Minimizing the Network Distance in Distributed
Web Crawling

Odysseas Papapetrou and George Samaras

University of Cyprus, Department of Computer Science,
75 Kallipoleos str., P.O. Box 20537, Nicosia, Cyprus
{cspapap, cssamara}@cs.ucy.ac.cy

Abstract. Distributed crawling has shown that it can overcome im-
portant limitations of the centralized crawling paradigm. However, the
distributed nature of current distributed crawlers is currently not fully
utilized. The optimal benefits of this approach are usually limited to
the sites hosting the crawler. In this work we describe IPMicra, a dis-
tributed location aware web crawler that utilizes an IP address hierarchy
and allows crawling of links in a near optimal location aware manner.
The crawler outperforms earlier distributed crawling approaches without
a significant overhead.

1 Introduction

The challenging task of indexing the web (usually referred as web-crawling) has
been heavily addressed in research literature. However, due to the current size,
increasing rate, and high change frequency of the web, no web crawling schema
is able to pace with the web. While current web crawlers managed to index more
than 3 billion documents [6], it is estimated that the maximum web coverage of
each search engine is around 16% of the estimated web size [8].

Distributed crawling [10,11,9, 1, 3, 4] was proposed to improve this situation.
However, all the previous work was not taking full advantage of the distributed
nature of the application. While some of the previously suggested systems were
fully distributed over the Internet (many different locations), each web document
was not necessarily crawled from the most near crawler but from a randomly
selected crawler. While the distribution of the crawling function was efficiently
reducing the network bottleneck from the search engine’s site and significantly
improving the quality of the results, the previous proposals were not at all op-
timized.

In this work, we describe a near-optimal, for the distributed crawlers, URL
delegation methodology, so that each URL is crawled from the nearest crawler.
The approach, called IPMicra, facilitates crawling of each URL from the nearest
crawler (where nearness is defined in terms of network latency) without creating
excessive load to the Internet infrastructure. Then, the crawled data is processed
and compressed before sent to the centralized database, this way eliminating
the network and processing bottleneck in the search engine’s central database

site. We use data from the four Regional Internet Registries (RIRs) to build a
hierarchical clustering of IP addresses, which assists us to perform an efficient
URL delegation to the migrating crawlers. In addition to location aware crawling,
IPMicra, provides load balancing taking into consideration the crawler’s capacity
and configuration. Furthermore, it dynamically adjusts to the changing nature
of the Internet infrastructure itself.

This short introduction is followed by a brief description on related work,
giving emphasis to UCYMicra, a distributed crawling infrastructure which we
extend to perform location aware web crawling. We then introduce and describe
location aware web crawling. Section 4 describes and evaluates our approach
toward location aware web crawling, called IPMicra. Section 5 summarizes the
advantages of IPMicra. Conclusions and future work are presented in section 6.

2 Related work

While the hardware bottleneck is easily (but not cheaply) handled in the mod-
ern web crawling systems with parallelization, the network bottleneck is not so
easily eliminated. In order to eliminate the delay caused by the network latency
(occurred mainly due to the network distance between the crawler and the target
URLs), the modern crawlers issue many concurrent HTTP/GET requests. While
this speeds up crawling, it does not optimize the utilization of the still limited
network resources, and the overhead in hardware and network for keeping many
threads open is very high. The network resources are not released (in order to
be reused) as fast as possible. Furthermore, in most of the cases, the data is
transmitted uncompressed (since most of the web-servers have compression dis-
abled), and unprocessed to the central sink (the search engine), thus, its size is
not reduced. Finally, the whole crawling process generates a big workload for
the whole Internet infrastructure, since the network packets have to go through
many routers (due to the big network distance of the crawler and the servers).

There were several proposals trying to eliminate the bottlenecks occurred in
centralized crawling, such as [2,5]. However, in the authors’ knowledge, none
of them was able to solve the single-sink problem. All of the crawled data was
transmitted to a single point, uncompressed, and unprocessed, thus, requiring
great network bandwidth to perform the crawling function (the nature of cen-
tralized systems). Thus, realizing the limitations of centralized crawling, several
distributed crawling approaches have been proposed [10,11,9,1,3,4]. The new
approaches are based in the concept of having many crawlers distributed in
the web, using different network and hardware resources, coordinated from the
search engine, sharing the crawling workload. The crawlers sometimes run in the
search engine’s machines [3, 4], sometimes in customers’ machines [11,10], and
sometimes in third parties (normal Internet users) [9]. The innovation in these
approaches is that they mostly eliminate the network bottleneck in the search
engine’s site, since they reduce the size of the data transmitted to it (due to
data processing, compression, and filtering before transmission). More exactly,
while distribution introduces one more step - the step of transmitting the data

from the distributed crawlers back to the central search engine database - dis-
tributed crawlers do eliminate the network and processing bottlenecks in the
search engine’s site, since they can significantly reduce the size of the data (due
to filtering and compression), and prepare the data (using distributed resources)
for integration in the database.

