Homogenization

Adrian Muntean*, Sorin Pop*

*Eindhoven University of Technology, MetaForum $5^{\text {th }}$ floor

Overview (wishful thinking!):

- Formal approach
- Asymptotic expansions (composite, perforated materials)
- Flow in porous media
- Reactive porous media flow models
- Double porosity models
- Mathematical techniques: IAM students
- Energy methods
- Two-scale convergence

Accompanying material:
U. Hornung, Homogenization and Porous Media, Springer, 1997
D. Cioranescu, P. Donato, An Introduction to Homogenization, Oxford University Press, 2000 Lecture notes (under development)
Schedule:
2 hours/week (lectures) \& 2 hours/week (lecture + exercises)
Tue, 8:45-10:30, Potentiaal 2.19
Thu, 10:45-12:30, Potentiaal 2.19

1. Introduction \& Basic idea

A one dimensional example: oscillations

Let $a: \mathbb{R} \rightarrow \mathbb{R}$ be s.t. $0<m \leq a(y) \leq M$; assume a 1-periodic:

$$
a(y)=a(y+1) \quad \text { for all } \quad y \in[0,1)
$$

With $1 \gg \varepsilon>0$, define

$$
a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right), \quad \text { for all } \quad x \in \mathbb{R}
$$

and consider

$$
\left(P^{\varepsilon}\right) \quad\left\{\begin{array}{rlrl}
-\frac{d}{d x}\left(a^{\varepsilon}(x) \frac{d}{d x} u^{\varepsilon}(x)\right)=0, & \text { for } x \in(0,1), \\
u^{\varepsilon}(0) & =0, & u^{\varepsilon}(1)=1
\end{array}\right.
$$

A one dimensional example: oscillations

Let $a: \mathbb{R} \rightarrow \mathbb{R}$ be s.t. $0<m \leq a(y) \leq M$; assume a 1-periodic:

$$
a(y)=a(y+1) \quad \text { for all } \quad y \in[0,1)
$$

With $1 \gg \varepsilon>0$, define

$$
a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right), \quad \text { for all } \quad x \in \mathbb{R}
$$

and consider

$$
\left(P^{\varepsilon}\right) \quad\left\{\begin{array}{rlrl}
-\frac{d}{d x}\left(a^{\varepsilon}(x) \frac{d}{d x} u^{\varepsilon}(x)\right)=0, & \text { for } x \in(0,1), \\
u^{\varepsilon}(0) & =0, & u^{\varepsilon}(1)=1
\end{array}\right.
$$

Pb : Find an averaged u^{*} approximating u^{ε}, but including no oscillations.
$\left(P^{\varepsilon}\right) \quad\left\{\begin{aligned}-\frac{d}{d x}\left(a^{\varepsilon}(x) \frac{d}{d x} x^{\varepsilon}(x)\right) & =0, \quad \text { for } x \in(0,1), \\ u^{\varepsilon}(0) & =0, \quad u^{\varepsilon}(1)=1 .\end{aligned}\right.$ where $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$ with $a(y)=a(y+1)$.

Pb : Find an averaged u^{*} approximating u^{ε}, but including no oscillations.
$\left(P^{\varepsilon}\right) \quad\left\{\begin{aligned}-\frac{d}{d x}\left(a^{\varepsilon}(x) \frac{d}{d x} x^{\varepsilon}(x)\right) & =0, \quad \text { for } x \in(0,1), \\ u^{\varepsilon}(0) & =0, \quad u^{\varepsilon}(1)=1 .\end{aligned}\right.$
where $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$ with $a(y)=a(y+1)$.

Pb : Find an averaged u^{*} approximating u^{ε}, but including no oscillations.
Rem: Alternatively, find an upscaled/averaged equation satisfied by u^{*}.
$\left(P^{\varepsilon}\right) \quad\left\{\begin{aligned}-\frac{d}{d x}\left(a^{\varepsilon}(x) \frac{d}{d x} u^{\varepsilon}(x)\right)=0, \quad \text { for } x \in(0,1), \\ u^{\varepsilon}(0)=0, \quad u^{\varepsilon}(1)=1 .\end{aligned}\right.$
where $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$ with $a(y)=a(y+1)$.

