Homogenization

Adrian Muntean*, Sorin Pop*

*Eindhoven University of Technology, MetaForum 5th floor

Overview (wishful thinking!):

- Formal approach
 - Asymptotic expansions (composite, perforated materials)
 - Flow in porous media
 - Reactive porous media flow models
 - Double porosity models
- Mathematical techniques: IAM students
 - Energy methods
 - Two-scale convergence

Accompanying material: U. Hornung, *Homogenization and Porous Media*, Springer, 1997 D. Cioranescu, P. Donato, *An Introduction to Homogenization*, Oxford University Press, 2000 Lecture notes (under development) Schedule: 2 hours/week (lectures) & 2 hours/week (lecture + exercises) Tue, 8:45-10:30, Potentiaal 2.19

Thu, 10:45-12:30, Potentiaal 2.19

1. Introduction & Basic idea

5/21

A one dimensional example: oscillations

Let $a : \mathbb{R} \to \mathbb{R}$ be s.t. $0 < m \le a(y) \le M$; assume a 1-periodic:

 $a(y) = a(y+1) \qquad \text{ for all } \qquad y \in [0,1), \qquad .$

With $1 >> \varepsilon > 0$, define

$$a^{\varepsilon}(x) = a(\frac{x}{\varepsilon}), \quad \text{for all} \quad x \in \mathbb{R},$$

and consider

$$(P^{\varepsilon}) \quad \begin{cases} -\frac{d}{dx} \left(a^{\varepsilon}(x) \frac{d}{dx} u^{\varepsilon}(x) \right) = 0, & \text{for } x \in (0,1), \\ u^{\varepsilon}(0) = 0, & u^{\varepsilon}(1) = 1. \end{cases}$$

A one dimensional example: oscillations

Let $a : \mathbb{R} \to \mathbb{R}$ be s.t. $0 < m \le a(y) \le M$; assume a 1-periodic:

 $a(y) = a(y+1) \qquad \text{ for all } \qquad y \in [0,1), \qquad .$

With $1 >> \varepsilon > 0$, define

$$a^{\varepsilon}(x) = a\left(\frac{x}{\varepsilon}\right), \quad \text{for all} \quad x \in \mathbb{R},$$

and consider

$$(P^{\varepsilon}) \quad \begin{cases} -\frac{d}{dx} \left(a^{\varepsilon}(x) \frac{d}{dx} u^{\varepsilon}(x) \right) = 0, & \text{for } x \in (0,1), \\ u^{\varepsilon}(0) = 0, & u^{\varepsilon}(1) = 1. \end{cases}$$

Pb: Find an *averaged* u^* approximating u^{ε} , but including no oscillations.

$$(P^{\varepsilon}) \quad \begin{cases} -\frac{d}{dx} \left(a^{\varepsilon}(x) \frac{d}{dx} u^{\varepsilon}(x) \right) = 0, & \text{for } x \in (0, 1), \\ u^{\varepsilon}(0) = 0, & u^{\varepsilon}(1) = 1. \end{cases} \text{ where } a^{\varepsilon}(x) = a \left(\frac{x}{\varepsilon}\right) \text{ with } a(y) = a(y+1). \end{cases}$$

Pb: Find an *averaged* u^* approximating u^{ε} , but including no oscillations.

$$(P^{\varepsilon}) \quad \begin{cases} -\frac{d}{dx} \left(a^{\varepsilon}(x) \frac{d}{dx} u^{\varepsilon}(x) \right) = 0, & \text{for } x \in (0,1), \\ u^{\varepsilon}(0) = 0, & u^{\varepsilon}(1) = 1. \end{cases}$$

where
$$a^{\varepsilon}(x) = a\left(\frac{x}{\varepsilon}\right)$$
 with $a(y) = a(y+1)$.

Pb: Find an *averaged* u^* approximating u^{ε} , but including no oscillations.

Rem: Alternatively, find an upscaled/averaged equation satisfied by u^* .

$$(P^{\varepsilon}) \quad \begin{cases} -\frac{d}{dx} \left(a^{\varepsilon}(x) \frac{d}{dx} u^{\varepsilon}(x) \right) = 0, & \text{for } x \in (0, 1), \\ u^{\varepsilon}(0) = 0, & u^{\varepsilon}(1) = 1. \end{cases}$$

where
$$a^{\varepsilon}(x) = a\left(\frac{x}{\varepsilon}\right)$$
 with $a(y) = a(y+1)$.