As in the centralized crawlers, distributed crawlers also issued many con-
current HTTP/GET requests to minimize the network latency. However, as in the
centralized crawling case, this approach is not the optimal, neither for network
utilization, nor for the Internet infrastructure. More specifically, the distributed
crawlers are forced to open many concurrent threads in order to cover the net-
work latency, thus, they require more hardware and network resources. Further-
more, the network resources cannot be reused as fast as possible, since they are
not optimally released. Finally, increased load occurs in the Internet infrastruc-
ture since the HTTP/GETs and HTTP/HEADs results are transmitted from the web
servers uncompressed, unprocessed, and unfiltered, over a long network distance,
through many routers, until they arrive in the distributed crawling points, for fil-
tering and compression. To remedy all these, we now propose a truly distributed
location aware web crawling, which minimizes the network latency in distributed
crawling (between the distributed crawlers and the web-pages), speeds up the
web crawling process, and also enables efficient load balancing schemes.

2.1 The UCYMicra System

UCYMicra [10,11] was recently proposed as an alternative to distributed web
crawling. Realizing the limitations of the centralized web crawling systems and
several other distributed crawling systems we designed and developed an effi-
cient distributed web crawling infrastructure, powered from mobile agents. The
web crawlers were constructed as mobile agents, and dispatched to collaborat-
ing organizations and web servers, where they performed downloading of web
documents, processing and extraction of keywords, and, finally, com-
pression and transmission back to the central search engine. Then, the so-
called migrating crawlers remained in the remote systems and performed con-
stant monitoring of all the web documents assigned to them for changes.

More specifically, the original UCYMicra consists of three subsystems, (a)
the Coordinator subsystem, (b) the Mobile Agents subsystem, and (c) a public
Search Engine that executes user queries on the database maintained by the
Coordinator subsystem.

The Coordinator subsystem resides at the Search Engine site and is respon-
sible for administering the Mobile Agents subsystem (create, monitor, kill a
migrating crawler), which is responsible for the crawling task. Furthermore, the
coordinator is responsible for maintaining the search database with the crawling
results that it gets from the migrating crawlers.

The Mobile Agents subsystem is divided into two categories of mobile agents;
the Migrating Crawlers (or Mobile Crawlers) and the Data Carries. The former
are responsible for on-site crawling and monitoring of remote Web servers. Fur-
thermore, they process the crawled pages, and send the results back to the co-

Search
Engine
Database

performing 1 e
searches Search Engine's
WWeb Servers |

Maintains

| wieh Servers \
thosting migrating =}
{ crawlers (MC)

Wobile Agents subsystem Coordinatar Subsystem

Fig. 1. UCYMicra basic components

ordinator subsystem for integration in the search engine’s database. The latter
are responsible for transferring the processed and compressed information from
the Migrating Crawlers back to the Coordinator subsystem. Figure 1 illustrates
the high-level architecture of UCYMicra.

The UCYMicra paradigm was easily received by the users, and was ap-
preciated and tempting to the web server administrators, since it could offer
a quality-controlled crawling service without security risks (they could easily
and efficiently set security and resource usage constraints). Actually, the use of
UCYMicra was twofold. Powered from the portability of the mobile agents’ code,
the UCYMicra crawlers could easily be deployed and remotely administered in
an arbitrary number of collaborating machines and perform distributed crawl-
ing in machines’ idle time (similar to the seti@home approach [12]. SETI users
download and install a screensaver, which performs background processing while
active, and sends the results back to the SETI team). Further on, the crawlers
could be deployed in high-performance dedicated machines controlled from the
search engine company, for performing efficient distributed crawling with very
little communication overhead.

Due to its distribution, UCYMicra was able to outperform other centralized
web crawling schemes, by requiring at least one order of magnitude less time
for crawling the same set of web pages [11,10]. The processing and compression
of the documents to the remote sites was also important, since this reduced
the data transmitted through Internet back to the search engine site, and also
eliminated the processing and network bottlenecks. Furthermore, UCYMicra
not only respected the collaborating hosts (by working only when the resources
were unused) but also offered quality crawling - almost like live update - to the
servers hosted in the collaborating companies (a service usually purchased from
the search engines).

