
XStreamCluster: an Efficient Algorithm for
Streaming XML data Clustering?

Odysseas Papapetrou1, Ling Chen2

1 L3S Research Center, University of Hannover, Germany,
papapetrou@L3S.de

2 QCIS, University of Technology Sydney, Australia
ling.chen@uts.edu.au

Abstract. XML clustering finds many applications, ranging from stor-
age to query processing. However, existing clustering algorithms focus
on static XML collections, whereas modern information systems fre-
quently deal with streaming XML data that needs to be processed on-
line. Streaming XML clustering is a challenging task because of the high
computational and space efficiency requirements implicated for online
approaches. In this paper we propose XStreamCluster, which addresses
the two challenges using a two-layered optimization. The bottom layer
employs Bloom filters to encode the XML documents, providing a space-
efficient solution to memory usage. The top layer is based on Locality
Sensitive Hashing and contributes to the computational efficiency. The
theoretical analysis shows that the approximate solution of XStream-
Cluster generates similarly good clusters as the exact solution, with high
probability. The experimental results demonstrate that XStreamCluster
improves both memory efficiency and computational time by at least an
order of magnitude without affecting clustering quality, compared to its
variants and a baseline approach.

1 Introduction

In the past few years we have seen a growing interest in processing streaming
XML data, motivated by emerging applications such as management of com-
plex event streams, monitoring the messages exchanged by web-services, and
publish/subscribe services for RSS feeds [2]. Various research activities have
been triggered accordingly, including query evaluation over streaming XML
data [3], summarization of XML streams [2] as well as classification of XML
tree streams [4]. However, to the best of our knowledge, there exists no work on
clustering streaming XML data, albeit extensive research has been carried out
toward clustering static XML collections [5–8].

Streaming XML clustering is important and useful in many applications. For
example, it enables the building of individual indices for each of the clusters,
which in turn improves the efficiency of query execution over XML streams. The

? Extended version of [1]

problem is different than the one of clustering static XML collections, due to the
typical high computation and space efficiency requirements of online approaches.
As we explain later, existing approaches for clustering static XML collections do
not meet these requirements, and therefore cannot be applied to streaming data.
Therefore, this work designs an online approach for clustering of streaming XML.

More specifically, we focus on streaming structure-based clustering, i.e., clus-
tering based on the structural similarity of the documents in terms of the com-
mon edges shared by their XML graphs (e.g., the pairs of parent-child elements).
As discussed in [6], this kind of clustering is particularly important for XML
databases, as it yields clusters supporting efficient XML query processing. First,
clusters not containing the query can be efficiently filtered out, thereby elimi-
nating a large portion of the candidate documents inexpensively. Second, each
cluster of documents can be indexed more efficiently in secondary memory, due
to the structural similarity of the documents.

In the context of structural XML clustering, an XML document can be rep-
resented as a set of edges (e1, e2, e3, . . .). This representation makes the problem
similar to clustering of streaming categorical data. However, existing approaches
for clustering streaming categorical data are also not sufficient for streaming
XML. Although most of them are designed with special concerns on compu-
tational efficiency, according to [9] they are not sufficiently efficient in terms
of memory, especially when clustering massive-domain data where the possible
domain values are so large that the intermediate cluster statistics cannot be
maintained easily. Therefore, considering XML streams that encode massive-
domain data, it is critical to design online XML clustering approaches which are
both time and space efficient.

In the massive domains case, the edges are drawn from a universe of mil-
lions of possibilities. Therefore, maintaining the cluster statistics for all clusters
in main memory becomes challenging. Recently, an approximate algorithm was
proposed which uses compact sketches for maintaining cluster statistics [9]. The
promising results delivered by this approximate solution, motivated us to apply
an even more compact sketching technique based on Bloom filters to encode
the intermediate cluster statistics. In addition, considering XML streams con-
sisting of heterogeneous documents where a large number of clusters is created,
we reduce the number of required comparisons between each newly incoming
document and all existing clusters using another approximation technique based
on Locality Sensitive Hashing (LSH).

Precisely, we propose XStreamCluster, an effective algorithm which employs
two optimization strategies to improve time and space efficiency respectively. At
the top level, LSH is used to quickly detect the few candidate clusters for the
new document out of all clusters. This first step reduces drastically the required
document-cluster comparisons, improving the time efficiency of the algorithm. At
the bottom level, Bloom filters are employed to encode the intermediate cluster
statistics, contributing to the space efficiency. Although the two levels introduce
a small probability of errors, our theoretical analysis shows that XStreamCluster
provides similar results to an exact solution with very high probability.

In Section 2 we discuss the state-of-the-art in XML clustering. Section 3
describes our approach in detail, whereas Section 4 presents the experimental
evaluation of the method, with respect to time and space efficiency, as well as
clustering quality. Section 5 concludes this paper.

2 Related work

We now review related work in the areas of streaming clustering and clustering
of XML data.

As an important data mining technique, clustering has been widely stud-
ied by different communities. Detailed surveys can be found in [10, 11]. In the
scenario of streaming data, the problem of clustering has also been addressed
before, e.g., [12–14]. Considering the large volume of incoming data, computa-
tional efficiency is one of the most critical issues addressed by these works. For
example, [13, 14, 9] proposed approximate clustering for increasing the clustering
efficiency. A micro-clustering approach with a pyramidal time-frame concept was
proposed in [12] to support greater flexibility for querying stream clusters over
different time horizons. Our work differs from these works substantially, since it
focuses on XML data. Furthermore, our application requirements impose clus-
tering with a similarity threshold; therefore, unlike previous works, the number
of clusters k is not decided a priori, but it evolves based on the stream contents.

Recently, the issue of space efficiency in clustering massive-domain streaming
data was stressed [9], and an approximate solution based on the count-min sketch
technique was proposed. Our algorithm also provides an approximate solution
by using compact sketches to maintain intermediate cluster information in main
memory. However, since we measure the similarity between XML documents in
terms of number of shared edges (rather than the frequency of shared edges), our
algorithm utilizes the more compact structure of Bloom filters, further reducing
the memory requirements.

