g., parti-

tions 1 and 16) does not help the reduction function to increase

the per-partition number of safe regions. Ideally, we could reduce

partition results in a proximity-aware hierarchical approach (i.e.,

order ((1 ⊕ 2) ⊕ (3 ⊕ 4)) . . .). Then, the merging process would,

for example, exploit the partial results of partition 1 to mark the

partial results of partition 2 that border with partition 1 as safe,

or to exclude them, depending on their overlap and scores.

To exploit this observation, we enforce an explicit reduction

order to Spark by introducing a hierarchical structure of aggre-

gations. Fig. 5 depicts a small example with a hierarchical aggre-

gation of 16 partitions. First, we apply a Z-order curve to assign

an id to all partitions. Notice that close-by ids now mostly have

spatial proximity. Then, each partition with id id assumes place

in the hierarchy as the child of parent with id ⌈id/b2⌉, where
b2 is the desired fan-out of our hierarchy. In our example, par-

titions with id 1 to 4 become children of a parent with id 1, i.e.,

their results will be merged together with a reduction in order to

receive their parent node 1. The aggregation process continues

recursively, until we reach to a single parent.

In concrete terms, let P denote the total number of partitions,

and p = bi be the smallest power of b ∈ N+ that is greater

than or equal to P , for a user-configured value of b. The space
is recursively partitioned to p tiles of equal size (b × b tiles at

each recursion), giving rise to a (b2)-ary aggregation tree. This

aggregation tree is represented in Spark with a chain of map
and groupByKey sequences (Alg. 4, lines 5-7). The map functions

determine the place of the tile in the hierarchy (essentially the

id of the parent reducer), and the groupByKey functions bring

together the results of the neighboring partitions, for the merging

algorithm to run (function mergeRegions). The process continues

until the root of the hierarchy, and the results are finally collected

by the coordinator. Again, this whole process is executed in a

decentralized fashion, and the coordinator only receives the final

results. The value b that determines the number of levels in the

tree hierarchy is important. A very small value of b, e.g., 2, leads
to many levels, introducing significant synchronization overhead

in Spark. At the other extreme, very large b values lead to low

parallelism and large memory requirements at the nodes.

5.3 Peer-to-peer communication
Up to now, construction of the extended dependency graph did

not exploit information regarding the neighboring partitions. As

such, all artificial dependencies from neighboring partitions were

set in a pessimistic way to dominate the local regions, leading

to potentially long dependency chains (e.g., Fig. 6 contains a

dependency chain that includes r1 to r4, because r1 is unsafe).
To alleviate this issue, we introduce moderate communication

between the nodes, for exchanging key statistics regarding their

neighboring partitions (e.g., the exact highest score of any region

within all border cells, the maximum score of all regions in the

border cells, or even the individual regions identified in the bor-

der cells and their scores). These statistics or results can then be

used during the local algorithm to replace or tighten the artificial

dependencies, i.e., to upper-bound the score of the artificial ver-

tices in the extended dependency graph. The amount and type

of data to exchange between nodes can lead to a spectrum of

configurations that enable a tradeoff between the number of safe

regions and the computational overhead and network volume.

This P2P-style communication, though, is not natural in Spark’s

MapReduce paradigm. One way to simulate it within Spark is

by introducing a preliminary round, where each node runs a

fast preparation step on each of its partitions and computes the

desired statistics. However, this extra round introduces a high

synchronization overhead for Spark. Instead, we choose to ex-

tend the idea of replication of border cells we described earlier,

and assign to each node the additional task of first extracting

coarse-grained statistics for the border cells of its eight neighbor-

ing partitions, prior to analyzing its own partition. In this way,

the code for statistics extraction can be fully integrated in the

map process of the single-round algorithm, without requiring an

additional round of synchronization.

