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Overview (wishful thinking!):

• Formal approach

– Asymptotic expansions (composite, perforated materials)

– Flow in porous media

– Reactive porous media flow models

– Double porosity models

• Mathematical techniques: IAM students

– Energy methods

– Two-scale convergence

Accompanying material:
U. Hornung, Homogenization and Porous Media, Springer, 1997
D. Cioranescu, P. Donato, An Introduction to Homogenization, Oxford University Press, 2000
Lecture notes (under development)
Schedule:
2 hours/week (lectures) & 2 hours/week (lecture + exercises)

Tue, 8:45-10:30, Potentiaal 2.19

Thu, 10:45-12:30, Potentiaal 2.19
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1. Introduction & Basic idea
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A one dimensional example: oscillations
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Let a : R→ R be s.t. 0 < m ≤ a(y) ≤M ; assume a 1-periodic:

a(y) = a(y + 1) for all y ∈ [0, 1), .

With 1 >> ε > 0, define
aε(x) = a

(x
ε

)
, for all x ∈ R,

and consider

(P ε)

 −
d
dx

(
aε(x) d

dx
uε(x)

)
= 0, for x ∈ (0, 1),

uε(0) = 0, uε(1) = 1.
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A one dimensional example: oscillations
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Let a : R→ R be s.t. 0 < m ≤ a(y) ≤M ; assume a 1-periodic:

a(y) = a(y + 1) for all y ∈ [0, 1), .

With 1 >> ε > 0, define
aε(x) = a

(x
ε

)
, for all x ∈ R,

and consider

(P ε)

 −
d
dx

(
aε(x) d

dx
uε(x)

)
= 0, for x ∈ (0, 1),

uε(0) = 0, uε(1) = 1.

Pb: Find an averaged u∗ approximating uε, but including no oscillations.
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(P ε)

 −
d
dx

(
aε(x) d

dx
uε(x)

)
= 0, for x ∈ (0, 1),

uε(0) = 0, uε(1) = 1.
where aε(x) = a

(x
ε

)
with a(y) = a(y + 1).

Pb: Find an averaged u∗ approximating uε, but including no oscillations.
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(P ε)

 −
d
dx

(
aε(x) d

dx
uε(x)

)
= 0, for x ∈ (0, 1),

uε(0) = 0, uε(1) = 1.
where aε(x) = a

(x
ε

)
with a(y) = a(y + 1).

Pb: Find an averaged u∗ approximating uε, but including no oscillations.

Rem: Alternatively, find an upscaled/averaged equation satisfied by u∗.
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(P ε)

 −
d
dx

(
aε(x) d

dx
uε(x)

)
= 0, for x ∈ (0, 1),

uε(0) = 0, uε(1) = 1.
where aε(x) = a

(x
ε

)
with a(y) = a(y + 1).

Solution:

uε(x) =

∫ x

0
1

aε(z)
dz∫ 1

0
1

aε(z)
dz

=

∫ x
ε

0
1

a(y)
dy∫ 1

ε

0
1

a(y)
dy
.
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(P ε)

 −
d
dx

(
aε(x) d

dx
uε(x)

)
= 0, for x ∈ (0, 1),

uε(0) = 0, uε(1) = 1.
where aε(x) = a

(x
ε

)
with a(y) = a(y + 1).

Solution:

uε(x) =

∫ x

0
1

aε(z)
dz∫ 1

0
1

aε(z)
dz

=

∫ x
ε

0
1

a(y)
dy∫ 1

ε

0
1

a(y)
dy
.
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Effective quantities:

u∗(x) = x, and

a∗ =
1∫ 1

0
1

aε(z)
dz

=
1∫ 1

0
1

a(y)
dy
.
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u0(x): Leading order solution
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(P ε)

 −
d
dx

(
aε(x) d

dx
uε(x)

)
= 0, for x ∈ (0, 1),

uε(0) = 0, uε(1) = 1.
where aε(x) = a

(x
ε

)
with a(y) = a(y + 1).