Efforts on clustering steaming data have also been extended to domains con-
taining categorical [15] and textual data [16]. The research on clustering semi-
structured stream data is still limited. Asai et al. [17] investigated data mining
from semi-structured data streams. However, they focused on discovering fre-
quent tree patterns from XML streams instead of clustering XML documents.

Clustering of static XML documents also attracted a lot of attention. Based
on the adopted similarity/distance measure, existing static XML clustering ap-
proaches can be broadly divided into the following categories: structure-based
approaches, content-based approaches, and hybrid approaches.

Early structure-based approaches usually represent XML documents as tree
structures. The edit distance is then used to measure the distance between two
XML trees, based on a set of edit operations such as inserting, deleting, and
relabeling a node or a subtree [5, 7]. However, computing tree edit distances
requires quadratic time complexity, making it impractical for clustering of XML
streams. Differently, Lian et al. [6] proposed to represent XML documents as a
set of parent-child edges from the corresponding structure graphs, which enables

the efficient calculation of structural similarity of XML documents. Therefore,
in our work, we employ the distance measure defined in [6] to design our online
clustering algorithm for streaming XML data.

An important efficiency consideration for the existing structure-based algo-
rithms is the large number of incurred document-cluster comparisons, as shown
in Section 4. Particularly for the case of massive domain data, a large number
of clusters is expected, aggravating the costs substantially. These costs become
prohibitively expensive for clustering of streaming XML, rendering the existing
algorithms unsuitable. Therefore, in this work we also include a probabilistic
method which reduces drastically the comparisons between the incoming docu-
ment and existing clusters, allowing XStreamCluster to handle streams.

Content-based XML clustering approaches are mainly used for clustering
text-centric XML documents. Vector space models have been widely used to
represent XML documents [18, 19]. Recently, there were also a few hybrid ap-
proaches which cluster XML documents by considering both structures and con-
tents. For example, Doucet and Lehtonen [20] extract bags-of-words and bags-of-
tags from the content and structure of XML documents as feature vectors. The
type of clustering performed is thus substantially a textual clustering, while the
results were shown to be better than those of other competing methods in the
INEX 2006 contest. Although our work focuses on structural similarity, the pro-
posed algorithm can be extended to cluster XML documents based on content,
as well as the the combination of structure and content, once XML documents
are represented as vector space models. For example, we can use counting Bloom
filters to encode the feature vectors of XML documents and clusters.

3 Streaming XML clustering with XStreamCluster

We start by introducing the framework of our algorithm, and the preliminaries
concerning the XML representation and distance measure. We then elaborate
on the two optimization strategies. XStreamCluster (Fig. 1) clusters streaming
XML documents at a single pass. When a new XML document arrives, instead of
comparing it against all existing clusters, the top-level strategy - the LSH-based
Candidate Cluster Detection - efficiently selects a few candidate clusters which
are most similar to the new document. The algorithm then proceeds to compute
the distance between the new document and each of the candidate clusters.
To reduce memory requirements, the bottom-level strategy - the Bloom filter
based Distance Calculation - computes the distance between the XML document
and each of the candidate clusters based on their Bloom filter representations.
Finally, a decision is made to either assign the new document to one of the
existing clusters, if their distance is sufficiently low, or to initialize a new cluster
for the current document.

3.1 Preliminaries

As discussed in Section 2, existing work on clustering static XML documents
adopted various similarity/distance measures, ranging from structure-based mea-

Clustern

Cluster2

Cluster1

LSH based Candidate Clusters Detection

(Section 3.2: top-level strategy)
XML Doc

BF based Distance Calculation

(Section 3.3: bottom-level strategy)

...

Clustern+1

XStreamCluster

candidate clusters

Fig. 1. The framework of XStreamCluster.

sures to content-based measures. In our work, we focus on clustering XML doc-
uments based on their structure. In the same context, Lian et al. in [6] proposed
using a revised Jaccard similarity measure, and demonstrated its effectiveness
for structure-based XML clustering. They have also demonstrated experimen-
tally the benefits of XML clustering based on this measure, for optimizing the
database storage layer with respect to XML query processing. We therefore de-
cided to use the same measure for XStreamCluster, which we briefly describe
below. Note however that the algorithm can also be adapted to other similar-
ity measures. In the following sections, we will outline the required changes for
adapting the algorithm to different distance measures.

In order to define the distance between two XML documents, the documents
are first represented as structure graphs, or s-graphs.

Definition 1. (Structure Graph) Given a set of XML documents C, the struc-
ture graph of C, sg(C) = (N,E), is a directed graph such that N is the set of
all the elements and attributes in the documents in C and (a, b) ∈ E if and only
if a is a parent element of element b or b is an attribute of element a in some
document in C.

For example, Fig. 2(b) shows the s-graphs of the two XML documents of Fig. 2(a).
Given the s-graphs of two XML documents, a revised Jaccard coefficient metric
is used to measure their distance.

Definition 2. (XML Distance) For two XML documents d1 and d2, the dis-
tance between them is defined as dist(d1, d2) = 1− |sg(d1)∩sg(d2)|

max{|sg(d1)|,|sg(d2)|}
where |sg(di)|

is the number of edges in sg(di) and sg(d1) ∩ sg(d2) is the set of common edges
of sg(d1) and sg(d2).

As an example, consider the two XML documents and their s-graphs in Fig. 2
(a) and (b). Since |sg(d1) ∩ sg(d2)| = 3 and max{|sg(d1)|, |sg(d2)|} = 5, the
distance between the two documents is 1− 3/5 = 0.4.

As stated in [6], this distance metric provides a nice feature to generate
clusters which support efficient query answering. For example, if an XPath query
q has an answer in some document d contained in a cluster C, then the s-graph

<A> <A>

 <D> </D>

 </D> <C>
 </E>
 <C> </C>
 </D>
 </C>

 doc1 doc2

S-graph of doc1 and doc2

A

B C

D E

S-graph of doc2

A

B C

D

S-graph of doc1

A

B C

D E

(a) (b) (c)

Fig. 2. The S-Graph Representation of XML documents.

of q, sg(q), is a subgraph of sg(C). That is, using the s-graphs of the clusters
C1, C2, . . . , Cn, we can safely filter out all clusters Ci for which sg(q) /∈ sg(Ci).

