Quantitative Evaluation of Embedded Systems: Assignment 1

This assignment can be made in teams of 1 or 2. Answer the questions below in a concise, yet precise way, and in English. Bring your answers to class on Monday December 2.

Note that

- Whenever I refer to the Uppaal Tutorial or simply the tutorial, I mean the paper A Tutorial on Uppaal 4.0 by Gerd Behrmann, Alexandre David, and Kim G. Larsen.
- TA stands for Timed Automaton.

1 Reading

Exercise 1 To answer the questions below, you need to read the following sections.

- Section 1 of both papers.
- Section 2 of the Uppaal Tutorial upto (and including) Definition 2 and the explanation just below.
- Sections 2.1 and 2.2 in the Timed Automata paper upto and including Definition 2 (you may skip the small section called Timed Büchi automata).

2 Theory

Exercise 2 1. Determine a path in P that reaches l_2.

2. Determine a path in P that reaches l_2 faster.

3. Give the semantics of the TA as a TLTS.

![Diagram](Figure 1: TA P with initial state l_0)

3 Tool usage

Exercise 3 To get acquainted with Uppaal, we consider the example from Section 5 in the Uppaal tutorial, which comes with the Uppaal distribution.

1. Install Uppaal 4.0 from www.uppaal.org and load the model fisher.xml.

2. Use the simulator to walk through the model. Create traces $\alpha_1, \alpha_2, \ldots$ with the following properties:

 (a) α_1 hits the state $P1.cs$ and $P2.wait$

 (b) α_2 hits all locations in $P1$ and $P2$.

 (c) α_3 takes all transitions in $P1$ and $P2$.
3. Check all properties that are pre-defined in the verifier.

4. Check the liveness property $P1.\text{req} \rightarrow P1.\text{cs}$. Load a diagnostic trace (see options-menu). Study the diagnostic trace and explain why this property is violated.

5. Add the variant $x \leq 2k$ to the location wait (as suggested in Section 5). Answer the questions from item 3. for the new model.