3 Location aware web-crawling

The concept behind location aware web crawling is simple. Location aware
web crawling is distributed web crawling that facilitates the delegation of the
web pages to the ‘nearest’ crawler (i.e. the crawler that would download the page
the fastest). Nearness and locality are always in terms of network distance
(latency) and not in terms of physical (geographical) distance. The purpose of
finding the nearest crawler for each web-page is to minimize the time spent in
crawling of the specific web-page, as well as the network and hardware resources
required for the crawling function. This way, location aware web crawling can
increase the performance of distributed web crawlers, promising a significant
increase in web coverage.

Being distributed, the location aware web crawling approach introduces the
load (small, compared to the gains of the approach) of transferring the filtered,
compressed, and processed data from the distributed crawlers to the central
database server. However, the search engine site’s network is now released from
the task of crawling the pages, which is now delegated in the distributed crawlers.
This releases important network and hardware resources, significantly greater
than the newly introduced load for transferring the data from the distributed
crawlers back to the central search engine. Furthermore, optimization techniques,
such as filtering, remote processing and compression, are enabled from the dis-
tributed crawlers and can be applied in the communication between the crawlers
and the search engine, thus eliminating the network and processing bottlenecks
in the search engine’s site. In fact, distributed crawling, by combining filtering,
processing, and finally compression, can reduce the size of the data transmit-
ted to the search engine for integration in the database as much as one order of
magnitude, without loosing any details useful for the search engine. Even further
reduction in the size of data is available by adopting the distributed crawlers to
the search engine’s ranking algorithms.

In order to find the nearest crawler to a web server we use probing. Exper-
iments showed that the traditional ICMP-ping tool, or the time that takes for
a HTTP/HEAD request to be completed, are very suitable for probing. In the
majority of our experiments, the crawler with the smallest probing time was the
one that could download the web page the fastest. Thus, the migrating crawler
having the smallest probing result to a web server is possibly the crawler most
near to that web server.

Evaluating location aware web crawling, and comparing it with distributed
location unaware web crawling (e.g. UCYMicra) was actually simple. UCYM-
icra was enhanced and, via probing, the URLs were optimally delegated to the
available migrating crawlers. More specifically, each URL was probed from all the
crawlers, and then delegated to the ‘nearest’ one. Location aware web crawling
outperformed its opponent, the “unaware” UCYMicra, which delegated the vari-
ous URL randomly, by requiring one order of magnitude less time (1/10th)
to download the same set of pages, with the same set of migrating crawlers and
under approximately the same network load.

4 The IPMicra System

While location-aware web crawling significantly reduces the download time,
building a location aware web crawler is not trivial. In fact, the straight-forward
approach toward location aware web crawling requires each URL to be probed
(i.e. ping)from all the crawlers, in order to find the most near web crawler to
handle it. Thus, extensive probing is required, making the approach impractical.
The purpose of IPMicra is to eliminate this impracticality. IPMicra specifically
aims in reducing the required probes for delegating a URL to the nearest crawler.
We designed and built an efficient self-maintaining algorithm for domain delega-
tion (not just a URL) with minimal network overhead by utilizing information
collected from the Regional Internet Registries (RIRs).

Regional Internet Registries are non-profit organizations that are dele-
gated the task of handling IP addresses to the clients. Currently, there are four
regional Internet Registries covering in the world: APNIC, ARIN, LACNIC, and
RIPE NCC. All the sub-networks (i.e. the companies’ and the universities’ sub-
networks) are registered in their regional registries (through their Local Internet
Registries) with their IP address ranges. Via the RIRs a hierarchy of IP ranges
can be created. Consider the IP range starting from the complete range of IP
addresses (from 0.0.0.0 to 255.255.255.255). The IP addresses are delegated to
RIRs in large address blocks, which are then sub-divided to the LIRs (Local
Internet Registries); lastly they are sub-divided to organizations, as IP ranges,
called subnets.

The IPMicra system is architecturally divided in the same three subsystems
that were introduced in the original UCYMicra: (a) the public search engine,
(b) the coordinator subsystem, and (c) the mobile agents subsystem. Only the
public search engine remains unchanged. The coordinator subsystem is enhanced
for building the IP hierarchy tree and coordinating the delegation of the subnets,
and the migrating crawlers are enhanced for probing the sites and reporting the
results back to the coordinator.