Note that the distance metric can be adopted straightforwardly in the con-
text of streaming data clustering, because the s-graph of a document can be
created efficiently in a single pass. Furthermore, the merging of the s-graph of a
new document with that of an existing cluster can be performed efficiently, as
discussed later.

3.2 LSH-based Candidate Clusters Detection

Traditional single-pass clustering algorithms need to compare each incoming
document against all existing clusters, to find out the cluster with the minimum
distance. However, considering XML datasets with heterogeneous structures,
there may exist a large number of clusters, requiring a huge amount of time for
comparing each document with all existing clusters. XStreamCluster addresses
this issue by reducing the number of required document-cluster comparisons
drastically. This reduction is based on an inverted index of clusters, built using
Locality Sensitive Hashing (LSH).

The main idea behind LSH is to hash points from a high-dimensional space
such that nearby points have the same hash values, and dissimilar points have
different hash values. LSH is probabilistic, that is, two similar points will end
up with the same hash value with a high probability p1, whereas two dissimilar
points will have the same hash value with a very low probability p2. Central to
LSH is the notion of locality sensitive hash families, i.e., an ordered collection of
hash functions, formally defined as (r1, r2, p1, p2)-sensitive hash families [21].

Definition 3. Let S denote a set of points, and Dist(·, ·) denote a distance func-
tion between points from S. A family of hash functions H is called (r1, r2, p1, p2)-
sensitive, where r1 ≤ r2 and p1 ≥ p2, if for any two points p, q ∈ S and for any
hi ∈ H:

– if Dist(p, q) ≤ r1 then Pr[hi(p) = hi(q)] ≥ p1

– if Dist(p, q) ≥ r2 then Pr[hi(p) = hi(q)] ≤ p2

For the case where the points of S are sets of elements (e.g., s-graphs are sets of
edges), and Dist(·, ·) denotes the Jaccard coefficient, a suitable locality sensitive
hash family implementation is minwise independent permutations [22]. Particu-
larly, when hashing is conducted using minwise independent
permutations, the probability that two points have the same hash value is
Pr[hi(p) = hi(q)] = 1−Dist(p, q). For the case that Dist(p, q) ≤ r1, Pr[hi(p) =
hi(q)] ≥ 1− r1.

XStreamCluster employs LSH for efficiently detecting the candidate clus-
ters for each document. Let H denote a locality sensitive hash family, based on
minwise independent permutations. L hash tables are constructed, each cor-
responding to a composite hash function gi(·), for i = 1 . . . L. These hash
functions g1(·), g2(·), . . . , gL(·) are obtained by merging k hash functions cho-
sen randomly from H, i.e., for a point p : gi(p) = [hi1(p) ⊕ hi2(p) . . . ⊕ hik(p)].
Each cluster s-graph is hashed to all L hash tables, using the corresponding
hash functions. When XStreamCluster reads a new document d, it computes
g1(sg(d)), . . . , gL(sg(d)) and finds from the corresponding hash tables all clus-
ters that collide with d in at least one hash table. These clusters, denoted as
C(d), are returned as the candidate clusters for the document.

There is a latent difference between our approach for constructing the LSH
inverted index of clusters and previous LSH algorithms, e.g., [21]. Previous
approaches construct gi(p) by mapping each of hij(p) to a single bit, for all
j : [1 . . . k], and concatenating the results to a binary string of k bits. Due to
this mapping to bits, the probability that two points hij(p) and hij(q) will map
into the same bit value is at least 0.5, independent of their distance Dist(p, q).
Therefore, the probability for false positives is high. Previous works compensate
for this issue by increasing the number of hash functions k, and thereby increas-
ing the number of bits in each hash key g(·). But increasing the number of hash
functions has a negative effect on computational complexity, which we want to
avoid for the streaming data scenario. To this end, instead of mapping each of
hij(p) to a single bit, we represent the value of hij(p) in the binary numeral sys-
tem. We then generate gi(p) using the logic operation of exclusive or (denoted
with XOR) on the set of hij(p) values. Our theoretical analysis shows that the
LSH based candidate cluster detection strategy retrieves the optimal cluster for
each document with high probability.

Theorem 1. The optimal cluster Copt for document d will be included in C(d)
with a probability Pr ≥ 1 − (1 − (1 − δ)k)L, where δ denotes the maximum
acceptable distance between a document d and a cluster C for assigning d to C.

Proof. The optimal cluster Copt will be included in C(d) if Copt collides with
the document d in at least one of the L hash tables. We first compute the
probability that d and Copt collide in a given table hti, and from there we derive
the probability that they collide in at least one table.

d and Copt will collide in hti when gi(sg(Copt)) = gi(sg(d)). The probability
Pr[gi(sg(Copt)) = gi(sg(d))] is equal to the probability that all corresponding

hash values in gi(·) are equal, i.e., hij(sg(Copt)) = hij(sg(d)) for j = [1 . . . k].
According to [22], when hashing is implemented using minwise independent per-

mutations, Pr[gi(sg(Copt)) = gi(sg(d))] =
∏k
j=1 Pr[hij(sg(Copt)) = hij(sg(d))]

=
∏k
j=1 (1−Dist(sg(Copt), sg(d))). Note that, Dist(sg(Copt), sg(d)) is by def-

inition less than δ, otherwise Copt would not be an acceptable cluster for d.
Therefore, Pr[gi(sg(Copt)) = gi(sg(d))] = (1−Dist(sg(Copt), sg(d)))k ≥ (1−δ)k.