Solution:

$$(P^{\varepsilon}) \quad \begin{cases} -\frac{d}{dx} \left(a^{\varepsilon}(x) \frac{d}{dx} u^{\varepsilon}(x) \right) = 0, & \text{for } x \in (0,1), \\ u^{\varepsilon}(0) = 0, & u^{\varepsilon}(1) = 1. \end{cases}$$

where
$$a^{\varepsilon}(x) = a(\frac{x}{\varepsilon})$$
 with $a(y) = a(y+1)$.

Solution:

Effective quantities:

$$(P^{\varepsilon}) \quad \begin{cases} -\frac{d}{dx} \left(a^{\varepsilon}(x) \frac{d}{dx} u^{\varepsilon}(x) \right) = 0, & \text{for } x \in (0, 1), \\ u^{\varepsilon}(0) = 0, & u^{\varepsilon}(1) = 1. \end{cases} \text{ where } a^{\varepsilon}(x) = a\left(\frac{x}{\varepsilon}\right) \text{ with } a(y) = a(y+1). \end{cases}$$

Solution:

Effective quantities:

$$u^{\varepsilon}(x) = \frac{\int_{0}^{x} \frac{1}{a^{\varepsilon}(z)} dz}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(z)} dz} = \frac{\int_{0}^{\frac{x}{\varepsilon}} \frac{1}{a(y)} dy}{\int_{0}^{\frac{1}{\varepsilon}} \frac{1}{a(y)} dy}.$$

$$u^{*}(x) = x, \text{ and}$$

$$a^{*} = \frac{1}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(z)} dz} = \frac{1}{\int_{0}^{1} \frac{1}{a(y)} dy}.$$

Then:

$$\begin{split} u^{\varepsilon}(x) &= \varepsilon a^* \int_0^{\frac{x}{\varepsilon}} \frac{1}{a(y)} dy \\ &= x + \varepsilon \int_0^{\frac{x}{\varepsilon}} \left(\frac{a^*}{a(y)} - 1\right) dy = u^*(x) + \varepsilon u_1\left(\frac{x}{\varepsilon}\right), \quad \text{with} \quad u_1(s) = \int_0^s \left(\frac{a^*}{a(y)} - 1\right) dy. \end{split}$$

Note: u^* - effective approximiton, u_1 - corrector (bounded!)

$$|u^{\varepsilon}(x) - u^{*}(x)| \le C\varepsilon$$

2. The asymptotic expansion method

Let $\varepsilon > 0$ (small), $\Omega \subset \mathbb{R}^d$, $(d \ge 1)$ - bounded domain ($\partial \Omega$ - the boundary), $Y = [0, 1]^d$ - unit cube, $a : \mathbb{R}^d \to \mathbb{R}$ s.t. $0 < m \le a(y_1, \dots, y_d) \le M < \infty$, and Y-periodic: for all $y = (y_1, \dots, y_d) \in Y$,

 $a(y_1, y_2, \dots, y_d) = a(y_1 + 1, y_2, \dots, y_d) = a(y_1, y_2 + 1, \dots, y_d) = \dots = a(y_1, y_2, \dots, y_d + 1).$

With $a^{\varepsilon}(x) = a(\frac{x}{\varepsilon})$, consider

$$(P^{\varepsilon}) \quad \begin{cases} -\nabla \cdot (a^{\varepsilon} \nabla u^{\varepsilon}) &= f, \quad \text{for all } x \in \Omega, \\ u^{\varepsilon} &= 0, \quad \text{on } \partial \Omega. \end{cases}$$

Q: How to approximate u^{ε} ?