4.1 The IP-address Hierarchy and Crawlers placement

The basic idea is the organizing of the IP addresses, and subsequently the URLs,
in a hierarchical fashion. We use the WHOIS data collected from the RIRs to
build and maintain a hierarchy with all the TP ranges (IP subnets) currently
assigned to organizations (e.g., see figure 2). The data, apart from the IP subnets,
contains the company that registers each subnet. Our experience shows that the
expected maximum height of our hierarchy is 8. The required time for building
the hierarchy is small, and it can be easily loaded in main memory in any average
system. While the IP addresses hierarchy does not remain constant over time, we
found out that it is sufficient to rebuild it every three months, and easy populate
it with the old hierarchy’s data.

Once the IP hierarchy is built, the migrating crawlers are sent to affiliate
organizations. Since the IP address of the machine that will host the crawler is
known, we can immediately assign that subnet to the new crawler(e.g., crawler X

‘ 0.0.0.0-255.255.255.255‘
L]
2P :12.0.0.1-
AR
7 8:1P:14.0.0.1
16.255.255.255
11:crawler x 13:crawler y
company 1 company 2

Fig. 2. A sample IP hierarchy. Subnets 11 and 13 belong to company 1 and company
2 respectively. Subnets 11 and 13 are assigned to crawlers X and Y respectively

is hosted by a machine belonging to subnet 11). In this way the various crawlers
populate the hierarchy. The hierarchy can now be used to efficiently find the
nearest crawler for every new URL, utilizing only a small number of probes.
The populated hierarchy also enables calibrating and load-balancing algorithms
(described later) to execute.

Updating the IP-address hierarchy is not difficult either. When we detect
significant changes in the hierarchy data collected from the RIRs we rebuild the
hierarchy from scratch (in our testing, rebuilding the hierarchy once a month
was sufficient). Then, we pass the data from the old hierarchy to the updated
one, in order to avoid re-delegations of already delegated URLSs, and continue the
algorithm execution normally. Any invalid re-delegations (i.e. important changes
in the underlying connectivity of a web server or a web crawler), will be later
detected, and the hierarchy will be calibrated (described later).

4.2 Probing

Since the introduction of classless IP addresses, the estimation of the network
distance between two Internet peers, and subsequently, location aware web crawl-
ing, cannot be based in the IP addresses. For example, two subsequent IP ad-
dresses may reside in two distant parts of the planet, or, even worse, in the same
part, but with very high network latency between. Therefore we needed an ef-
ficient function to estimate the network latency between the crawlers and the
web-servers hosting the URLs.

Experiments showed that the traditional ICMP-ping tool, or the time that
takes for a HTTP/HEAD request to be completed, are very suitable for prob-
ing. In the majority of our experiments (91% with ping and 92.5% when using
HTTP/HEAD for probing), the crawler with the smallest probing time was the
one that could download the web page the fastest. Thus, the migrating crawler
having the smallest probing result to a web server is possibly the crawler most
near to that web server.

Probing threshold: During the delegation procedure (described in detail
in section 4.3) we consider a crawler to be suitable to get a URL if the probing
result from that crawler to the URL is less than a threshold, called probing

threshold. Probing threshold is the maximum acceptable probing time from a
crawler to a page and it is set by the search engine’s administrator depending on
the required system accuracy. In simple terms we can see the probing threshold
as our tolerance on non-optimal delegation. During our experiments we found a
probing threshold set to 50msec to give a good ratio of accuracy over required
probes.

4.3 The URL Delegation Procedure

Based on the assumption that the sub-networks belonging to the same company
or organization are logically (in terms of network distance) in the same area, we
use the organization’s name to delegate the different domains to the migrating
crawlers. In fact, instead of delegating URLs to the distributed crawlers, we
delegate subnets. This is done in a lazy evaluation manner, that is, we try to
delegate a subnet only after we find one URL that belongs to that subnet.

We first find the smallest subnet from the IP hierarchy that includes the IP
of the new URL, and check if that subnet is already delegated to a crawler. If so,
the URL is handled from that migrating crawler. If not, we check whether there
is another subnet that belongs to the same company and is already delegated
to a migrating crawler (or more). If such a subnet exist, the new URL, and
subsequently, the owning subnet, is delegated to this crawler. If there are more
than one subnets of the same company delegated to multiple crawlers then the
new subnet is probed from these crawlers and delegated to the fastest. In fact, we
stop as soon as we find a crawler that satisfies the probing threshold(section 4.2).

Only if this search is unsuccessful, we probe the subnet with the migrating
crawlers, in order to find the best one to take it over. We navigate the IP-address
hierarchy bottom up, each time trying to find the most suitable crawler to take
the subnet. We first discover the parent subnet and find all the subnets included
in the parent subnet. Then, for all the sibling subnets that are already delegated,
we sequentially ask their migrating crawlers, and the migrating crawlers of their
children subnets to probe the target subnet, and if any of them has probing
time less than a specific threshold (probing threshold), we delegate the target
subnet to that crawler. If no probing satisfies the threshold, our search continues
to higher levels of the subnets tree. In the rare case that none of the crawlers
satisfies the probing threshold, the subnet is delegated to the crawler with the
lower probing result.