Recall that LSH constructs L different hash tables, and Copt will be included
in C(d) if it collides with d in at least one of these tables. The probability that
this happens is

Pr[∃i : gi(sg(Copt)) = gi(sg(d))] = 1− Pr[6 ∃i : gi(sg(Copt)) = gi(sg(d))]

=1−
L∏
i=1

(1− Pr[gi(sg(Copt)) = gi(sg(d))])

≥1−
L∏
i=1

(1− (1− δ)k) = 1− (1− (1− δ)k)L ut

For initializing the LSH inverted index, XStreamCluster needs to set the
values of δ, k and L. The value of δ corresponds to the maximum acceptable
distance between a document and the cluster for assigning the document to
that cluster. Therefore, it depends on the requirements of the particular appli-
cation, as well as the characteristics of the data. Nevertheless, as we show in the
experimental evaluation, XStreamCluster offers substantial performance bene-
fits for a wide range of δ. Note that δ is expressed using the standard Jaccard
coefficient. Since the interesting measure for our work is the revised Jaccard co-
efficient, proposed in [6], we compute δ as follows δ ≤ (1 − δ′)/(1 + δ′), where
δ′ is the same threshold expressed using the revised Jaccard coefficient. In order
to set the values of L and k, the user first decides on the probability pr that a
lookup in the LSH inverted index will return the optimal cluster for a document.
Then, the values for L and k can be selected appropriately by considering The-
orem 1. For example, let δ = 0.1, and pr ≥ 0.95. Then, according to Theorem 1:
1−(1−(1−0.9k))L ≥ 0.95. If we create L = 10 hashtables, then setting k as any
value no greater than 12.8 should satisfy the required probability. However, the
lower the value of k, the more candidate clusters will be returned, which incurs
more time to filter false positive candidates. Consequently, we can set k = 12
hash functions for each hash table, which satisfies the probability requirements
and minimizes the false positives.

After assigning the new document d to a cluster C, we need to update the L
hash keys of C in the LSH hash tables. Normally, we would need to recompute
these keys from scratch, which requires additional computation. Minwise hashing
allows us to compute the updated hash values for the cluster C, denoted with
h′ij(C), by using the values of hij(d) and the current values of hij(C) as follows:
h′ij(C) = min(hij(d), hij(C)). The updated values of the g1(sg(C)), . . . , gL(sg(C))
can then be computed accordingly.

As already noted, the LSH-based index can be adapted to different distance
definitions. For example, Broder et al. [22] present a locality sensitive hashing

scheme for the standard Jaccard index, whereas Gionis et al. show how LSH can
be adapted to use Euclidean distance. Similarly, Charikar [23] shows how LSH
can be adapted to use the standard Cosine distance. Their results are directly
applicable to our approach.

3.3 Bottom-level strategy: Bloom filter based Distance Calculation

After the top-level strategy detects a set of candidate clusters, we need to com-
pute the distance between the new document and each candidate cluster, for
finding the nearest one. As mentioned, for space efficiency XStreamCluster en-
codes s-graphs with Bloom filters. We now describe this encoding, and show how
the distance between two s-graphs can be computed from their Bloom filters.

A Bloom filter is a space-efficient encoding of a set S = {e1, e2, . . . , en} of n
elements from a universe U . It consists of an array of m bits and a family of λ
pairwise independent hash functions F = {f1, f2, . . . , fλ}, where each function
hashes elements of U to one of the m array positions. The m bits are initially
set to 0. An element ei is inserted into the Bloom filter by setting the positions
of the bit array returned by fj(ei) to 1, for j = 1, 2, . . . , λ. To encode an s-graph
with a Bloom filter, we hash all s-graph edges in an empty Bloom filter with a
predefined length m and λ hash functions.

Recall from Section 3.1 that the XML distance between a document d and a
cluster C is dist(d,C) = 1 − |sg(d)∩sg(C)|

max{|sg(d)|,|sg(C)|} . Therefore, we need to estimate

the values of |sg(d)|, |sg(C)|, and |sg(d)∩sg(C)| from the Bloom filter represen-
tations of sg(d) and sg(C). With BFx we denote the Bloom filter encoding of
sg(x), where x denotes a document or a cluster. Let m and λ denote the length
and number of hash functions of BFx, and tx be the number of true bits in BFx.
We estimate |sg(x)| and |sg(x)∩sg(y)| as follows (the proofs are directly derived
from [24]):

E(|sg(x)|) =
ln(1− tx/m)

λ ln(1− 1/m)
(1)

E(|sg(x) ∩ sg(y)|) = 1−
ln
(
m− mt∧−txty

m−tx−ty+t∧

)
− ln(m)

λ ln(1− 1/m)
(2)

where t∧ denotes the number of true bits in the Bloom filter produced by merging
BFx and BFy with bitwise-AND.

Notice that the distances calculated using the estimated values of |sg(d)|,
|sg(C)|, and |sg(d)∩sg(C)|, may deviate slightly from the actual distance values.
These deviations do not necessarily lead to a wrong assignment, as long as the
nearest cluster (the one with the smallest distance) is correctly identified using
the estimated values. A wrong assignment occurs only when the nearest cluster
is not identified. Some of the wrong assignments have negligible effects, e.g.,
when the difference of the distances between the document and the two clusters
is negligibly small; others may have a significant negative effect, e.g., when the
assigned cluster is significantly worse than the optimal one. We are interested in
the latter case, which we refer to as significantly wrong assignments, and analyze
the probability of such errors.

Given a document d, the optimal cluster Copt for d, and a suboptimal clus-
ter Csub, we define the assignment of d to cluster Csub as a significantly wrong
assignment if dist(sg(d), sg(Csub)) − dist(sg(d), sg(Copt)) > ∆, where ∆ is a
user-chosen threshold. Since d was assigned to Csub instead of Copt, the esti-
mated distance of d with Csub, denoted as dist(sg(d), sg(Csub)), was smaller than
the corresponding distance for Copt. Therefore, we aim to find the probability
Pr[dist(sg(d), sg(Csub)) − dist(sg(d), sg(Copt)) > ∆], given that
dist(sg(d), sg(Csub)) < dist(sg(d), sg(Copt)).