Solution:
$u^{\varepsilon}(x)=\frac{\int_{0}^{x} \frac{1}{a^{\varepsilon}(z)} d z}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(z)} d z}=\frac{\int_{0}^{\frac{x}{\varepsilon}} \frac{1}{a(y)} d y}{\int_{0}^{\frac{1}{\varepsilon}} \frac{1}{a(y)} d y}$.

$\left(P^{\varepsilon}\right) \quad\left\{\begin{aligned}-\frac{d}{d x}\left(a^{\varepsilon}(x) \frac{d}{d x} x^{\varepsilon}(x)\right) & =0, \quad \text { for } x \in(0,1), \\ u^{\varepsilon}(0) & =0, \quad u^{\varepsilon}(1)=1 .\end{aligned}\right.$ where $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$ with $a(y)=a(y+1)$.

Solution:

$$
u^{\varepsilon}(x)=\frac{\int_{0}^{x} \frac{1}{a^{\varepsilon}(z)} d z}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(z)} d z}=\frac{\int_{0}^{\frac{x}{\varepsilon}} \frac{1}{a(y)} d y}{\int_{0}^{\frac{1}{\varepsilon}} \frac{1}{a(y)} d y}
$$

Effective quantities:

$$
u^{*}(x)=x, \quad \text { and }
$$

$$
a^{*}=\frac{1}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(z)} d z}=\frac{1}{\int_{0}^{1} \frac{1}{a(y)} d y}
$$

$\left(P^{\varepsilon}\right) \quad\left\{\begin{aligned}-\frac{d}{d x}\left(a^{\varepsilon}(x) \frac{d}{d x} x^{\varepsilon}(x)\right) & =0, \quad \text { for } x \in(0,1), \\ u^{\varepsilon}(0) & =0, \quad u^{\varepsilon}(1)=1 .\end{aligned}\right.$ where $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$ with $a(y)=a(y+1)$.

Solution:

$$
u^{\varepsilon}(x)=\frac{\int_{0}^{x} \frac{1}{a^{\varepsilon}(z)} d z}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(z)} d z}=\frac{\int_{0}^{\frac{x}{\varepsilon}} \frac{1}{a(y)} d y}{\int_{0}^{\frac{1}{\varepsilon}} \frac{1}{a(y)} d y} .
$$

Effective quantities:

$$
\begin{aligned}
u^{*}(x) & =x, \quad \text { and } \\
a^{*} & =\frac{1}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(z)} d z}=\frac{1}{\int_{0}^{1} \frac{1}{a(y)} d y} .
\end{aligned}
$$

Then:

$$
\begin{aligned}
u^{\varepsilon}(x) & =\varepsilon a^{*} \int_{0}^{\frac{x}{\varepsilon}} \frac{1}{a(y)} d y \\
& =x+\varepsilon \int_{0}^{\frac{x}{\varepsilon}}\left(\frac{a^{*}}{a(y)}-1\right) d y=u^{*}(x)+\varepsilon u_{1}\left(\frac{x}{\varepsilon}\right), \quad \text { with } \quad u_{1}(s)=\int_{0}^{s}\left(\frac{a^{*}}{a(y)}-1\right) d y .
\end{aligned}
$$

Note: u^{*} - effective approximtion, u_{1} - corrector (bounded!)

$$
\left|u^{\varepsilon}(x)-u^{*}(x)\right| \leq C \varepsilon
$$

2. The asymptotic expansion method

Let $\varepsilon>0$ (small), $\Omega \subset \mathbb{R}^{d}$, ($d \geq 1$) - bounded domain ($\partial \Omega$ - the boundary), $Y=[0,1]^{d}$ - unit cube, $a: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s.t. $0<m \leq a\left(y_{1}, \ldots, y_{d}\right) \leq M<\infty$, and Y-periodic: for all $y=\left(y_{1}, \ldots, y_{d}\right) \in Y$,

$$
a\left(y_{1}, y_{2}, \ldots, y_{d}\right)=a\left(y_{1}+1, y_{2}, \ldots, y_{d}\right)=a\left(y_{1}, y_{2}+1, \ldots, y_{d}\right)=\cdots=a\left(y_{1}, y_{2}, \ldots, y_{d}+1\right) .
$$

With $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$, consider

$$
\left(P^{\varepsilon}\right)\left\{\begin{aligned}
-\nabla \cdot\left(a^{\varepsilon} \nabla u^{\varepsilon}\right) & =f, & & \text { for all } x \in \Omega, \\
u^{\varepsilon} & =0, & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Q: How to approximate u^{ε} ?