Particularly, we extend the data held for each partition by

one row/column in each direction. In the example of Fig. 2, the

yellow-colored cells of the neighboring partitions will also be

copied to the node holding P2,2, in addition to the blue-colored

cells.
3
. When the processing for P2,2 is initiated, the first task of

the node is to process these replicated border cells and extract

these statistics that will be subsequently used for constructing

the extended dependency graph. We examined two levels of

granularity for these statistics (in decreasing granularity):

• Executing the local algorithm on these cells to extract all

contained regions – possibly overlapping each other. The

scores of these regions will be an upper bound of the true

scores. Therefore, these scores can be used to remove some

of the dependency relations of the artificial dependencies

in the extended dependency graph, i.e., if the region of the

local partition has a higher score than the region in the

replicated area (Fig. 6 (left)).

3
Notice the asymmetry between the replicated cells from the left and the replicated

cells from the right of P2,2 (similarly for the cells above and below) This happens

because the node holding P2,2 is also responsible for finding the regions that overlap
P2,3 , but not the ones overlapping P2,1



Algorithm 5: Hybrid algorithm – region merging. Pa-

rameters res1, res2, res3, . . . represent the results grouped
by the same key.

1 Function mergeRegions(<res1, res2, res3, . . .>, k)
2 minAcceptableScore←

max(min(sc(res1)),min(sc(res2)),min(sc(res3)), . . .)

3 G ← ∅ , pos← 0

4 unionRes← sortDesc(res1 ∪ res2 ∪ res3 . . .)
5 while G.safeCnt < k & sc(unionRes.get(pos)) >

minAcceptableScore do
6 G.addRegion(unionRes.get(pos))
7 pos ← pos + 1

8 return G

• For each border cell of a neighboring partition with co-

ordinates (i, j), compute the score of the 2ϵ × 2ϵ region

consisting of cells (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1). This
does not require executing the local algorithm, since the

exact region boundaries are known. We only need to com-

pute the score function for the region, and use it as an

upper bound for the cell. (Fig. 6 (right)).

The first approach produces the tightest upper bounds, but

preludes execution of the full local algorithm on the border cells,

thereby adding non-negligible time overhead. The second ap-

proach produces weaker upper bounds for the scores, but it is

much more efficient. In our experiments, the second approach

provided the best tradeoff in terms of overall execution time (and,

thus, is the only one reported).

5.4 Hybrid algorithm
The single-round algorithm is very conservative, requiring k safe

regions to be obtained from every partition. In practice, this leads

to additional load for extending the local graphs, that could other-

wise be avoided.We next describe a hybrid algorithm (HY ), which
covers the space between the single-round and multi-round al-

gorithms, balancing the number of rounds and the number of

results expected from each round. The intuition is that we can

execute the single-round algorithm, but now requesting a smaller

number of safe regions k ′ << k per partition, aggregate the par-

tial results, and then progressively ask for more results only from

the partitions from which we already consumed at least one safe

region. The partial results collected per round are a sorted subset

of the final results (at least the next k ′ answers, but typically
much more), and can be presented progressively to the user.

Similar to the case of the multi-round algorithm, the aggrega-

tion function (see Alg. 5) needs to stop accepting more data when

it can no longer guarantee correctness of results. Correctness

of results is guaranteed by establishing a bound for the region

scores, above which all regions are guaranteed to be complete.

When aggregating partial results of two partitions, say, res1 and
res2, this score bound is simply the maximum of the two mini-

mum scores in each of the partial results (Line 2). The intuition

behind this bound is that the reducer does not have sufficient

information about regions with lower score for one of the two,

but all possible solutions (safe and unsafe regions) for higher

scores are already included in the individual dependency graphs.

Notice that this bound is naturally moved up in the hierarchy, as

the aggregate results are pushed to parent reducers, and regions

with lower scores are filtered out.
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Figure 5: Hierarchical aggregation in 4 × 4 partitions with
b = 2 by applying Z-order. The tree depicts the aggregation
hierarchy, from 16 partitions to a single result.