We use the following notations. |ovl(d,C)| and |ovl(d,C)| denote the actual
overlap cardinality and expected overlap cardinality (computed with Eqn. 2)
of the sets sg(d) and sg(C). With td and tC we denote the number of true
bits in the Bloom filter of sg(d) and sg(C), whereas t∧ denotes the number
of true bits in the Bloom filter produced by merging the two Bloom filters
with bitwise-AND. With S(td, tC , x) we denote the expected value of t∧, given
that |ovl(d,C)| = x. As shown in [24], S(td, tC , x) can be computed as follows:

S(td, tC , x) = tdtC+m(1−(1−1/m)λx)(m−td−tC)
m(1−1/m)λx

.

We use the results of [24] to probabilistically bound the maximum deviation
of the estimated overlap cardinality from the actual overlap cardinality.

Lemma 1 (Probabilistic Bounds). For any nl ≤ |ovl(d,C)|, the probability

Pr[ovl(d,C) > nl] is at least equal to 1 − et∧−1−S(td,tC ,nl)
(
S(td,tC ,nl)

t∧−1

)t∧−1

.

Furthermore, for any nr ≥ |ovl(d,C)|, the probability Pr[ovl(d,C) < nr] is at

least equal to 1− e
− (t∧+1−S(td,tC,nr))

2

2S(td,tC,nr) .

Lemma 1 is used to compute the probability of a significantly wrong assign-
ment. In particular we study the worst-case scenario, where the expected cardi-
nalities of the overlap of the two clusters (|ovl(d,Csub)| and
|ovl(d,Copt)|) get the minimum possible value, given that the two clusters are
candidates for the document. This value, denoted with minOvl, is determined
from the parameter δ as follows: δ = 1−minOvl/card⇒ minOvl = card(1− δ),
with card = min(|sg(Copt)|, |sg(Csub)|). This is without loss of generality, be-
cause the accuracy of the estimations further increases when the overlap in-
creases [24]. Furthermore, for simplification, we assume that we know |sg(Copt)|
and |sg(Csub)|, and that |sg(d)| < |sg(Copt)| and |sg(d)| < |sg(Csub)|. We dis-
cuss about relaxing these assumptions later. For the theorem we use as shortcuts
tmopt = S(td, tCopt ,minOvl) and tmsub = S(td, tCsub ,minOvl).

Theorem 2. The probability of a significantly wrong assignment Pr[dist(sg(d),
sg(Csub))− dist(sg(d), sg(Copt)) > ∆] is at most 1− (1− (tl

tmsub−1
)tmsub−1×

etmsub−1−tl)× (1− e−
(tmopt+1−tr)2

2tr), where tl = S(td, tCsub ,minOvl − ∆′

2|sg(Copt)|),

tr = S(td, tCopt ,minOvl+ ∆′

2|sg(Csub)|
), and ∆′ = ∆×|sg(Copt)|×|sg(Csub)|−minOvl×

(|sg(Csub)| − |sg(Copt)|) .

Proof. We first rewrite the probability of a significantly wrong assignment to a
more convenient form.

Prerr =Pr[dist(sg(d), sg(Csub)− dist(sg(d), sg(Copt) > ∆]

=Pr[
|sg(d) ∩ sg(Copt)|

max(|sg(d)|, |sg(Copt)|)
− |sg(d) ∩ sg(Csub)|

max(|sg(d)|, |sg(Csub)|)
> ∆]

=1− Pr[|sg(Csub)| × |sg(d) ∩ sg(Copt)|−
|sg(Copt)| × |sg(d) ∩ sg(Csub)| ≤ ∆× |sg(Copt)| × |sg(Csub)|] (3)

We use ∆′ as a shortcut to ∆× |sg(Copt)| × |sg(Csub)| −minOvl× (|sg(Csub)| −
|sg(Copt)|). A pair of values satisfying the inequality of Eqn. 3 is:
|sg(Copt)| × |sg(d) ∩ sg(Csub)| > |sg(Copt)| ×minOvl−∆′/2 (left bound) and
|sg(Csub)| × |sg(d) ∩ sg(Copt)| < |sg(Csub)| ×minOvl +∆′/2 (right bound). The cor-
responding probabilities can be computed using Lemma 1. For the left bound
we have: Pr[|sg(Copt)| × |sg(d) ∩ sg(Csub)| > |sg(Copt)| × minOvl − ∆′/2] =

Pr[|sg(d)∩sg(Csub)| > minOvl−∆′/(2|sg(Copt)|)] ≥ 1−
(

tl
tmsub−1

)tmsub−1

etmsub−1−tl ,

where tl denotes the expected number of true bits in the AND-merged Bloom
filter when the number of elements in the intersection is minOvl− ∆′

2|sg(Copt)| . We

compute tl using S(td, tCsub ,minOvl− ∆′

2|sg(Copt)|).

For the right bound we have: Pr[|sg(d)∩ sg(Copt)| < minOvl + ∆′

2|sg(Csub)|] ≥

1− e−
(tmopt+1−tr)2

2tr , with tr = S(td, tCopt ,minOvl + ∆′

2|sg(Csub)|).

The resulting probability of a significantly wrong assignment is Prerr ≤ 1−(
1−

(
tl

tmsub−1

)tmsub−1

etmsub−1−tl

)
×

(
1− e−

(tmopt+1−tr)2
2tr

)
ut

As an example, consider the case when δ = ∆ = 0.2, m = 4096, λ = 2, and
|sg(Csub)| = |sg(Copt)| = 1000. Then, according to Theorem 2, the probability
of a significantly wrong assignment is less than 0.025. We can further reduce
this error probability by increasing the Bloom filter length. For example, for
m = 8192 the probability is reduced to less than 0.002, and for m = 10000, the
probability becomes less than 7× 10−4.