Solution:

uε(x) =

∫ x

0
1

aε(z)
dz∫ 1

0
1

aε(z)
dz

=

∫ x
ε

0
1

a(y)
dy∫ 1

ε

0
1

a(y)
dy
.

Effective quantities:

u∗(x) = x, and

a∗ =
1∫ 1

0
1

aε(z)
dz

=
1∫ 1

0
1

a(y)
dy
.

Then:

uε(x) = εa∗
∫ x

ε

0
1

a(y)
dy

= x+ ε
∫ x

ε

0

(
a∗

a(y)
− 1
)
dy = u∗(x) + εu1

(
x
ε

)
, with u1(s) =

∫ s

0

(
a∗

a(y)
− 1
)
dy.

Note: u∗ - effective approximtion, u1 - corrector (bounded!)

|uε(x)− u∗(x)| ≤ Cε
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u0(x): Leading order solution
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2. The asymptotic expansion method

Let ε > 0 (small), Ω ⊂ Rd, (d ≥ 1) - bounded domain (∂Ω - the boundary), Y = [0, 1]d - unit cube,

a : Rd → R s.t. 0 < m ≤ a(y1, . . . , yd) ≤M <∞, , and Y -periodic: for all y = (y1, . . . , yd) ∈ Y ,

a(y1, y2, . . . , yd) = a(y1 + 1, y2, . . . , yd) = a(y1, y2 + 1, . . . , yd) = · · · = a(y1, y2, . . . , yd + 1).

With aε(x) = a
(
x
ε

)
, consider

(P ε)

{
−∇ · (aε∇uε) = f, for all x ∈ Ω,

uε = 0, on ∂Ω.

Q: How to approximate uε?
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2. The asymptotic expansion method

Let ε > 0 (small), Ω ⊂ Rd, (d ≥ 1) - bounded domain (∂Ω - the boundary), Y = [0, 1]d - unit cube,

a : Rd → R s.t. 0 < m ≤ a(y1, . . . , yd) ≤M <∞, , and Y -periodic: for all y = (y1, . . . , yd) ∈ Y ,

a(y1, y2, . . . , yd) = a(y1 + 1, y2, . . . , yd) = a(y1, y2 + 1, . . . , yd) = · · · = a(y1, y2, . . . , yd + 1).

With aε(x) = a
(
x
ε

)
, consider

(P ε)

{
−∇ · (aε∇uε) = f, for all x ∈ Ω,

uε = 0, on ∂Ω.

Q: How to approximate uε?

Idea: Multiple scales!
x −→ (x, y), with y =

x

ε
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Ω

x1

x2

Zoom

Macroscale
Microscale

(x1ε )

(x2ε )

x −→ (x, y), with y =
x

ε

(P ε)

{
−∇ · (aε∇uε) = f, for all x ∈ Ω,

uε = 0, on ∂Ω.
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Ω

x1

x2

Zoom

Macroscale
Microscale

(x1ε )

(x2ε )

x −→ (x, y), with y =
x

ε

(P ε)

{
−∇ · (aε∇uε) = f, for all x ∈ Ω,

uε = 0, on ∂Ω.

Homogenization ansatz:

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . ,

with uk being Y -periodic.
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Ω

x1

x2

Zoom

Macroscale
Microscale

(x1ε )

(x2ε )

x −→ (x, y), with y =
x

ε

(P ε)

{
−∇ · (aε∇uε) = f, for all x ∈ Ω,

uε = 0, on ∂Ω.

Homogenization ansatz:

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . ,

with uk being Y -periodic.

Note: (1) u0 = lim
ε↘0

uε, u1 = lim
ε↘0

1

ε
(uε − u0), etc.
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Ω

x1

x2

Zoom

Macroscale
Microscale

(x1ε )

(x2ε )

x −→ (x, y), with y =
x

ε

(P ε)

{
−∇ · (aε∇uε) = f, for all x ∈ Ω,

uε = 0, on ∂Ω.