2. The asymptotic expansion method

Let $\varepsilon > 0$ (small), $\Omega \subset \mathbb{R}^d$, $(d \ge 1)$ - bounded domain ($\partial \Omega$ - the boundary), $Y = [0, 1]^d$ - unit cube, $a : \mathbb{R}^d \to \mathbb{R}$ s.t. $0 < m \le a(y_1, \dots, y_d) \le M < \infty$, and Y-periodic: for all $y = (y_1, \dots, y_d) \in Y$,

 $a(y_1, y_2, \dots, y_d) = a(y_1 + 1, y_2, \dots, y_d) = a(y_1, y_2 + 1, \dots, y_d) = \dots = a(y_1, y_2, \dots, y_d + 1).$

With $a^{\varepsilon}(x) = a(\frac{x}{\varepsilon})$, consider

$$(P^{\varepsilon}) \quad \left\{ \begin{array}{rcl} -\nabla \cdot (a^{\varepsilon} \nabla u^{\varepsilon}) &=& f, \quad \text{for all } x \in \Omega, \\ u^{\varepsilon} &=& 0, \quad \text{on } \partial \Omega. \end{array} \right.$$

Q: How to approximate u^{ε} ?

Idea: Multiple scales!

$$x \longrightarrow (x, y), \text{ with } y = \frac{x}{\varepsilon}$$

$$\begin{array}{ll} x \longrightarrow (x,y), \mbox{ with } y = \frac{x}{\varepsilon} \\ & (P^{\varepsilon}) & \left\{ \begin{array}{ll} -\nabla \cdot (a^{\varepsilon} \nabla u^{\varepsilon}) &=& f, & \mbox{for all } x \in \Omega, \\ & u^{\varepsilon} &=& 0, & \mbox{on } \partial \Omega. \end{array} \right. \end{array}$$

$$\begin{array}{ll} x \longrightarrow (x,y), \text{ with } y = \frac{x}{\varepsilon} \\ & \\ (P^{\varepsilon}) & \left\{ \begin{array}{ll} -\nabla \cdot (a^{\varepsilon} \nabla u^{\varepsilon}) &=& f, \quad \text{for all } x \in \Omega, \\ & u^{\varepsilon} &=& 0, \quad \text{on } \partial \Omega. \end{array} \right. \end{array}$$

Homogenization ansatz:

$$u^{\varepsilon}(x) = u_0(x, y) + \varepsilon u_1(x, y) + \varepsilon^2 u_2(x, y) + \dots,$$

with u_k being *Y*-periodic.

$$\begin{array}{ll} x \longrightarrow (x,y), \text{ with } y = \frac{x}{\varepsilon} \\ & (P^{\varepsilon}) & \left\{ \begin{array}{ll} -\nabla \cdot (a^{\varepsilon} \nabla u^{\varepsilon}) &=& f, & \text{for all } x \in \Omega, \\ & u^{\varepsilon} &=& 0, & \text{on } \partial \Omega. \end{array} \right. \end{array}$$

Homogenization ansatz:

$$u^{\varepsilon}(x) = u_0(x, y) + \varepsilon u_1(x, y) + \varepsilon^2 u_2(x, y) + \dots$$

with u_k being *Y*-periodic.

Note: (1)
$$u_0 = \lim_{\varepsilon \searrow 0} u^{\varepsilon}, u_1 = \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} (u^{\varepsilon} - u_0),$$
 etc.

TU/e Technische Universiteit Eindhoven University of Technology

$$\begin{array}{ll} x \longrightarrow (x,y), \text{ with } y = \frac{x}{\varepsilon} \\ & \\ (P^{\varepsilon}) & \left\{ \begin{array}{ll} -\nabla \cdot (a^{\varepsilon} \nabla u^{\varepsilon}) &=& f, & \text{for all } x \in \Omega \\ & u^{\varepsilon} &=& 0, & \text{on } \partial \Omega. \end{array} \right. \end{array}$$

Homogenization ansatz:

$$u^{\varepsilon}(x) = u_0(x, y) + \varepsilon u_1(x, y) + \varepsilon^2 u_2(x, y) + \dots,$$

with u_k being *Y*-periodic.