In Theorem 2, for simplification we assume that |sg(Copt)| and |sg(Csub)| are
given. In practice, we can closely approximate both cardinalities using Eqn. 1. In
addition, we can obtain probabilistic lower and upper bounds for |sg(Copt)| and
|sg(Csub)|, as described in [24], and use these to derive the worst-case values (i.e.,
the ones that minimize minOvl, and maximize the probability of a significantly
wrong assignment). Integrating these probabilistic guarantees in the analysis of
Theorem 2 is part of our future work.

The Bloom filter encoding also allows an efficient updating of the s-graph
representations of a cluster when a new document is assigned to it. As explained
in [24], the bitwise-OR operation of two Bloom filters equals to the creation of
a new Bloom filter of the union of two sets. We can therefore simply merge the
corresponding Bloom filters of the document and the cluster with bitwise-OR,
rather than generating the new Bloom filter for the updated cluster from scratch.

Algorithm 1 XStreamCluster

INPUT: XML Stream D, dist. threshold δ

OUTPUT: Set of clusters C
1: Initialize L hash tables ht1,. . . , htL, corre-

sponding to g1, · · · , gL
2: C ← {}
3: for each document d from D do
4: for each hti, i : [1 . . . L] do
5: C(d) = C(d) ∪ hti.get(gi(sg(d)))
6: end for
7: Hash sg(d) in BFd
8: for each cluster C ∈ C(d) do

9: if dist(d, C) ≥ δ then

10: C(d) = C(d)/C
11: end if
12: end for
13: if |C(d)| 6= 0 then
14: Assign d to cluster C = argmin

dist(d,C)
15: else
16: Initialize a new cluster C with d, C =

C ∪ {C}
17: end if
18: Update Bloom filter of C and L hashta-

bles
19: end for

Similar to the case of the LSH-based index, the bottom-level optimization can
also be adapted to different distance definitions. The constituting components
of the Cosine distance, the standard Jaccard index, and the Euclidean distance
among others, are |sg(d1|2)|, |sg(d1)∩sg(d2)|, and |sg(d1)∪sg(d2)|, which can be
efficiently estimated using the Bloom filter representations of the documents and
clusters [24]. Therefore, XStreamCluster can also be adapted to other distance
definitions. This would be interesting for different application domains, such as
standard high-dimensionality clustering, and text clustering. This is part of our
future work.

The full algorithm of XStreamCluster is illustrated in Algorithm 1.

4 Experimental Evaluation

XStreamCluster was evaluated in terms of efficiency, scalability, and clustering
quality, using streams of up to 1 million XML documents. Our simulations were
carried out in a single dedicated Intel Xeon 3.6Ghz core.

Datasets. We conducted experiments with two streams. The first (STREAM1)
was generated using a set of 250 synthetic DTDs. To verify the applicability of the
experimental results for real DTDs, the second stream (STREAM2) was created
following a set of 22 real, publicly available DTDs. In particular, for STREAM1
we first generated x DTDs, out of which we created y different XML documents
with XML Generator [25]. For generating each document, we randomly selected
one of the available DTDs as an input for the XML Generator. The values
of x and y varied for each experiment, with a maximum of 250 and 1 million
respectively. The resulting documents were fed to the stream in a random order.
For generating STREAM2 we followed the same procedure, but using a set
of real, frequently used DTDs. The full list of the used DTDs and the DTD
generator are available online, in http://www.l3s.de/∼papapetrou/dtdgen.html.

Algorithms. To evaluate in depth the contribution of each of the strategies to the
algorithm’s efficiency and effectiveness, we have compared three different vari-
ants of XStreamCluster. Furthermore, XStreamCluster was compared with the

existing static algorithm which employs s-graphs for representing and comparing
clusters and documents [6], called S-GRACE. In particular, we implemented and
evaluated the following algorithms:

S-GRACE: We adapted S-GRACE [6] to streaming data. This required the
following extensions: (a) we changed the clustering algorithm from ROCK
to K-Means, and (b) we represented the s-graphs as extensible bit arrays,
instead of bit arrays of fixed sizes.

XStreamBF: XStreamCluster with only the bottom-level strategy in place
(i.e., encoding of s-graphs as Bloom filters; documents were compared to
all clusters).

XStreamLSH: XStreamCluster with only the top-level strategy (i.e., indexing
clusters using LSH; s-graphs were represented as extensible bit arrays).

XStreamCluster: The algorithm as presented in this paper.

Methodology. To evaluate efficiency and scalability, we measured the average
time and memory required for clustering streams of up to 1 million documents.
Quality was evaluated using the standard measure of normalized mutual infor-
mation. In the following, we report average measures after 4 executions of each
experiment. We present results with Bloom filters of 1024 bits, with 2 hash func-
tions. The LSH index was configured for satisfying a correctness probability of
0.9. We present detailed results for STREAM1, and summarize the STREAM2
results, noting the differences.

4.1 Efficiency

With respect to efficiency, we compared the memory and execution time of each
algorithm for clustering the two streams. To ensure that time measures were not
affected by other activities unrelated to the clustering algorithm, e.g., network
latency, we excluded the time spent in reading the stream.

For the first experiment, we studied how the efficiency of the algorithms
changes with respect to the diversity of the stream. We controlled the diver-
sity of the stream by choosing the number of DTDs out of which STREAM1
was generated. Figures 3 (a) and (b) plot the time and memory requirements
of the four algorithms for clustering different instances of STREAM1, each gen-
erated by a different number of DTDs. The distance threshold for this exper-
iment was set to 0.1, and the number of documents in the stream was set to
100k. We see that XStreamCluster clearly outperforms S-GRACE in terms of
speed; it requires up to two orders of magnitude less time for clustering the same
stream. XStreamLSH presents the same speed improvement. The efficiency of
both algorithms is due to the top-level strategy for candidate clusters detection,
which drastically reduces the cluster-document comparisons. XStreamBF does
not present this speed improvement as it does not employ an LSH inverted index.

We also observe that the speed improvement of XStreamLSH and XStream-
Cluster is more apparent for higher number of DTDs. This is because more DTDs
lead to more clusters. For the S-GRACE and XStreamBF algorithms, more clus-
ters lead to longer bit arrays, thereby requiring more time to cluster a document.