P2,2

P1,1 P1,2

P2,1

P3,1 P3,2

r4

r3
r2

r1

8

9
10

11
12

13
14

15
16

7
7

9

13

5

4

6

7

…

…     7   8    9   10  11  12 …

P2,2

P1,1 P1,2

P2,1

P3,1 P3,2

r4

r3
r2

8

9
10

11
12

13
14

15
16

7

4

3
3

4

…

…     7   8    9   10  11  12 …

2

2

r1

3

Figure 6: Exchanging region scores (left) or upper bounds
for border cells (right).

6 EXPERIMENTAL EVALUATION
We have conducted an experimental evaluation to compare the

performance of our proposed algorithms, investigate their scala-

bility, and explore the impact of the various parameters.

6.1 Experimental setting
Datasets. We conducted our experiments using a real-world

dataset comprising 64 million records representing Points of In-

terest from OpenStreetMap
4
and geolocated photos from Flickr

5

worldwide. We have mapped these to 26 million distinct loca-

tions (points). We have assigned a weight (score) to each point

denoting the number of records (POIs or photos) mapped to it.

Experimental setup. The experiments are executed on a clus-

ter of 11 nodes, each with 30 GB of RAM. Ten of the nodes are

configured as workers, and the eleventh is indicated as the mas-

ter/coordinator. The cluster runs Spark 2.4.3, and Hadoop HDFS

4
https://www.openstreetmap.org

5
https://www.flickr.com



Parameters Values
number of points |D| 5, 10, 15, 20, 26 million

number of nodes |N | 1, 2, 4, 6, 8, 10
top-k regions 50, 100, 200, 300, 400, 500
region width and height ϵ 0.00025, 0.0005, 0.00075, 0.001, 0.00125, 0.0015

(from approximately 27x27m2
to 162x162m2

)

k′ – Multi-round 3, 5, 10, 20, 30, 40, 50, 60, 300
k′ – Hybrid 3, 4, 5, 6, 10, 15
Table 1: Experimental parameters (default value is bold).

2.9.1. The input file is distributed across the 10 workers, with

replication factor set to one.

Implementation and configuration. All algorithms are imple-

mented in Scala. Our implementations include by default the

hierarchical aggregation for the hybrid algorithm and the cor-

responding commutative and associative reduction function for

the single-round algorithm, since the coordinator becomes a

bottleneck (and crashes for some parameters) otherwise.

We partitioned the input points into a uniform grid with di-

mensions 20,000 × 20,000, leading to partitions of size approxi-

mately 2km × 2km. The most densely populated partition con-

tains approximately 18,000 points. The value ofb in the tree-based
aggregation was set to 8. We found these values to provide con-

sistently good performance without creating bottlenecks. Using

larger partitions creates bottlenecks during the local execution of

the algorithm to the workers, whereas a significantly larger base

leads to bottlenecks during the aggregation step (the reducer

needs to aggregate too many partial results, which may lead to

crashes around dense areas). With respect to all other parameters,

unless otherwise mentioned, we use the default values shown in

Table 1. The region width and height ϵ is measured in degrees.

6.2 Multi-round vs Single-round
We start by comparing the performance of the multi-round (MR)
and the single-round (SR) algorithms.

We first vary the number of requested top-k regions from 50 to

500. Fig. 7 shows the results – wallclock time for both algorithms

on the left Y axis and number of rounds for MR on the right Y

axis. We see that the value of k has only a minor influence on

the performance of SR. Conversely, the execution time of MR
increases as k increases, eventually becoming around 40 times

higher than that of SR. This stark difference is attributed to the

number of rounds required by MR. Indicatively, for k = 500,

MR requires 58 rounds, while SR only requires one. Of course,

one round of execution for SR is more time consuming than for

MR due to the extra time spent on creating and maintaining the

dependency graph and continuing the computation of results

until k safe ones are found. Indeed, we can observe that the one

round of SR takes around 700 seconds to complete, whereas each

round of MR takes on average 400 seconds. Yet, this difference

is very small to compensate the extra overhead incurred by the

high number of rounds required by MR.
In our second experiment (Fig. 8), we fix k to 300 and vary the

width and height ϵ of the regions to be discovered. We see that

the performance of both algorithms is affected by ϵ . These results
are consistent to [19], which shows that the centralized algorithm