Note: (2) In fact, for any function f we can define $\tilde{f}(x) := f\left(x, \frac{x}{\varepsilon}\right) = f(x, y)$, implying that $\frac{\partial f}{\partial x_i}(x, y)$ becomes $\frac{d\tilde{f}}{\partial x_i}(x) = \frac{\partial f}{\partial x_i}(x, y) + \frac{\partial y_i}{\partial x_i}\frac{\partial f}{\partial y_i}(x, y) = \frac{\partial f}{\partial x_i}(x, y) + \frac{1}{\varepsilon}\frac{\partial f}{\partial y_i}(x, y)$

2.1. The diffusion problem

2.1. The diffusion problem

Recall:

$$\begin{split} u^{\varepsilon}(x) &= u_0(x, y) + \varepsilon u_1(x, y) + \varepsilon^2 u_2(x, y) + \dots, \text{ with } u_k \text{ being } Y \text{-periodic.} \\ a^{\varepsilon}(x) &= a\left(\frac{x}{\varepsilon}\right) = a(y) \\ \nabla \longrightarrow \nabla_x + \frac{1}{\varepsilon} \nabla_y \end{split}$$

TU/e Technische Universiteit Eindhoven University of Technology

2.1. The diffusion problem

$$-\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right) \cdot \left[a(y)\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right)\left(u_0(x,y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y) + \dots\right)\right] = f.$$

2.1. The diffusion problem

$$-\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right) \cdot \left[a(y)\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right)\left(u_0(x,y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y) + \dots\right)\right] = f.$$

Rewrites

$$-\frac{1}{\varepsilon^2} \nabla_y \cdot (a(y) \nabla_y u_0(x, y)) - \frac{1}{\varepsilon} \left\{ \nabla_x \cdot [a(y) \nabla_y u_0(x, y)] + \nabla_y \cdot [a(y) (\nabla_x u_0(x, y) + \nabla_y u_1(x, y))] \right\} \\ - \left\{ \nabla_x \cdot [a(y) (\nabla_x u_0(x, y) + \nabla_y u_1(x, y))] + \nabla_y \cdot [a(y) (\nabla_x u_1(x, y) + \nabla_y u_2(x, y))] \right\} - O(\varepsilon) = f.$$

2.1. The diffusion problem

$$-\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right) \cdot \left[a(y)\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right)\left(u_0(x,y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y) + \dots\right)\right] = f.$$

Rewrites

$$-\frac{1}{\varepsilon^2}\nabla_y \cdot (a(y)\nabla_y u_0(x,y)) - \frac{1}{\varepsilon}\left\{\nabla_x \cdot [a(y)\nabla_y u_0(x,y)] + \nabla_y \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))]\right\} - \left\{\nabla_x \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] + \nabla_y \cdot [a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))]\right\} - O(\varepsilon) = f.$$

Next: equate terms of the same ε order

2.1. The diffusion problem

$$-\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right) \cdot \left[a(y)\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right)\left(u_0(x,y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y) + \dots\right)\right] = f.$$

Rewrites

$$-\frac{1}{\varepsilon^2} \nabla_y \cdot (a(y) \nabla_y u_0(x, y)) - \frac{1}{\varepsilon} \left\{ \nabla_x \cdot [a(y) \nabla_y u_0(x, y)] + \nabla_y \cdot [a(y) (\nabla_x u_0(x, y) + \nabla_y u_1(x, y))] \right\} \\ - \left\{ \nabla_x \cdot [a(y) (\nabla_x u_0(x, y) + \nabla_y u_1(x, y))] + \nabla_y \cdot [a(y) (\nabla_x u_1(x, y) + \nabla_y u_2(x, y))] \right\} - O(\varepsilon) = f.$$

$$(Problem P^{-2}) \quad \left\{ \begin{array}{rl} -\nabla_y \cdot (a(y) \nabla_y u_0(x,y)) &=& 0, \quad \text{for all } y \in Y, \\ u_0(x,y) \quad \text{is} \quad Y-\text{periodic.} \end{array} \right.$$

2.1. The diffusion problem

$$-\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right) \cdot \left[a(y)\left(\nabla_x + \frac{1}{\varepsilon}\nabla_y\right)\left(u_0(x,y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y) + \dots\right)\right] = f.$$