Homogenization ansatz:

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . ,

with uk being Y -periodic.

Note: (2) In fact, for any function f we can define f̃(x) := f
(
x,
x

ε

)
= f(x, y), implying that

∂f

∂xi
(x, y) becomes

df̃

∂xi
(x) =

∂f

∂xi
(x, y) +

∂yi
∂xi

∂f

∂yi
(x, y) =

∂f

∂xi
(x, y) +

1

ε

∂f

∂yi
(x, y)
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2.1. The diffusion problem
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(P ε)

{
−∇ · (aε∇uε) = f, for all x ∈ Ω,

uε = 0, on ∂Ω.
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2.1. The diffusion problem

Ω

x1

x2

Zoom

Macroscale
Microscale

(x1ε )

(x2ε )

(P ε)

{
−∇ · (aε∇uε) = f, for all x ∈ Ω,

uε = 0, on ∂Ω.

Recall:

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . , with uk being Y -periodic.

aε(x) = a
(x
ε

)
= a(y)

∇ −→ ∇x +
1

ε
∇y
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2.1. The diffusion problem

−
(
∇x +

1

ε
∇y

)
·
[
a(y)

(
∇x +

1

ε
∇y

)
(u0(x, y) +εu1(x, y) + ε2u2(x, y) + . . .

)]
= f.
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2.1. The diffusion problem

−
(
∇x +

1

ε
∇y

)
·
[
a(y)

(
∇x +

1

ε
∇y

)
(u0(x, y) +εu1(x, y) + ε2u2(x, y) + . . .

)]
= f.

Rewrites

− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.
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2.1. The diffusion problem

−
(
∇x +

1

ε
∇y

)
·
[
a(y)

(
∇x +

1

ε
∇y

)
(u0(x, y) +εu1(x, y) + ε2u2(x, y) + . . .

)]
= f.

Rewrites

− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

Next: equate terms of the same ε order
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2.1. The diffusion problem

−
(
∇x +

1

ε
∇y

)
·
[
a(y)

(
∇x +

1

ε
∇y

)
(u0(x, y) +εu1(x, y) + ε2u2(x, y) + . . .

)]
= f.

Rewrites

− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P−2)

{
−∇y · (a(y)∇yu0(x, y)) = 0, for all y ∈ Y,

u0(x, y) is Y − periodic.
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2.1. The diffusion problem

−
(
∇x +

1

ε
∇y

)
·
[
a(y)

(
∇x +

1

ε
∇y

)
(u0(x, y) +εu1(x, y) + ε2u2(x, y) + . . .

)]
= f.

Rewrites

− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P−2)

{
−∇y · (a(y)∇yu0(x, y)) = 0, for all y ∈ Y,

u0(x, y) is Y − periodic.

Gives: u0(x, y) = u0(x) and thus∇yu0(x, y) = 0 for all y ∈ Y .

Q: u0(x) =?
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− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P−1)

{
−∇y ·

(
a(y)∇yu1(x, y)

)
= ∇y ·

(
a(y)∇xu0(x)

)
, for all y ∈ Y,

u1(x, y) is Y − periodic.
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− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P−1)

{
−∇y ·

(
a(y)∇yu1(x, y)

)
= ∇y ·

(
a(y)∇xu0(x)

)
, for all y ∈ Y,

u1(x, y) is Y − periodic.

Note: Solution u1 depends on u0! With ej = (0, . . . , 0, 1, 0, . . . , 0),

∇xu0(x) =
d∑

j=1

ej ∂xj
u0(x).

Suggestion: solve first the cell problems with ej replacing∇xu0(x)!
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− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P−1)

{
−∇y ·

(
a(y)∇yu1(x, y)

)
= ∇y ·

(
a(y)∇xu0(x)

)
, for all y ∈ Y,

u1(x, y) is Y − periodic.