(being used to retrieve the local top-k results in each partition)

becomes slower as ϵ increases. Thus, they also exemplify the im-

portance of having a parallel and distributed solution to achieve

scalability. Still, since SR only needs to run the local algorithm

once, it scales much better than MR, which is again affected by
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Figure 9: Effect of P2P extension on SR for varying k .

the need to execute multiple rounds, eventually requiring one

order of magnitude more time compared to SR. Indicatively, for
ϵ = 0.0015°, SR takes 1352 seconds, while MR requires 44383 (for

illustration reasons, the latter point is omitted in the plot).

We also evaluate the impact of the P2P extension on the per-

formance of SR. Figure 9 plots the execution time of the algorithm

with and without this extension. As expected, the extension al-

ways saves time, since it enables each node to create smaller

dependency graphs per partition, and it has very low overhead.

Indicatively, the average size of the dependency graph per parti-

tion with the P2P extension was reduced by approximate 40% for

k = 50 and by 55% for k = 500. Since P2P consistently improves

the performance of SR, it is applied in all remaining results.

6.3 Limiting the number of local results
We now examine how limiting the number of local results affects

the performance of the algorithms. Recall that both MR and the

Hybrid algorithm (HY ) support requesting k ′ < k results or safe

regions from each partition at each round.

Figure 10 plots the execution time (left Y axis) and number

of rounds (right axis) for MR for various k ′ values. Clearly, the
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Figure 10: Execution time of MR for varying k ′.
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Figure 11: Execution time of HY for varying k ′ (with SR
included for reference).

value of k ′ has significant influence on performance. As expected,

setting a very low k ′ leads to a high number of rounds, which

translates to excessive synchronization overhead and to longer

execution times. Increasing k ′ until 20 reduces total time by limit-

ing the time spent by the workers on computing the local results

(which, in most cases, are anyway not needed by the coordina-

tor). Since this time reduction is per round, and many rounds are

required, the overall performance increase is significant. On the

other hand, increasing k ′ beyond a certain point no longer re-

duces the number of rounds, but increases the average execution

time per round, and consequently, the total execution time of

the algorithm. Interestingly, already for k ′ > 20, execution time

increases with the value of k ′, i.e., the performance gain because

of reduction of the number of rounds is overshadowed by the

additional time required for computing more local results, and

merging them in the reduction phase.

Figure 11 depicts the influence of the respective parameter

k ′ for HY. In this case, k ′ denotes the number of safe regions

requested per partition. We see that a very low value of k ′ raises
the need for additional rounds, since the appearance of non-

admissible results prevents the coordinator from obtaining a

valid top-k at the first place. However, with k ′ equal to 6, HY
already completes in a single round and achieves the optimal per-

formance, which is around one third of the baseline performance

of SR (this would correspond to the worst performance of HY ). It
is also worth noticing that, in absolute time difference, HY is not

as sensitive as MR with respect to a higher-than-optimal number

of local results (cf., a high k ′ value in Fig 10). For example, even

when collecting 15 safe regions per round (2.5 times more than

the optimal), the difference in time is only around 100 seconds,

compared to around 2000 seconds for MR. This is attributed to

the fact that a sub-optimal value of k ′ affects much fewer rounds

in HY, compared to a sub-optimal value of k ′ forMR. Thus, when
tuning HY, it is relatively easier to find a good value for k ′.
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Figure 12: Comparison of SR and HY for varying k . HY (5)
and HY (10) correspond to HY with k ′ = 5 and k ′ = 10,
respectively. HY (10) always completes in a single round.