Rewrites

$$-\frac{1}{\varepsilon^2} \nabla_y \cdot (a(y) \nabla_y u_0(x, y)) - \frac{1}{\varepsilon} \left\{ \nabla_x \cdot [a(y) \nabla_y u_0(x, y)] + \nabla_y \cdot [a(y) (\nabla_x u_0(x, y) + \nabla_y u_1(x, y))] \right\} \\ - \left\{ \nabla_x \cdot [a(y) (\nabla_x u_0(x, y) + \nabla_y u_1(x, y))] + \nabla_y \cdot [a(y) (\nabla_x u_1(x, y) + \nabla_y u_2(x, y))] \right\} - O(\varepsilon) = f.$$

$$(Problem P^{-2}) \quad \begin{cases} -\nabla_y \cdot (a(y)\nabla_y u_0(x,y)) &= 0, \quad \text{for all } y \in Y, \\ u_0(x,y) \quad \text{is} \quad Y - \text{periodic.} \end{cases}$$

Gives: $u_0(x, y) = u_0(x)$ and thus $\nabla_y u_0(x, y) = 0$ for all $y \in Y$. Q: $u_0(x) = ?$

$$-\frac{1}{\varepsilon^2}\nabla_y \cdot (a(y)\nabla_y u_0(x,y)) - \frac{1}{\varepsilon} \{\nabla_x \cdot [a(y)\nabla_y u_0(x,y)] + \nabla_y \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))]\} - \{\nabla_x \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] + \nabla_y \cdot [a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))]\} - O(\varepsilon) = f.$$

$$(Problem P^{-1}) \quad \left\{ \begin{array}{rcl} -\nabla_y \cdot \left(a(y) \nabla_y u_1(x,y) \right) &= \nabla_y \cdot \left(a(y) \nabla_x u_0(x) \right), & \text{ for all } y \in Y, \\ u_1(x,y) & \text{ is } Y - \text{periodic.} \end{array} \right.$$

$$-\frac{1}{\varepsilon^2} \nabla_y \cdot (a(y)\nabla_y u_0(x,y)) - \frac{1}{\varepsilon} \{ \nabla_x \cdot [a(y)\nabla_y u_0(x,y)] + \nabla_y \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] \} - \{ \nabla_x \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] + \nabla_y \cdot [a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))] \} - O(\varepsilon) = f.$$

$$(Problem P^{-1}) \quad \left\{ \begin{array}{rcl} -\nabla_y \cdot \left(a(y) \nabla_y u_1(x,y) \right) &= \nabla_y \cdot \left(a(y) \nabla_x u_0(x) \right), & \text{ for all } y \in Y \\ u_1(x,y) & \text{ is } Y - \text{periodic.} \end{array} \right.$$

Note: Solution u_1 depends on u_0 ! With $\mathbf{e}_j = (0, \dots, 0, 1, 0, \dots, 0)$,

$$\nabla_x u_0(x) = \sum_{j=1}^d \mathbf{e}_j \,\partial_{x_j} u_0(x).$$

Suggestion: solve first the *cell problems* with e_j replacing $\nabla_x u_0(x)$!

$$-\frac{1}{\varepsilon^2} \nabla_y \cdot (a(y)\nabla_y u_0(x,y)) - \frac{1}{\varepsilon} \{ \nabla_x \cdot [a(y)\nabla_y u_0(x,y)] + \nabla_y \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] \} - \{ \nabla_x \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] + \nabla_y \cdot [a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))] \} - O(\varepsilon) = f.$$

$$(Problem P^{-1}) \quad \left\{ \begin{array}{rcl} -\nabla_y \cdot \left(a(y) \nabla_y u_1(x,y) \right) &= \nabla_y \cdot \left(a(y) \nabla_x u_0(x) \right), & \text{ for all } y \in Y \\ u_1(x,y) & \text{ is } Y - \text{periodic.} \end{array} \right.$$