2. The asymptotic expansion method

Let $\varepsilon>0$ (small), $\Omega \subset \mathbb{R}^{d}$, $(d \geq 1)$ - bounded domain ($\partial \Omega$ - the boundary), $Y=[0,1]^{d}$ - unit cube, $a: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s.t. $0<m \leq a\left(y_{1}, \ldots, y_{d}\right) \leq M<\infty$, and Y-periodic: for all $y=\left(y_{1}, \ldots, y_{d}\right) \in Y$,

$$
a\left(y_{1}, y_{2}, \ldots, y_{d}\right)=a\left(y_{1}+1, y_{2}, \ldots, y_{d}\right)=a\left(y_{1}, y_{2}+1, \ldots, y_{d}\right)=\cdots=a\left(y_{1}, y_{2}, \ldots, y_{d}+1\right) .
$$

With $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$, consider

$$
\left(P^{\varepsilon}\right)\left\{\begin{aligned}
-\nabla \cdot\left(a^{\varepsilon} \nabla u^{\varepsilon}\right) & =f, & & \text { for all } x \in \Omega, \\
u^{\varepsilon} & =0, & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Q: How to approximate u^{ε} ?
Idea: Multiple scales!

$$
x \longrightarrow(x, y), \text { with } y=\frac{x}{\varepsilon}
$$

$$
\begin{gathered}
x \longrightarrow(x, y), \text { with } y=\frac{x}{\varepsilon} \\
\left(P^{\varepsilon}\right) \quad\left\{\begin{aligned}
-\nabla \cdot\left(a^{\varepsilon} \nabla u^{\varepsilon}\right)=f, & \text { for all } x \in \Omega \\
u^{\varepsilon}=0, & \text { on } \partial \Omega
\end{aligned}\right.
\end{gathered}
$$

$$
\begin{gathered}
x \longrightarrow(x, y), \text { with } y=\frac{x}{\varepsilon} \\
\left(P^{\varepsilon}\right)\left\{\begin{aligned}
-\nabla \cdot\left(a^{\varepsilon} \nabla u^{\varepsilon}\right)=f, & \text { for all } x \in \Omega \\
u^{\varepsilon}=0, & \text { on } \partial \Omega
\end{aligned}\right.
\end{gathered}
$$

Homogenization ansatz:

$$
u^{\varepsilon}(x)=u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots
$$

with u_{k} being Y-periodic.

$$
\begin{gathered}
x \longrightarrow(x, y), \text { with } y=\frac{x}{\varepsilon} \\
\left(P^{\varepsilon}\right) \quad\left\{\begin{aligned}
-\nabla \cdot\left(a^{\varepsilon} \nabla u^{\varepsilon}\right)=f, & \text { for all } x \in \Omega \\
u^{\varepsilon}=0, & \text { on } \partial \Omega
\end{aligned}\right.
\end{gathered}
$$

Homogenization ansatz:

$$
u^{\varepsilon}(x)=u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots
$$

with u_{k} being Y-periodic.
Note: (1) $u_{0}=\lim _{\varepsilon \searrow 0} u^{\varepsilon}, u_{1}=\lim _{\varepsilon \searrow 0} \frac{1}{\varepsilon}\left(u^{\varepsilon}-u_{0}\right)$, etc.

$$
\begin{gathered}
x \longrightarrow(x, y), \text { with } y=\frac{x}{\varepsilon} \\
\left(P^{\varepsilon}\right)\left\{\begin{aligned}
-\nabla \cdot\left(a^{\varepsilon} \nabla u^{\varepsilon}\right)=f, & \text { for all } x \in \Omega \\
u^{\varepsilon}=0, & \text { on } \partial \Omega
\end{aligned}\right.
\end{gathered}
$$

