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Abstract. This mini-course addresses graduate students and young researchers in mathematics
and engineering sciences interested in applying both formal and rigorous averaging methods to

real-life problems described by means of partial differential equations (PDEs) posed in heteroge-

neous media. As a background application scenario we choose to look at the interplay between
reaction, diffusion and flow in periodic porous materials, but broadly speaking, a similar pro-

cedure would apply for, e.g., acoustic and/or electromagnetic wave propagation phenomena in
composite (periodic) media as well.

We start off with the study of oscillatory elliptic PDEs formulated firstly in fixed and, af-

terwards, in periodically-perforated domains. We remove the oscillations by means of a (formal)
asymptotic homogenization method. The output of this procedure consists of a “guessed” av-

eraged model equations and explicit rules (based on cell problems) for computing the effective

coefficients.
As second step, we introduce the concept of two-scale convergence (and correspondingly, the

two-scale compactness) in the sense of Allaire and Nguetseng and derive rigorously the averaged

PDE models and coefficients obtained previously. This step uses the framework of Sobolev and
Bochner spaces and relies on basic tools like weak convergence methods, compact embeddings

as well as extension theorems in Sobolev spaces. We particularly emphasize the role the choice

of microstructures (pores, perforations, subgrids, etc.) plays in performing the overall averaging
procedure.

Finally, we focus our attention on a two-scale partly dissipative reaction-diffusion system
with periodically distributed microstructure modeling chemical attack on concrete structures.

We present a two-scale finite difference scheme able to approximate the unique weak solution to

the two-scale system and prove its convergence. We illustrate numerically the typical micro-macro
behavior of the active concentrations involved in the corrosion process and give details on how a

two-scale FD scheme can be implemented in C.

The main objective of the course is to endow the audience with a rather flexible mathematical
homogenization tool so that he/she can quickly start applying this averaging methodology to other

PDEs scenarios describing physico-chemical processes in media with microstructures.
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CHAPTER 1

Introduction

1.1. Aim of these notes. Choice of the teaching material

The objective of these lecture notes is to introduce quickly the reader1 to the world of averaging
techniques for partial differential equations. Deliberately, the presentation follows our favorite
path—the applications-driven way. We mostly consider transport and reaction in porous media,
but similar ideas apply to other related phenomena. Particularly, we refer to [PPSW93, HH98], or
[MV10] for details on multiscale studies concerning scenarios arising in the mechanics of materials.
For averaging techniques at the level of ODEs, the reader is referred to [Hol95] (standard matters)
or [Ver10] (modern aspects, also touching upon geometric singular perturbations issues), [PS08]
(useful for both deterministic and stochastic scenarios). Our standard reference book for (volume)
averaging reaction, diffusion, and flow in heterogeneous porous media is [Bea88].

The choice of the material included here is rather personal. It is strongly influenced by our
own work in the homogenization field, as well as by a series of mini-courses given by A. Muntean:
“Introduction to Homogenization” given at the Department of Mathematics and Computer Sci-
ence, Eindhoven University of Technology, The Netherlands during the period 2008–2011 (jointly
with I. S. Pop), the Mastermath course “Asymptotic Methods for Differential Equations” during
February–June 2011, University of Amsterdam, The Netherlands (jointly with A. Zagaris) as well as
the mini-courses “Homogenization: A Crash Course” given firstly in February 2010 at the Depart-
ment of Mathematics, University of Sussex (Falmer, UK), and then in March 2011 at the Institute
of Mathematics for Industry, Kyushu University (Fukuoka, Japan).

The content and structure of the first five chapters owe very much to a few works from where we
learned the techniques [NR92, Hor97, All02, Hor93]. See also [PPSW93] for complementary
reading materials, organized very much in a textbook fashion. The last two chapters is the result
of recent collaborations between V. Chalupecký and A. Muntean on multiscale computation issues
strongly related to the topic of the PhD thesis by T. Fatima (TU Eindhoven, The Netherlands).

To get a decent overview on what happens today in the field of averaging techniques for PDEs,
we kindly send the reader to dig into excellent monographs like [Hor97, CD99, JKO94, PS08,
CPS07, CS98, BLP78, MV10], treating in an exhaustive way the case of periodically-distributed
microstructures.

1.2. What means “homogenization” in this context?

In most fields of science and engineering the word homogenization typically refers to mixing
(stirring). The same situation happens with the painter mixing colors, say black and white, to
get a uniformly grayish nuance. Quite similarly, the role of statistical mechanics is to search for
ensembles to get rid of microscopic fluctuations. In molecular dynamics simulations, much research
interest is focussed on how to speed up calculations by coarse graining. At the continuum level,
mixture theories [M6̈8] combined eventually with volume averaging-type methods (e.g., [Bea88,
HW85]) attempt to get an averaged perspective over the heterogeneities in both the distribution of
matter and micro-geometry (microstructures). Such methods simply try to find simpler (easier to

1Most likely, the reader is a graduate student or young researcher in applied mathematics or in engineering

sciences willing to apply a more fundamental averaging technique to his/her “baby problem”.
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2 1. INTRODUCTION

Figure 1.1 – The passing ε → ε0 (0 ≤ ε0 � ε) can be imagined as the passing from high-contrast
black-white regions to gray regions. Courtesy of S. A. Muntean (TU Eindhoven), who also produced
the concept and photo of the cover.

compute) equations that smoothen out substructure variations, without loosing too much accuracy.
In these equations, all material parameters and coefficients will possess, in most of the cases, a
certain effective nature (i.e., we wish them to be independent of the microstructure shape). In the
subsequent chapters, we focus on deterministic continuum-in-time events taking place at continuum
in space levels, and hence, we stay away from scenarios involving random micro-geometries or
discrete microstructures.