6.4 Comparing SR and HY
We now evaluate the performance of SR andHY for varying k and

ϵ . We omit MR in these experiments since, as already indicated

in previous results, it is always outperformed significantly by SR.
Figure12 presents the execution time of both algorithms, for

different values of k , and for two hybrid executions with k ′ = 5

and k ′ = 10, noted as HY (5) and HY (10), respectively. The plot
also includes the number of rounds for HY (5) (right Y axis). The

number of rounds for HY (10) (and for SR) is always 1, and there-

fore it is omitted. As expected, the value of k brings a noticeable

increase on the cost of SR, since it leads to larger dependency

graphs. For HY (5), a higher k leads to more rounds, which also

causes an increase in execution time. Nevertheless, HY (5) still
outperforms SR, because due to the low value of k ′ the addi-

tional rounds are much faster compared to one round of SR. Also,
HY (10) exhibits a very mild increase of the execution time (300

seconds for k = 50, compared to 339 seconds for k = 500). Since

Hybrid(10) always takes 1 round, even for k=500, this increase is

solely attributed to the extra cost during the hierarchical reduc-

tion: reducers need to maintain longer lists, and pass these lists

to their parent nodes in the tree hierarchy. Still, this increase is

negligible. Therefore, it is better to opt for a slightly higher value

of k ′, in order to avoid the risk of running multiple rounds.

Figure 13 shows the execution time of SR and HY (10) for
varying ϵ . Both algorithms exhibit a similar trend, but with HY
consistently outperforming SR, and with the absolute difference

between the execution time growing as ϵ increases. Detailed pro-

filing on this result reveals that the additional time is exclusively

spent on the local algorithm. As ϵ increases, the local algorithm

spends more time for generating each result. Since SR has to com-

pute 300 results in each partition, whereas HY (10) only 10, the

total difference between the execution time of the two algorithms

increases when the time spent per result is higher.

6.5 Scalability
Our last set of experiments focuses on investigating the scalability

of the three algorithms, when varying the size of the dataset or

number of executor nodes.

Given the original dataset, containing 26million distinct points,

we derive datasets of size from 5 to 20 million points by applying

uniform sampling. Fig. 14 plots the execution time of the three

algorithms. We observe that MR is the slowest algorithm in all

cases, while HY performs better than SR. Moreover, MR demon-

strates poor scalability compared to the other two, which exhibit

similar performance, with HY scaling slightly better.
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In our second experiment (Fig. 15), we vary the number of

nodes from 1 to 10. Since it is not possible to process the whole

dataset (26 million points) in a single node due to memory limita-

tions, we sample 5 million points as input (i.e., the largest dataset

size executable in a single node). As shown, addition of extra

nodes decreases overall execution time for all algorithms, with

SR and HY exhibiting linear speedup.

6.6 Summary
The experiments show that SR substantially outperforms MR
in all cases, indicating that the extra cost incurred by multiple

rounds dominates that for retrieving a sufficiently larger number

of local results to ensure the construction of the global top-k
in a single round. Overall, HY is the most efficient algorithm,

indicating that in practice it suffices to compute just a few more

than k local results to ensure that the coordinator can assemble

the correct top-k list, despite any inadmissible local results.

Moreover, both algorithmsMR andHY can benefit from setting

the parameter k ′ to a much lower value than k (e.g., around 0.1

× k). This significantly increases the efficiency of HY due to

the drastic reduction of the cost of local processing, while still

obtaining the global top-k results in one or two rounds.

7 CONCLUSIONS
We have presented the first scalable algorithms for addressing

the top-k Best Region Search problem. Our approach relies on

distributing the dataset and the expensive computational part

over cluster resources, thereby allowing the processing of large

datasets in parallel. Starting from a multi-round algorithm, we

proceed to devise one that requires a single round and is more

efficient by one order of magnitude. Then, we also propose a

hybrid algorithm, which further reduces computational time by a

factor of two. Our future work focuses on continuous algorithms,

for maintaining the answer in dynamic datasets, as well as ap-

proximation techniques, for further reducing the computational

cost when small, bounded errors can be tolerated.
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