Note: Solution u_1 depends on u_0 ! With $\mathbf{e}_j = (0, \dots, 0, 1, 0, \dots, 0)$,

$$\nabla_x u_0(x) = \sum_{j=1}^d \mathbf{e}_j \,\partial_{x_j} u_0(x).$$

Suggestion: solve first the *cell problems* with e_j replacing $\nabla_x u_0(x)$! For all j = 1, ..., d, consider:

$$(Problem P_j^{-1}) \begin{cases} -\nabla_y \cdot \left(a(y) \nabla_y w^j(y)\right) &= \nabla_y \cdot \left(a(y) \mathbf{e}_j\right), & \text{ for all } y \in Y, \\ w^j(y) & \text{ is } Y - \text{periodic}, \\ \int_Y w^j(y) dy &= 0. \end{cases}$$

$$-\frac{1}{\varepsilon^2}\nabla_y \cdot (a(y)\nabla_y u_0(x,y)) - \frac{1}{\varepsilon} \{\nabla_x \cdot [a(y)\nabla_y u_0(x,y)] + \nabla_y \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))]\} - \{\nabla_x \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] + \nabla_y \cdot [a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))]\} - O(\varepsilon) = f.$$

$$(Problem P^{-1}) \quad \left\{ \begin{array}{rcl} -\nabla_y \cdot \left(a(y) \nabla_y u_1(x,y) \right) &= \nabla_y \cdot \left(a(y) \nabla_x u_0(x) \right), & \text{ for all } y \in Y, \\ u_1(x,y) & \text{ is } Y - \text{periodic.} \end{array} \right.$$

Note: Solution u_1 depends on u_0 ! With $\mathbf{e}_j = (0, \dots, 0, 1, 0, \dots, 0)$,

$$\nabla_x u_0(x) = \sum_{j=1}^d \mathbf{e}_j \,\partial_{x_j} u_0(x).$$

This gives ($\tilde{u}_1(x)$ plays actually no role)

$$u_1(x,y) = \tilde{u}_1(x) + \sum_{j=1}^d w^j(y) \,\partial_{x_j} u_0(x),$$

$$-\frac{1}{\varepsilon^2} \nabla_y \cdot (a(y)\nabla_y u_0(x,y)) - \frac{1}{\varepsilon} \{ \nabla_x \cdot [a(y)\nabla_y u_0(x,y)] + \nabla_y \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] \}$$
$$-\{ \nabla_x \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] + \nabla_y \cdot [a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))] \} - O(\varepsilon) = f.$$

$$(Problem P^{0}) \quad \begin{cases} -\nabla_{x} \cdot [a(y)(\nabla_{x}u_{0}(x) + \nabla_{y}u_{1}(x,y))] - \nabla_{y} \cdot [a(y)(\nabla_{x}u_{1}(x,y) + \nabla_{y}u_{2}(x,y))] = f, \\ u_{2}(x,y) \text{ is } Y - \text{periodic.} \end{cases}$$

$$-\frac{1}{\varepsilon^2} \nabla_y \cdot (a(y)\nabla_y u_0(x,y)) - \frac{1}{\varepsilon} \{ \nabla_x \cdot [a(y)\nabla_y u_0(x,y)] + \nabla_y \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] \}$$
$$-\{ \nabla_x \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] + \nabla_y \cdot [a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))] \} - O(\varepsilon) = f.$$

$$(Problem P^{0}) \quad \begin{cases} -\nabla_{x} \cdot [a(y)(\nabla_{x}u_{0}(x) + \nabla_{y}u_{1}(x,y))] - \nabla_{y} \cdot [a(y)(\nabla_{x}u_{1}(x,y) + \nabla_{y}u_{2}(x,y))] = f, \\ u_{2}(x,y) \text{ is } Y - \text{periodic.} \end{cases}$$

Option: Find u_2 in terms of u_0 and u_1 ... still gives no u_0 !

$$-\frac{1}{\varepsilon^2} \nabla_y \cdot (a(y)\nabla_y u_0(x,y)) - \frac{1}{\varepsilon} \{ \nabla_x \cdot [a(y)\nabla_y u_0(x,y)] + \nabla_y \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] \}$$
$$-\{ \nabla_x \cdot [a(y)(\nabla_x u_0(x,y) + \nabla_y u_1(x,y))] + \nabla_y \cdot [a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))] \} - O(\varepsilon) = f.$$

$$(Problem P^{0}) \quad \begin{cases} -\nabla_{x} \cdot [a(y)(\nabla_{x}u_{0}(x) + \nabla_{y}u_{1}(x,y))] - \nabla_{y} \cdot [a(y)(\nabla_{x}u_{1}(x,y) + \nabla_{y}u_{2}(x,y))] = f, \\ u_{2}(x,y) \text{ is } Y - \text{periodic.} \end{cases}$$