Note: Solution u1 depends on u0! With ej = (0, . . . , 0, 1, 0, . . . , 0),

∇xu0(x) =
d∑

j=1

ej ∂xj
u0(x).

Suggestion: solve first the cell problems with ej replacing∇xu0(x)! For all j = 1, . . . , d, consider:

(Problem P−1j )


−∇y ·

(
a(y)∇yw

j(y)
)

= ∇y ·
(
a(y) ej

)
, for all y ∈ Y,

wj(y) is Y − periodic,∫
Y
wj(y)dy = 0.
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− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P−1)

{
−∇y ·

(
a(y)∇yu1(x, y)

)
= ∇y ·

(
a(y)∇xu0(x)

)
, for all y ∈ Y,

u1(x, y) is Y − periodic.

Note: Solution u1 depends on u0! With ej = (0, . . . , 0, 1, 0, . . . , 0),

∇xu0(x) =
d∑

j=1

ej ∂xj
u0(x).

This gives (ũ1(x) plays actually no role)

u1(x, y) = ũ1(x) +
d∑

j=1

wj(y) ∂xj
u0(x),
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− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P 0)

{
−∇x · [a(y)(∇xu0(x) +∇yu1(x, y))]−∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))] = f,

u2(x, y) is Y − periodic.
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− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P 0)

{
−∇x · [a(y)(∇xu0(x) +∇yu1(x, y))]−∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))] = f,

u2(x, y) is Y − periodic.

Option: Find u2 in terms of u0 and u1... still gives no u0!
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− 1

ε2
∇y · (a(y)∇yu0(x, y))− 1

ε
{∇x · [a(y)∇yu0(x, y)] +∇y · [a(y)(∇xu0(x, y) +∇yu1(x, y))]}

−{∇x · [a(y)(∇xu0(x, y) +∇yu1(x, y))] +∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]} −O(ε) = f.

(Problem P 0)

{
−∇x · [a(y)(∇xu0(x) +∇yu1(x, y))]−∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))] = f,

u2(x, y) is Y − periodic.

Alternative: Eliminate u2 by integration!

−∇x ·
[∫

Y
a(y)(∇xu0(x) +∇yu1(x, y))dy

]
−
∫
Y
∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]dy = f(x),
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−∇x ·
[∫

Y
a(y)(∇xu0(x) +∇yu1(x, y))dy

]
−
∫
Y
∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]dy = f(x)

We have∫
Y
∇y · [a(y)(∇xu1(x, y) +∇yu2(x, y))]dy =

∫
∂Y
ν · [a(y)(∇xu1(x, y) +∇yu2(x, y))]dσy,

=
∑4

k=1

∫
∂Yk

νk · [a(y)(∇xu1(x, y) +∇yu2(x, y))]dσy = 0

y1

y2

1O

1

~ν1

~ν2

~ν3

~ν4

Y
1

2

3
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−∇x ·
[∫

Y
a(y)(∇xu0(x) +∇yu1(x, y))dy

]
= f(x)

Since

∇yu1(x, y) =
d∑

j=1

∂xj
u0(x)∇yw

j(y),

we have

−∇x ·
[∫

Y

a(y)

(
∇xu0(x) +

d∑
j=1

∂xj
u0(x)∇yw

j(y)

)
dy

]
= f(x).

or, equivalently,

(P )

{
−∇ · (A∗∇U) = f, for all x ∈ Ω,

U = 0, on ∂Ω,

with A∗ ∈ Rd×d, a∗ij =

∫
Y

a(y)
(
δij + ∂yiw

j(y)
)
dy =

∫
Y

a(y)
(
ej +∇yw

j(y)
)
eidy
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a(y)
(
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Lemma

a) A∗ is symmetric, i.e. a∗ij = a∗ji for all i, j = 1, . . . , d.

b) A∗ is positive definite, i.e. there exist a constant C > 0 s.t. for all (column vectors) z ∈ Rd,
zT (A∗z) ≥ C(zT z).
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