 0

 500

 1000

 1500

 2000

 50 100 150 200 250

T
im

e
(s

ec
)

Number of DTDs

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250

M
em

or
y

(M
by

te
s)

Number of DTDs

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

Fig. 3. (a) Time requirements, and, (b) Memory requirements, for clustering
STREAM1 with respect to the number of DTDs.

Furthermore, more clusters lead to an increase in the cluster-document compar-
isons since each document needs to be compared to all clusters. This is not the
case for XStreamLSH and XStreamCluster though, which pre-filter the candi-
date clusters for each document by using the top-level strategy. Therefore, the
execution time of XStreamLSH and XStreamCluster is almost constant.

With respect to memory requirements (Figure 3(b)) we see that XStream-
Cluster and XStreamBF require at least one order of magnitude less memory
compared to S-GRACE. The difference is again particularly visible for a higher
number of DTDs, which results to a higher number of clusters. The huge memory
savings are due to the Bloom filter encodings employed by the two algorithms.

The experiment was also conducted using STREAM2. However, since
STREAM2 was generated from a limited number of DTDs, instead of vary-
ing the number of DTDs we varied the value of the distance threshold δ, which
also had an influence on the number of clusters: reducing the δ value resulted to
more clusters. Table 1 presents example results, for δ = 0.1 and 0.2. As expected,
reducing the δ value leads to an increase in memory and computational cost for
S-GRACE and XStreamBF, due to the increase in the number of clusters. On the
other hand, the speed of XStreamCluster and XStreamLSH actually increases
by reducing the distance threshold, because the LSH index is initialized with
less hash tables and hash functions.

Algorithm Time (sec) Memory (Mbytes) NMI
Distance thres. 0.1 0.2 0.1 0.2 0.1 0.2

S-GRACE 61 35 23.1 14 0.72 0.76
XStreamBF 363 253 1.7 1.1 0.72 0.76

XStreamLSH 8 11 19.1 13.8 0.716 0.755
XStreamCluster 4 7 2.5 3.1 0.715 0.755

Table 1. Example results for STREAM2

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 200 400 600 800 1000

T
im

e
(s

ec
)

Number of documents (thousands)

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

 0
 100
 200
 300
 400

 250 500 750 1000
 0

 100
 200
 300
 400

 250 500 750 1000

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700 800 900 1000

M
em

or
y

(M
by

te
s)

Number of documents (thousands)

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

Fig. 4. (a) Execution time, and (b) Memory requirements, for clustering STREAM1
with respect to number of documents.

4.2 Scalability

To verify the scalability of XStreamCluster, we compared it against S-GRACE
and its variants for clustering streams of different sizes, reaching up to 1 mil-
lion documents. In particular, we have generated instances of STREAM1 and
STREAM2 with 1 million documents, and used all four algorithms to cluster
them. During clustering, we monitored memory and execution time every 100k
documents. The experiment was repeated for various configurations. In the fol-
lowing we report the results for STREAM1 corresponding to 100 DTDs where
δ is set to 0.1. The results for other settings lead to the same conclusions.

Figures 4(a) and 4(b) present the execution time and memory usage with
respect to number of documents. With respect to execution time, we see that
S-GRACE and XStreamBF fail to scale. Their execution time increases expo-
nentially with the number of documents, because of the increase in the number
of clusters. On the other hand, XStreamCluster and XStreamLSH have a linear
scale-up with respect to the number of documents, i.e., the cost for clustering
each document remains constant with the number of clusters. This is achieved
due to the efficient filtering of clusters with the LSH-based candidate cluster
detection strategy.

With respect to memory requirements (Fig. 4(b)), all algorithms scale lin-
early with the number of documents, but the algorithms that use Bloom filters
require an order of magnitude less memory. Interestingly, for clustering 1 mil-
lion documents, XStreamCluster requires only 39 Mbytes memory, which is an
affordable amount for any off-the-shelf PC. Therefore, XStreamCluster can keep
all its memory structures in fast main memory, instead of resorting to the slower,
secondary storage. Keeping as many data structures as possible in main mem-
ory is very important for algorithms working with streams, because of their high
efficiency requirements.

4.3 Clustering quality

We evaluated the clustering quality of XStreamCluster by using the standard
measure of Normalized Mutual Information (NMI). NMI reflects how close the
clustering result approaches an optimal classification – a ground truth – which
is usually constructed by humans. It is formally defined as follows:

NMI(Ω, C) =
I(Ω, C)

[H(Ω) +H(C)]/2 , where I(Ω, C) =
∑
k

∑
j

|ωk ∩ cj |
N

log
N |ωk ∩ cj |
|ωk||cj |

N is the number of documents, C = {c1, c2, . . . , cj} represents the set of clusters
generated by the clustering algorithm, and Ω = {ω1, ω2 . . . ωk} the set of classes
in the optimal classification. H(C) and H(Ω) define the entropy of the cluster

and class sizes, i.e., H(C) = −
∑
j
|cj |
N log

|cj |
N and H(Ω) = −

∑
k
|ωk|
N log |ωk|N . An

NMI of 0 indicates a completely random assignment of documents to clusters,
whereas an NMI of 1 denotes a clustering which perfectly corresponds to the
optimal classification. For our datasets, the optimal classification Ω was defined
by the DTD of each document: two XML files were considered to belong to
the same class if they were generated from the same DTD file. We choose NMI
over purity and entropy, which are also used in the literature, because the latter
measures are sensitive to the number of clusters, and they cannot be used for
comparing two clustering solutions if the solutions generate a different number
of clusters. Since the number of clusters is not predetermined for any of the
compared algorithms, it may happen that the clustering solutions have a different
number of clusters, thereby invalidating the entropy and purity measures.