The algorithm (see pseudo-code below) is executed in the coordinator sub-
system.

for any newly discovered URL u {

subnet s = smallestNonUnary(u) ;

if (IsDelegated(s)){ // the subnet is delegated
delegate u, s to the same migrating crawler;
next u;

}

elseif (sameCompanySubnetDelegated(s.companyName)){

// a subnet of the same company is delegated

mc = migrating crawler that has the other subnet;
mc.delegate(u, s) //the url and the subnet
} else {
while (s not delegated) {
S = s.parent;
if (IsDelegated(s)) { // check the parent
mc = the migrating crawler that has subnet s;
time = mc.probe(u);
if (time<threshold)
mc.delegate(u, s); //the url and the subnet
}

for every child of s until u is delegated {
sch = s.child
if (IsDelegated(sch)) { // check the child
mc = migrating crawler that has subnet sch;
time = mc.probe(u);
if (time<threshold)
mc.delegate(u, s)

}
if (allAvailableCrawlersProbed)
delegate the subnet to the fastest crawler

A URL delegation example: For clarity purposes an example is in order. The
example references the IP address hierarchy presented in figure 2.

Subnet 2 in figure 2 has an IP range from 12.0.0.1 to 18.255.255.255. Subnet 8
is included in subnet 2 with an IP range from 14.0.0.1 to 16.255.255.255. Subnet
12 is a unary subnet for IP 15.10.0.7. The scenario includes probing for a URL
that resides to IP 15.10.0.7. Querying the IP addresses hierarchy, we discover that
the smallest subnet including the target IP is subnet 12, which however is unary.
Thus, according to our algorithm, we ignore subnet 12, and use subnet 8 instead.
Subnet 8 is not delegated in any crawler, so we check to see if any other subnet
belonging to the same company is already delegated to any crawler. Assuming
that no other subnet of the same company is delegated (organization name is
stored in every node in the hierarchy), we continue by checking for neighbouring
subnets that are delegated. Looking again in our hierarchy, we discover that while
subnet 8 is not delegated to any crawler yet, subnets 11 and 13 (its children) are
delegated to two different crawlers, x and y respectively. Therefore, we ask these
two crawlers to probe the new subnet. If probing in either of the two crawlers’
results in time less than the probing threshold, we delegate the new subnet to
that crawler, or else we proceed to higher levels of hierarchy. However, since in
this scenario, subnet 12 is a unary subnet, we delegate both subnets 8 and 12
to the faster crawler. Since the subnets 11 and 13 are already delegated and are
lower in the hierarchy than subnet 8, this does not affect them (their delegation

supersedes the delegation of their father). Subnet 14, which is not yet delegated,
stays un-delegated. If we need to delegate it in the future, we run the same
algorithm until we find some crawler satisfying the probing threshold.

4.4 Load balancing and dynamic calibration

Our algorithm performs dynamic calibration of the URLs in order to follow the
vastly changing Internet infrastructure. More specifically, the time required for
each network action for each URL (i.e. HTTP/GET) is compared with the previous
counts/statistics for the same URL. If the time is sufficiently larger (a threshold
defined from the search engine administrator) than the time demanded for the
previous downloads of the same page, and if this repeats for more than one time
continuously, then the subnet is re-delegated, so that a more suitable crawler is
found. In this way, with negligible processing, and no extra network overhead,
the algorithm dynamically detects changes and calibrates the URL delegations.

IPMicra also performs efficient load-balancing. Each crawler has a maximum
capacity, the size of the assigned web-pages that the crawler has to check each
day. In the case where a crawler gets overloaded, the coordinator removes the
subnet(s) with the lower variance in their probing results (collected during their
delegation, and stored in the coordinator), and delegates them to the next-best
available crawler. Intuitively, small probing time variance implies that most of
the probed crawlers have similar probing results, thus, we expect to be easily
able to find a near optimal crawler to take over a page. This heuristic performs
well, and was preferred over other studied approaches (i.e. linear programming)
due to the simplicity in implementation. Our tests showed that this heuristic was
performing optimal decisions in more than 2/3 of the cases. Furthermore, in all
the rest cases the heuristic was able to find an acceptable solution. Unfortunately,
due to space limitations we cannot present analytical results of our experiment
here. While satisfied with this heuristic, part of our ongoing work is to apply
and evaluate other load balancing algorithms.