Homogenization ansatz:

$$
u^{\varepsilon}(x)=u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots
$$

with u_{k} being Y-periodic.
Note: (2) In fact, for any function f we can define $\tilde{f}(x):=f\left(x, \frac{x}{\varepsilon}\right)=f(x, y)$, implying that

$$
\frac{\partial f}{\partial x_{i}}(x, y) \quad \text { becomes } \quad \frac{d \tilde{f}}{\partial x_{i}}(x)=\frac{\partial f}{\partial x_{i}}(x, y)+\frac{\partial y_{i}}{\partial x_{i}} \frac{\partial f}{\partial y_{i}}(x, y)=\frac{\partial f}{\partial x_{i}}(x, y)+\frac{1}{\varepsilon} \frac{\partial f}{\partial y_{i}}(x, y)
$$

2.1. The diffusion problem

$$
\left(P^{\varepsilon}\right)\left\{\begin{aligned}
-\nabla \cdot\left(a^{\varepsilon} \nabla u^{\varepsilon}\right) & =f, & & \text { for all } x \in \Omega \\
u^{\varepsilon} & =0, & & \text { on } \partial \Omega
\end{aligned}\right.
$$

2.1. The diffusion problem

$$
\left(P^{\varepsilon}\right)\left\{\begin{aligned}
-\nabla \cdot\left(a^{\varepsilon} \nabla u^{\varepsilon}\right) & =f, & & \text { for all } x \in \Omega \\
u^{\varepsilon} & =0, & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Recall:
$u^{\varepsilon}(x)=u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots$, with u_{k} being Y-periodic.
$a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)=a(y)$
$\nabla \longrightarrow \nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}$

2.1. The diffusion problem

$$
-\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right) \cdot\left[a(y)\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right)\left(u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots\right)\right]=f
$$

2.1. The diffusion problem

$$
-\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right) \cdot\left[a(y)\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right)\left(u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots\right)\right]=f .
$$

Rewrites

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

2.1. The diffusion problem

$$
-\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right) \cdot\left[a(y)\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right)\left(u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots\right)\right]=f .
$$

Rewrites

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

Next: equate terms of the same ε order

2.1. The diffusion problem

$$
-\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right) \cdot\left[a(y)\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right)\left(u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots\right)\right]=f .
$$

Rewrites

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

(Problem P^{-2}) $\left\{\begin{aligned}-\nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right) & =0, \quad \text { for all } y \in Y, \\ u_{0}(x, y) & \text { is } \quad Y \text { - periodic. }\end{aligned}\right.$

2.1. The diffusion problem

$$
-\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right) \cdot\left[a(y)\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right)\left(u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\ldots\right)\right]=f .
$$

Rewrites

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

(Problem P^{-2}) $\left\{\begin{aligned}-\nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right) & =0, \quad \text { for all } y \in Y, \\ u_{0}(x, y) & \text { is } Y \text { - periodic. }\end{aligned}\right.$
Gives: $u_{0}(x, y)=u_{0}(x)$ and thus $\nabla_{y} u_{0}(x, y)=0$ for all $y \in Y$.
Q: $u_{0}(x)=$?

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f
\end{aligned}
$$

(Problem P^{-1}) $\left\{\begin{aligned}-\nabla_{y} \cdot\left(a(y) \nabla_{y} u_{1}(x, y)\right) & =\nabla_{y} \cdot\left(a(y) \nabla_{x} u_{0}(x)\right), \quad \text { for all } y \in Y, \\ u_{1}(x, y) & \text { is } Y \text {-periodic. }\end{aligned}\right.$

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

(Problem $\left.P^{-1}\right)\left\{\begin{aligned}-\nabla_{y} \cdot\left(a(y) \nabla_{y} u_{1}(x, y)\right) & =\nabla_{y} \cdot\left(a(y) \nabla_{x} u_{0}(x)\right), \\ u_{1}(x, y) & \text { is } Y \text { - periodic. all } y \in Y,\end{aligned}\right.$
Note: Solution u_{1} depends on u_{0} ! With $\mathrm{e}_{j}=(0, \ldots, 0,1,0, \ldots, 0)$,

$$
\nabla_{x} u_{0}(x)=\sum_{j=1}^{d} \mathbf{e}_{j} \partial_{x_{j}} u_{0}(x) .
$$

Suggestion: solve first the cell problems with \mathbf{e}_{j} replacing $\nabla_{x} u_{0}(x)$!