Alternative: Eliminate u_2 by integration!

$$-\nabla_x \cdot \left[\int_Y a(y)(\nabla_x u_0(x) + \nabla_y u_1(x,y))dy\right] - \int_Y \nabla_y \cdot \left[a(y)(\nabla_x u_1(x,y) + \nabla_y u_2(x,y))\right]dy = f(x),$$

$$-\nabla_x \cdot \left[\int_Y a(y)(\nabla_x u_0(x) + \nabla_y u_1(x, y))dy\right] - \int_Y \nabla_y \cdot \left[a(y)(\nabla_x u_1(x, y) + \nabla_y u_2(x, y))\right]dy = f(x)$$

We have

$$\begin{split} \int_{Y} \nabla_{y} \cdot [a(y)(\nabla_{x}u_{1}(x,y) + \nabla_{y}u_{2}(x,y))]dy &= \int_{\partial Y} \nu \cdot [a(y)(\nabla_{x}u_{1}(x,y) + \nabla_{y}u_{2}(x,y))]d\sigma_{y}, \\ &= \sum_{k=1}^{4} \int_{\partial Y_{k}} \nu_{k} \cdot [a(y)(\nabla_{x}u_{1}(x,y) + \nabla_{y}u_{2}(x,y))]d\sigma_{y} = \mathbf{0} \end{split}$$

$$-\nabla_x \cdot \left[\int_Y a(y)(\nabla_x u_0(x) + \nabla_y u_1(x,y))dy\right] = f(x)$$

Since

$$\nabla_y u_1(x,y) = \sum_{j=1}^d \partial_{x_j} u_0(x) \, \nabla_y w^j(y),$$

we have

$$-\nabla_x \cdot \left[\int_Y a(y) \left(\nabla_x u_0(x) + \sum_{j=1}^d \partial_{x_j} u_0(x) \nabla_y w^j(y) \right) dy \right] = f(x).$$

or, equivalently,

$$(P) \quad \begin{cases} -\nabla \cdot (A^* \nabla U) = f, & \text{for all } x \in \Omega, \\ U = 0, & \text{on } \partial \Omega, \end{cases}$$

with
$$A^* \in \mathbb{R}^{d \times d}$$
, $a_{ij}^* = \int_Y a(y) \left(\delta_{ij} + \partial_{y_i} w^j(y) \right) dy = \int_Y a(y) \left(\mathbf{e}_j + \nabla_y w^j(y) \right) \mathbf{e}_i dy$

$$-\nabla_x \cdot \left[\int_Y a(y)(\nabla_x u_0(x) + \nabla_y u_1(x,y))dy\right] = f(x)$$

Since

$$\nabla_y u_1(x,y) = \sum_{j=1}^d \partial_{x_j} u_0(x) \, \nabla_y w^j(y),$$

we have

$$-\nabla_x \cdot \left[\int_Y a(y) \left(\nabla_x u_0(x) + \sum_{j=1}^d \partial_{x_j} u_0(x) \nabla_y w^j(y) \right) dy \right] = f(x).$$

or, equivalently,

$$(P) \begin{cases} -\nabla \cdot (A^* \nabla U) = f, & \text{for all } x \in \Omega, \\ U = 0, & \text{on } \partial\Omega, \end{cases}$$

with $A^* \in \mathbb{R}^{d \times d}$, $a_{ij}^* = \int_Y a(y) (\delta_{ij} + \partial_{y_i} w^j(y)) dy = \int_Y a(y) (\mathbf{e}_j + \nabla_y w^j(y)) \mathbf{e}_i dy$

Lemma

- a) A^* is symmetric, i.e. $a_{ij}^* = a_{ji}^*$ for all $i, j = 1, \dots, d$.
- b) A^* is positive definite, i.e. there exist a constant C > 0 s.t. for all (column vectors) $z \in \mathbb{R}^d$, $z^T(A^*z) \ge C(z^Tz)$.