4.5 Performance and Evaluation

The direct advantage and purpose of IPMicra is that it enables location-aware
crawling in distributed crawling systems. As such, the evaluation of the new
methodology must be focused in this exact point. In fact, what we need to
compare is our distributed location-aware methodology with a representative of
distributed crawling methodologies that does not account location during crawl-
ing. After all, distributed crawling per-se was already compared with centralized
crawling [10,11,9, 1,3, 4], and was found significantly better.

The case of various crawling optimizations that exist in other crawling sys-
tems (distributed or not) such as in-memory lexicon [2], DNS caching [5] and
hardware acceleration [7] do not affect our approach, and do not need to be taken
into account to our experiments. As such, we only need to examine the effects of
the proposed location-awareness in distributed web crawling. Thus, we compare
the IPMicra approach with a typical representative of distributed crawlers, i.e.

UCYMicra. We selected UCYMicra over other distributed crawlers for two rea-
sons: (i) we had the UCYMicra crawlers already up and running, in a network
of collaborated universities and organizations, and (ii) IPMicra was built over
UCYMicra, so, it was using the same code to download and process pages, with
the same optimization functions. Namely, the only practical difference between
the two approaches was location awareness, thus, our measurements would be
as objective as possible. That is, any differences in performance between the two
crawlers, the location-aware Vs the location-unaware crawler, would be only due
to the location awareness.

Before proceeding to describing our experiments and results, we have to stress
once more that our selection to compare IPMicra with UCYMicra and not other
approaches is because we now want to evaluate only the location-aware web
crawling schema, and not several other optimization techniques existing in other
proposals (either for distributed or for centralized crawling). In fact, most of
these techniques can be applied in any distributed crawler, and in IPMicra. Thus,
such techniques can combine with IPMicra and improve IPMicra’s performance
even more. IPMicra per se is also applicable in any other distributed crawler, in
order to perform location aware web crawling.

We performed a two-phase evaluation and repeated each experiment several
times to get statistical significance.

The first evaluation phase involved three experiments, with four coordinat-
ing crawlers, hosted from affiliated universities in four distinct geographical loca-
tions(USA, Greece, Cyprus, and London). The experiments included distributed
crawling of 1000 distinct domain names, using three different variations: (a) Lo-
cation unaware distributed crawling i.e. UCYMicra, (b) Optimal location aware
distributed crawling, and, (c) IPMicra. Location unaware distributed crawling
was performed with an enhanced version of UCYMicra, which was performing a
random delegation of the URLs to the crawlers. The optimal location aware dis-
tributed web crawling was performed from another version of UCYMicra, which
probed (with HTTP/HEAD) each URL from all the crawlers prior each delega-
tion, and delegated each URL to the most near crawler (this was approaching the
theoretically optimal location aware delegation). IPMicra was also executed in
the same setup, as described before. However, since IPMicra’s performance de-
pends on the probing threshold, we experimented with many different thresholds
(25msec to 125msec). We found a threshold set to 50msec with HTTP/HEAD
as the probing function to give a good ratio of (accuracy:#required probes).
Setting the threshold to a lower value i.e. 25msec was resulting to much higher
accuracy (more than 90% optimal delegations) but required more probes for
each delegation.

We found that location aware web crawling required one order of mag-
nitude less time (average 1/10th) in the downloading process from the
location-unaware version. The case was very similar with IPMicra, which also
required one order of magnitude less time (with probing threshold set to 50msec
and using HTTP/HEAD for probing function) compared to location unaware
web crawling. The evaluation results are illustrated in figure 3 (the worst-case

scenario is the case where each URL is assigned to the farthest crawler). Note
that even with only four crawlers the benefits are tremendous. In fact, as the
number of crawlers increases the benefits increase as well. We expect the IP-
address hierarchy to be instrumental in identifying the optimal number of crawlers
for optimal location aware crawling.

Perfarmance evaluation for IPMicra (1000 sites, 4 crawlers)

IPMicra 250

Optimal Location 159
avvare

Location unasvare 1492
(random delegstion)

Location unasware 5100
[worst casze)

] 1000 2000 3000 4000 5000 OO0
Time required for downloading (msec)

Fig. 3. IPMicra compared to the optimal location aware, the random, and the worst-
case distributed crawling (1000 sites and 4 crawlers)