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

(Problem $\left.P^{-1}\right)\left\{\begin{aligned}-\nabla_{y} \cdot\left(a(y) \nabla_{y} u_{1}(x, y)\right) & =\nabla_{y} \cdot\left(a(y) \nabla_{x} u_{0}(x)\right), \\ u_{1}(x, y) & \text { is } Y \text {-periodic. }\end{aligned}\right.$
Note: Solution u_{1} depends on u_{0} ! With $\mathrm{e}_{j}=(0, \ldots, 0,1,0, \ldots, 0)$,

$$
\nabla_{x} u_{0}(x)=\sum_{j=1}^{d} \mathbf{e}_{j} \partial_{x_{j}} u_{0}(x) .
$$

Suggestion: solve first the cell problems with \mathbf{e}_{j} replacing $\nabla_{x} u_{0}(x)$! For all $j=1, \ldots, d$, consider:

$$
\left(\text { Problem } P_{j}^{-1}\right)\left\{\begin{aligned}
-\nabla_{y} \cdot\left(a(y) \nabla_{y} w^{j}(y)\right) & =\nabla_{y} \cdot\left(a(y) \mathbf{e}_{j}\right), \quad \text { for all } y \in Y, \\
w^{j}(y) & \text { is } Y \text { - periodic, }, \\
\int_{Y} w^{j}(y) d y & =0 .
\end{aligned}\right.
$$

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

(Problem $\left.P^{-1}\right)\left\{\begin{aligned}-\nabla_{y} \cdot\left(a(y) \nabla_{y} u_{1}(x, y)\right) & =\nabla_{y} \cdot\left(a(y) \nabla_{x} u_{0}(x)\right), \\ u_{1}(x, y) & \text { is } Y \text { - periodic. } .\end{aligned}\right.$
Note: Solution u_{1} depends on u_{0} ! With $\mathbf{e}_{j}=(0, \ldots, 0,1,0, \ldots, 0)$,

$$
\nabla_{x} u_{0}(x)=\sum_{j=1}^{d} \mathbf{e}_{j} \partial_{x_{j}} u_{0}(x) .
$$

This gives ($\tilde{u}_{1}(x)$ plays actually no role)

$$
u_{1}(x, y)=\tilde{u}_{1}(x)+\sum_{j=1}^{d} w^{j}(y) \partial_{x_{j}} u_{0}(x),
$$

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

$\left(\right.$ Problem $\left.P^{0}\right) \quad\left\{\begin{array}{l}-\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x)+\nabla_{y} u_{1}(x, y)\right)\right]-\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]=f, \\ u_{2}(x, y) \text { is } Y \text {-periodic. }\end{array}\right.$

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f .
\end{aligned}
$$

$\left(\right.$ Problem $\left.P^{0}\right) \quad\left\{\begin{array}{l}-\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x)+\nabla_{y} u_{1}(x, y)\right)\right]-\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]=f, \\ u_{2}(x, y) \text { is } Y \text {-periodic. }\end{array}\right.$
Option: Find u_{2} in terms of u_{0} and $u_{1} \ldots$ still gives no u_{0} !

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla_{y} \cdot\left(a(y) \nabla_{y} u_{0}(x, y)\right)-\frac{1}{\varepsilon}\left\{\nabla_{x} \cdot\left[a(y) \nabla_{y} u_{0}(x, y)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]\right\} \\
& -\left\{\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x, y)+\nabla_{y} u_{1}(x, y)\right)\right]+\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]\right\}-O(\varepsilon)=f
\end{aligned}
$$

$\left(\right.$ Problem $\left.P^{0}\right) \quad\left\{\begin{array}{l}-\nabla_{x} \cdot\left[a(y)\left(\nabla_{x} u_{0}(x)+\nabla_{y} u_{1}(x, y)\right)\right]-\nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right]=f, \\ u_{2}(x, y) \text { is } Y \text {-periodic. }\end{array}\right.$
Alternative: Eliminate u_{2} by integration!

