## Introduction to Homogenization (2WA25)

## Exercises Week 1, WS 2013/14

## 1. A one-dimensional example

Let $a: \mathbb{R} \rightarrow \mathbb{R}$ be a periodic function satisfying $a(x)=a(x+1)$ for all $x \in \mathbb{R}$, and for which there exists $m, M>0$ such that $m \leq a(x) \leq M$ for all $x \in \mathbb{R}$. Further, let $\epsilon=\frac{1}{n}(n \in \mathbb{N})$ be a small, positive number and consider the boundary value problem (BVP)

$$
\left(P^{\epsilon}\right)\left\{\begin{aligned}
-\left(a_{\epsilon}(x) u_{x}^{\epsilon}(x)\right)_{x}= & 0, \quad x \in(0,1) \\
u^{\epsilon}(0)=0, & u^{\epsilon}(1)=1
\end{aligned}\right.
$$

where $a_{\epsilon}: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $a_{\epsilon}(x)=a\left(\frac{x}{\epsilon}\right)$ for all $x \in \mathbb{R}$. Apply the asymptotic expan- sion method to derive the homogenized problem corresponding to Problem $P^{\epsilon}$. Then determine explicitly the homogenized diffusion coefficient for the case $a_{\epsilon}(x)=(2+\sin (2 \pi x / \epsilon))^{-1}$.

## 2. A layered medium

Consider a layered medium occupying the two-dimensional domain $\Omega=(0,1)^{2}$. With $\epsilon>0$, let $a_{\epsilon}: \Omega \rightarrow \mathbb{R}, a_{\epsilon}(x)=a\left(x_{2} / \epsilon\right)$ be an $\epsilon$ - periodic function depending only on $x_{2}$, satisfying $0<m \leq a_{\epsilon}(x) \leq M<\infty$ for some constants $m, M$, uniformly in $\Omega$. Consider the $\epsilon$ dependent (micro scale) equation

$$
-\nabla \cdot\left(a_{\epsilon}(x) \nabla u^{\epsilon}(x)\right)=f, \quad x \in \Omega,
$$

where $f: \Omega \rightarrow \mathbb{R}$ is a function that does not depend on $\epsilon$. Assume further that $u^{\epsilon}=0$ on the boundary of $\Omega$. Apply the asymptotic expansion method to determine the effective (macro scale) equation.

## Theoretically flavoured problems

3. When applying the asymptotic expansion method to the diffusion problem with strongly oscillating diffusion coefficients we have identified the $\epsilon^{-2}$ order problem

$$
\left(P_{x}^{-2}\right)\left\{\begin{aligned}
-\nabla_{y} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right] & =0, \quad y \in Y=(0,1)^{d}, \\
u_{0}(x, \cdot) & -Y \text {-periodic. }
\end{aligned}\right.
$$

Show that any $C^{2}(Y) \cap C^{1}(\bar{Y})$ solution to this problem does not depend on $y$.
4. Assuming that $0<\alpha \leq a(y) \leq \beta<\infty$ for all $y \in Y$, show that the effective diffusion tensor $\bar{A}=\left(\bar{a}_{i j}\right)_{i, j=\overline{1, d}}$ is symmetric and positive definite, i.e. for any column vector $z \in \mathbb{R}^{d}$ one has $z^{T}(\bar{A} z) \geq 0$, where $z^{T}$ is the transposed vector.

Hint: Show first that $\bar{a}_{i j}=\int_{Y} a(y)\left(\vec{e}_{j}+\nabla_{y} w_{j}\right) \cdot\left(\vec{e}_{i}+\nabla_{y} w_{i}\right) d y$ for all $i, j$.
For the mathematics freaks:
5. Do the calculations justifying the explicit expressions of $u^{\epsilon}, u_{0}$ and $u_{1}$, as presented in the lecture. Further, show that the function $u_{1}$ is uniformly bounded, i.e. there exist a constant $C>0$ such that, for all $s \in \mathbb{R},\left|u_{1}(s)\right| \leq C$. Find a uniform estimate for the difference $\left|u^{\epsilon}-u_{0}\right|$.
6. As before let $\epsilon=\frac{1}{n}$ and consider the boundary value problem (BVP)

$$
\left(P^{\epsilon}\right)\left\{\begin{aligned}
-u_{x x}^{\epsilon}+\frac{1}{\epsilon} b_{\epsilon}(x) u_{x}^{\epsilon}= & 0, \quad x \in(0,1) \\
u^{\epsilon}(0)=0, & u^{\epsilon}(1)=1
\end{aligned}\right.
$$

where $b_{\epsilon}(x)=b(x / \epsilon)$. Here $b$ is a 1-periodic function satisfying $\int_{0}^{1} b(y) d y=0$. For $\epsilon \searrow 0$, show that $u^{\epsilon}$ converges to $\bar{u}:[0,1] \rightarrow \mathbb{R}, \bar{u}(x)=x$. Evaluate the first order corrector as well as the difference $u^{\epsilon}-\bar{u}$.
7. Show that the effective diffusion tensor $\bar{A}$ is strictly positive definite, i.e. there exists $\alpha>0$ s.t. $z^{T}(\bar{A} z) \geq \alpha$ for all $z \in \mathbb{R}^{d}$ with $\|z\|=1$.

Questions? Please contact Adrian Muntean or Sorin Pop (MF 5.\{106, 111\}, \{a.muntean, i.pop\}@tue.nl)