At the second evaluation phase, we included 12 crawlers (hosted in affili-
ated organizations and universities in USA, Europe and Australia) and 1000
randomly selected URLs - different than the previous. This experiment was to
evaluate the accuracy of IPMicra in performing a location aware delegation, and
the required probes for doing so. In this experiment, IPMicra was able to pro-
pose an optimal delegation in most of the URLs, by requiring very few probes.
More specifically, with a probing threshold set to 50msec, IPMicra managed to
perform the optimal delegation in 75% of the URLs, and required an average of
only 3 probes per URL, compared to 12 needed for the brute-force approach pre-
sented in Section 3. With a probing threshold set to 25msec, IPMicra’s accuracy
was reaching to 90% accuracy (90% of the URLs were assigned in the nearest
of the 12 crawlers), and required 6,5 probes for each URL. It is worth noting
however that in all our experiments, the sub-optimal delegations were very near
to the optimal ones, and always much better than a random delegation (from the
delegation algorithm, one can realize that the maximum probing of any proposed
non-optimal delegation was equal to the probing threshold, which however was
significantly low in all cases). The effects of the probing threshold are illustrated
in figure 4.

Due to practical difficulties (the difficulty of establishing controlled environ-
ment for our experiments in a number of distinct, world-distributed networks),

Affect of the probing threshold in the number
of probes and the optimal delegations

100 901 re
a0 ORequired probes
&5 5 per URL
0 . B Cptimal delegations
25 50 (%)

Probing Threshold {(msec)

Fig. 4. Experimenting with probing threshold (25msec and 50msec), 12 crawlers and
1000 URLs

the two evaluations were made with a limited number of distributed crawlers
and URLs. However, these crawlers were well distributed over the world (physi-
cally, and in network level), and they were significant for showing the advantages
of the location-aware approach, and the effectiveness of IPMicra for performing
location-oriented assignments of the IP subnets. Actually, we expect the ap-
proach to react better with more collaborating crawlers, since this will enable the
algorithm to focus easier and faster to the most promising crawlers (without
more probes). The crawlers populate in the hierarchy in a way that a number of
IP subnets is automatically delegated (without probes) to them, and this knowl-
edge is used for more effective future delegations. After all, the theoretical-ideal
case of one IPMicra crawler in each subnet would result in 100% effectiveness of
the approach - 100% optimal delegations, without any probing requirements (all
the subnets would be optimally delegated to their own crawler). Furthermore,
our experiments revealed an evolutionary nature of the approach (calibration
in the course of time), promising more for the real-world deployment of the
approach to hundreds of collaborated organizations, with the billions of URLs.

The adaptive/learning nature of IPMicra: In all our experiments, IPMicra
was getting calibrated-optimized in the course of time, by facilitating a priori
knowledge. For example, while the average number of probes for all the sites
(phase 2 of the evaluation, with 12 crawlers) was 3 probes per URL, the average
probing for the last 50 URLs was only 2.66 probes per URL. The fact that more
delegations were performed in the IPMicra hierarchy - the hierarchy was getting
trained/calibrated - was helping IPMicra to focus to the optimal crawler with
less probes. The results of the previous experiment (with 6 and 12 crawlers) are
also illustrated in graph 5. It is very important that the (linear) trendline in
the graph is reducing, meaning that the required probes for each URL are also
getting reduced in the course of time.

9
+ N ——With 6 crawlers
7z 1 4 - T
5 4 —a—\With 12 crawlers
48
= = =Linear (¥ith 12
36 crawlers)
24 — =L inear (With 6
13 crawlers)
0 T T T T

] 200 400 600 800 1000

Fig. 5. The adaptive nature of IPMicra - Number of required probes per URL with
probing threshold set to 50msec (for 1000 sites crawled from 6 and 12 crawlers)

5

Advantages of IPMicra

IPMicra has several advantages inherited from the mobile agents model, and
its predecessor, UCYMicra. Furthermore, it supports load balancing and near
optimal URL delegation. More specifically, IPMicra provides the following ad-
vantages:

1.

Location aware crawling. It delegates the web sites to near migrating crawlers
in order to take advantage of the lower network latency for faster crawling
IPMicra makes better use of the available bandwidth. While location un-
aware web crawlers (distributed or not) were trying to get over the net-
work latency and increase the crawling rate by employing multiple crawling
threads, the available bandwidth was not fully utilized and was always a
bottleneck. Location aware web crawling needs less time to download a web
document and releases network resources faster. Just by re-arranging the
delegation of the URLs to the nearest web crawlers, we can complete the
crawling function more efficient. Therefore, we expect to avoid the network
bottleneck during crawling.

Load balancing. It uses an efficient load balancing scheme for URL delegation
and re-delegation to alleviate bottlenecks in the migrating crawlers.
IPMicra eliminates the need of the traditional centralized web-crawlers, since
the new crawling paradigm can follow newly found links and performs effi-
cient load balancing.