Figure 5(a) presents NMI with respect to distance threshold δ for STREAM1,
which consists of 100k documents generated from 100 different DTDs. We see
that all XStreamCluster variants achieve a clustering quality nearly equal to
S-GRACE. Quality of XStreamBF is practically equal to quality of S-GRACE,
which means that introducing the Bloom filters as cluster representations does
not result to quality reduction. XStreamCluster and XStreamLSH have a small
difference compared to S-GRACE, which is due to the aggressive filtering of clus-
ters that takes place during clustering at the top-level strategy. This difference
is negligible, especially for small distance threshold values.

We further studied how the diversity of the stream influences the algorithms’
quality, by repeating the experiment using streams generated from a differ-
ent number of DTDs. Figure 5(b) shows the NMI with respect to the number
of DTDs used for generating STREAM1. We see that XStreamCluster vari-
ants again achieve a quality almost equal to S-GRACE. The difference between
XStreamCluster and S-GRACE reduces with an increase in the number of DTDs,
and becomes negligible for the streams generated from more than 100 DTDs.

As shown in the last column of Table 1, the same outcome was observed on
the experiments with STREAM2. XStreamBF produced an equivalent solution
to S-GRACE, whereas XStreamLSH and XStreamCluster approximated closely
the optimal quality. The difference between the approximate solution produced
by XStreamCluster and the exact solution produced by S-GRACE was less than
0.01 in terms of NMI, in all experiments.

 0.58
 0.6

 0.62
 0.64
 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78

 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Distance Threshold

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

 0.62
 0.63
 0.64
 0.65
 0.66
 0.67
 0.68
 0.69
 0.7

 0.71
 0.72
 0.73

 50 100 150 200 250

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Number of DTDs

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

Fig. 5. Normalized Mutual Information for STREAM1. Varying (a) the distance
threshold, and, (b) the number of DTDs.

Summarizing, XStreamCluster achieves good clustering of XML documents
requiring at least an order of magnitude less cost compared to S-GRACE, with
respect to both execution time and memory. The experimental results show that
it is especially suited for clustering large and diverse streams, both with respect
to quality and efficiency. Owing to the low memory and time requirements, it is
easily deployable in standard off-the-shelf PCs and scales to huge XML streams.

5 Conclusions

We presented XStreamCluster, the first algorithm that addresses clustering of
streaming XML documents. The algorithm combines two optimization strate-
gies, Bloom filters for reducing the memory requirements, and Locality Sensitive
Hashing to reduce significantly the cost of clustering. We provided theoretical
analysis showing that XStreamCluster provides an approximately similar quality
of clustering as exact solutions do. Our experimental results also confirmed the
efficiency and effectiveness contributed by the two strategies of XStreamCluster.

For future work, we will consider additional distance measures, including
the ones which combine both content similarity and structure similarity, and
compare their effect on clustering efficiency and effectiveness. Furthermore, we
will adapt the XStreamCluster algorithm for data other than XML, like user-
generated streaming data on the web. Finally, we are working towards extending
XStreamCluster to enable ‘forgetting old documents’, in a sliding window fash-
ion.

References

1. Papapetrou, O., Chen, L.: XStreamCluster: an Efficient Algorithm for Streaming
XML data Clustering. In: Proc. of DASFAA. (2011)

2. Mayorga, V., Polyzotis, N.: Sketch-based summarization of ordered XML streams.
In: Proc. of ICDE. (2009)

3. Josifovski, V., Fontoura, M., Barta., A.: Querying XML streams. VLDB Journal
14(2) (2005)

4. Bifet, A., Gavald, R.: Adaptive XML tree classification on evolving data streams.
In: Proc. of ECML/PKDD. (2009)

5. Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.: A methodology for clustering
XML documents by structure. Inf. Syst. 31(3) (2006) 187–228

6. Lian, W., Cheung, D.W.L., Mamoulis, N., Yiu, S.M.: An efficient and scalable
algorithm for clustering XML documents by structure. IEEE TKDE 16(1) (2004)
82–96

7. Nierman, A., Jagadish, H.V.: Evaluatating structural similarity in XML docu-
ments. In: Proc. of ACM SIGMOD WebDB Workshop. (2002) 61–66

8. Tagarelli, A., Greco, S.: Toward semantic XML clustering. In: Proc. SDM. (2006)
9. Aggarwal, C.C.: A framework for clustering massive-domain data streams. In:

Proc. of IEEE ICDE. (2009)
10. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall (1988)
11. Kaufman, L., Rousseuw, P.: Finding groups in data - An introduction to cluster

analysis. Wiley (1990)
12. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving

data streams. In: Proc. of VLDB. (2003)
13. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In:

Proc. of IEEE FOCS. (2000)
14. O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-data

algorithms for high-quality clustering. In: Proc. of ICDE. (2002)
15. Ong, K.L., Li, W., Ng, W.K., Lim, E.P.: Sclope: an algorithm for clustering data

streams of categorical attributes. In: LNCS, Vol 3181. (2004)
16. Zhong, S.: Efficient streaming text clustering. In: Neural Networks, Vol 5-6. (2005)
17. Asai, T., Arimura, H., Abe, K., Kawasoe, S., Arikawa, S.: Online algorithms for

mining semi-structured data stream. In: Proc. of ICDM. (2002) 27–34
18. Candiller, L., Tellier, I., Torre, F.: Transforming xml trees for efficient classification

and clustering. In: INEX. (2005) 469–480
19. Doucet, A., Ahonen Myka, H.: Naive clustering of a large XML document collec-

tion. In: INEX. (2002) 81–87
20. Doucet, A., Lehtonen, M.: Unsupervised classification of text-centric XML docu-

ment collections. In: Proc. of INEX. (2006)
21. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-

ing. In: Proc. of VLDB. (1999)
22. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent

permutations. In: Proc. of STOC ’98, ACM (1998) 327–336
23. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:

STOC, New York, NY, USA, ACM (2002) 380–388
24. Papapetrou, O., Siberski, W., Nejdl, W.: Cardinality estimation and dynamic

length adaptation for bloom filters. Distributed and Parallel Databases 28(1)
(2010)

25. Diaz, A.L., Lovell, D.: XML generator (1999) Available at
http://www.alphaworks.ibm.com/tech/xmlgenerator.