$$
-\nabla_{x} \cdot\left[\int_{Y} a(y)\left(\nabla_{x} u_{0}(x)+\nabla_{y} u_{1}(x, y)\right) d y\right]-\int_{Y} \nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right] d y=f(x)
$$

$$
-\nabla_{x} \cdot\left[\int_{Y} a(y)\left(\nabla_{x} u_{0}(x)+\nabla_{y} u_{1}(x, y)\right) d y\right]-\int_{Y} \nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right] d y=f(x)
$$

We have

$$
\begin{aligned}
\int_{Y} \nabla_{y} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right] d y & =\int_{\partial Y} \nu \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right] d \sigma_{y} \\
& =\sum_{k=1}^{4} \int_{\partial Y_{k}} \nu_{k} \cdot\left[a(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right] d \sigma_{y}=0
\end{aligned}
$$

$$
-\nabla_{x} \cdot\left[\int_{Y} a(y)\left(\nabla_{x} u_{0}(x)+\nabla_{y} u_{1}(x, y)\right) d y\right]=f(x)
$$

Since

$$
\nabla_{y} u_{1}(x, y)=\sum_{j=1}^{d} \partial_{x_{j}} u_{0}(x) \nabla_{y} w^{j}(y)
$$

we have

$$
-\nabla_{x} \cdot\left[\int_{Y} a(y)\left(\nabla_{x} u_{0}(x)+\sum_{j=1}^{d} \partial_{x_{j}} u_{0}(x) \nabla_{y} w^{j}(y)\right) d y\right]=f(x) .
$$

or, equivalently,

$$
(P)\left\{\begin{array}{rlrl}
-\nabla \cdot\left(A^{*} \nabla U\right) & =f, & & \text { for all } x \in \Omega, \\
U & =0, & \text { on } \partial \Omega,
\end{array}\right.
$$

with $A^{*} \in \mathbb{R}^{d \times d}, a_{i j}^{*}=\int_{Y} a(y)\left(\delta_{i j}+\partial_{y_{i}} w^{j}(y)\right) d y=\int_{Y} a(y)\left(\mathbf{e}_{j}+\nabla_{y} w^{j}(y)\right) \mathbf{e}_{i} d y$

$$
-\nabla_{x} \cdot\left[\int_{Y} a(y)\left(\nabla_{x} u_{0}(x)+\nabla_{y} u_{1}(x, y)\right) d y\right]=f(x)
$$

Since

$$
\nabla_{y} u_{1}(x, y)=\sum_{j=1}^{d} \partial_{x_{j}} u_{0}(x) \nabla_{y} w^{j}(y),
$$

we have

$$
-\nabla_{x} \cdot\left[\int_{Y} a(y)\left(\nabla_{x} u_{0}(x)+\sum_{j=1}^{d} \partial_{x_{j}} u_{0}(x) \nabla_{y} w^{j}(y)\right) d y\right]=f(x) .
$$

or, equivalently,

$$
(P)\left\{\begin{array}{rlrl}
-\nabla \cdot\left(A^{*} \nabla U\right) & =f, & & \text { for all } x \in \Omega, \\
U & =0, & \text { on } \partial \Omega,
\end{array}\right.
$$

with $A^{*} \in \mathbb{R}^{d \times d}, a_{i j}^{*}=\int_{Y} a(y)\left(\delta_{i j}+\partial_{y_{i}} w^{j}(y)\right) d y=\int_{Y} a(y)\left(\mathbf{e}_{j}+\nabla_{y} w^{j}(y)\right) \mathbf{e}_{i} d y$

Lemma

a) A^{*} is symmetric, i.e. $a_{i j}^{*}=a_{j i}^{*}$ for all $i, j=1, \ldots, d$.
b) A^{*} is positive definite, i.e. there exist a constant $C>0$ s.t. for all (column vectors) $z \in \mathbb{R}^{d}$, $z^{T}\left(A^{*} z\right) \geq C\left(z^{T} z\right)$.