IPMicra introduces less overall load in the Internet infrastructure, since im-
portantly less data is transmitted uncompressed over the Internet. The dis-
tance that the uncompressed data has to be transmitted (between the web-
servers and the distributed crawlers) is less or the two Internet points are
connected with high bandwidth.

IPMicra has the important advantage of becoming dynamically calibrated
in the course of time, for more focused (with less probes) searching for the

nearest crawler. Moreover, the system also detects important changes of the
Internet’s underlying network structure, and easily adjusts to them, to keep
optimal delegations

Being distributed, IPMicra also inherits the advantages of distributed crawl-
ing. More specifically, not only it eliminates the enormous processing bottleneck
from the search engine’s site, by delegating the processing task to the migrating
crawlers, but also it performs remote processing and compression (to the mi-
grating crawlers) prior transmitting the results back to the search engine. The
latter results to a significant reduction of the data transmitted back to the search
engine’s site (as in UCYMicra, we transmit less than 1/20th of the changed
crawled data [10, 11]), without loosing any search-useful information. Also, use-
less conditional GETs(If-Modified-Since headers) and HEAD requests do not
any more occupy network resources from the search engine’s site, but are exe-
cuted distributed. Moreover, due to the flexibility of the mobile agents paradigm,
the whole system is upgradeable at real time (the migrating crawlers’ code can
be upgraded live), and uses negligible network resources for coordination. At the
end, it is very promising and easily acceptable from the users, due to the secu-
rity constraints that can be set to the migrating crawlers, and since it can offer
a fully configurable crawling service for the web server administrators(similar
services are currently sold from commercial search engines).

6 Conclusions

In this work, we proposed IPMicra, an extension of UCYMicra, that allows,
based on the notion of ‘nearness’, crawling of links in a near optimal location
aware manner. The motivating power behind IPMicra is an IP address hierarchy
tree, which is build using information from the four Regional Internet Registries.
This hierarchy is used to delegate the web sites to near migrating crawlers in
order to take advantage of the lower network latency for faster crawling.

IPMicra significantly improves the performance of distributed crawling by
requiring one order of magnitude less time from a location unaware distributed
crawler to crawl the same set of web pages. The performance is achieved just by
re-arranging the URL delegations to the nearest crawlers. IPMicra also enables
efficient load-balancing with negligible overhead.

This work can offer an efficient and generic solution to todays web indexing
problem. We view this work as an important step toward a truly distributed and
scalable web crawler, that will be able to catch up to the expanding and rapidly
changing web. The location aware infrastructures developed in this work can
be applied (as a framework) in any (fully or partially) distributed web crawler.
The framework can even be applied in existing commercial approaches, like the
Google Search Appliance or Grub. Furthermore, it can facilitate optimizations
for distributed applications in the Internet in general. For example, this frame-
work can efficiently enhance the load balancing schemes used from content de-
livery networks, such as Akamai.

References

1.

11.

12.

C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F.
Schwartz. The Harvest information discovery and access system. Computer Net-
works and ISDN Systems, 28(1-2):119-125, 1995.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1-7):107-117, 1998.
Jan Fiedler and Joachim Hammer. Using the web efficiently: Mobile crawlers. In
Proceedings of the Seventeenth AoM/IAoM International Conference on Computer
Science, pages 324-329, San Diego CA, 1999. Maximilian Press Publishers.
Joachim Hammer and Jan Fiedler. Using mobile crawlers to search the web effi-
ciently. International Journal of Computer and Information Science, 1(1):36-58,
2000.

Allan Heydon and Marc Najork. Mercator: A scalable, extensible web crawler.
World Wide Web, 2(4):219-229, 1978.

Google Inc. Google, September 2003. http://www.google.com/.

Google Inc. Google search appliance, February 2004.
http://www.google.com/appliance.

S. Lawrence and C. Lee Giles. Accessibility of information on the web. Nature,
400(6740):107-109, July 1999.

LookSmart Ltd. Grub distributed internet crawler, 2003. http://www.grub.org.

. Odysseas Papapetrou, Stavros Papastavrou, and George Samaras. Distributed

indexing of the web using migrating crawlers. In Proceedings of the Twelfth Inter-
national World Wide Web Conference (WWW), 2003.

Odysseas Papapetrou, Stavros Papastavrou, and George Samaras. Ucymicra: Dis-
tributed indexing of the web using migrating crawlers. In Proceedings of the 7th
East-European Conference on Advanced Databases and Information Systems, Dres-
den, Germany, 2003.

SETI. Search for extra terrestrial intelligence, January 2004.
http://setiathome.ssl.berkeley.edu/.