Well-understood oscillations occur inherently when periodic or almost periodic distributions of
microstructures come into the game. The role of “mathematical homogenization”2 is to efficiently
use the special properties of periodic functions/structures in combination with the regularity of the
weak solutions to the PDE models in questions in order to “remove” the oscillations (a visual hint
for this is illustrated in Fig. 1.1), and finally, to derive averaged equations as well as constitutive
laws for averaged (transport and reaction) coefficients (also called effective coefficients).

In this framework, we deal with averaging techniques tailored for media composed of a periodically-
distributed substructure (that we refer to as microstructure). Note, however, that the techniques
apply in a larger context including locally periodic microstructures or stationary distributions of
pores assuming, among other things, precise ergodicity restrictions. Consequently, we are able to
treat successfully geometries like the one pointed out in Fig. 1.2 and Fig 1.3 (i.e., “regular”, uni-
formly periodic microstructures), and we will not attempt to treat non-uniform heterogeneities like
those illustrated in Fig. 1.4 and Fig. 1.5.

1.3. Organization of the material

Chapter 2 describes the basic ideas of the asymptotic homogenization method by means of a
relevant application posed in a media with periodically-distributed microstructures.

Chapter 3 briefly sketches the functional analysis prerequisites that the reader needs to under-
stand in order to follow the subsequent chapters. This is the place where we introduce the central
concept of two-scale convergence in the sense of Nguetseng and Allaire.

We use Chapter 4 to show how this two-scale concept of weak convergence works in the case of
a linear elliptic problem posed in a fixed (non-oscillatory) domain, while in Chapter 5 we average
(homogenize, scale-up) the same sort of equation as in Chapter 4, but now defined in a media with
periodically-distributed microstructures. This part is mathematically a bit more involved, and it
comes very close to current research questions in mathematical homogenization.

In Chapter 6 we study a reaction-diffusion scenario intimately connected to the corrosion of
concrete with sulfates. The starting point here is a two-scale PDEs-ODE scenario (that can be
obtained via the two-scale convergence technique detailed in Chapter 4 and Chapter 5). Our focus
lies here on the construction and implementation of a convergent two-scale finite difference scheme
to approximate the weak solution of the given two-scale problem.

2By “mathematical homogenization” we actually mean “two-scale convergence type techniques”.



1.4. NOTE 3

Figure 1.2 – Illustration of a periodically dis-
tributed array of microstructures approximat-
ing an unsaturated porous medium.

Figure 1.3 – Microstructure model in R3.
The black part indicates the presence of a
water film, while the interior of the tube is
supposed to be subject to air diffusion. The
solid part lies in the exterior of the tubes.

Figure 1.4 – Examples of heterogeneous media: Left and middle: Artistic composite wall with
randomly placed inclusions; Right: Concrete microstructures attacked by sulfate ions. Courtesy of
R. E. Beddoe and L. Urbonas (TU München).

Our computer implementation is the subject of Chapter 7. We describe the implementation at
a sufficient level of detail such that even an unexperienced programmer can understand it easily in
order to adapt it later to its own needs. The full source code is then listed in Appendix A.

1.4. Note

This material has a preliminary shape. The text is subject to continuous changes both in style
as well as in content. If you spot errors, typos or have comments at the mathematical and/or
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Figure 1.5 – Examples of heterogeneous media: Artistic representations with low regular inclusions.

teaching strategy level, then please get in contact with any of us. Your comments are welcome and
very much appreciated.

Note that Chapter 2 and Chapter 5 can be offered as a crash course to PhD students and
postdoctoral researchers in applied mathematics, having the background indicated in Chapter 3.
Chapters 1–7 can be used as master course material structured in about 14 lessons and instructions,
the target audience being then master students either in applied mathematics or in computational
science and engineering.



CHAPTER 2

Formal asymptotic homogenization

In this chapter, we rely on formal two-spatial scale expansions to introduce the homogeniza-
tion-type of thinking. This part plays a crucial role: if one believes the existence of such two-
scale expansions, then these expansions simply “dislocate” the oscillations and successfully lead to
upscaled model equations and effective coefficients, under the basic assumption of periodicity. This
is only a formal way of working; analysis work is required to justify the validity of the two-scale
expansion. The content of these notes follows partly [NR92, Hor97, PS08].

For a supplementary reading material, see [PPSW93].

2.1. Guessing the averaged model: A direct approach

This section presents a formal asymptotic technique (sometimes called asymptotic homogeniza-
tion) that is able to derive, starting from microscopic models whose validity we trust, macroscopic
models and constitutive laws for effective coefficients. We present the technique by means of a
representative example—a model problem describing the interplay between stationary diffusion
and chemical reactions in perforated media. It is worth noting that the applicability of this formal
method covers wide classes of PDEs ranging, for instance, from Maxwell equations to free boundary
problems modeling phase transitions in heterogeneous materials.

2.2. A model problem: Stationary diffusion and chemical reactions in perforated
media

We consider the following linear elliptic equation

−div(aε∇uε) = fε, in Ωε ⊂ Rd,(2.1)

together with the boundary conditions

uε = 0, on Γext,(2.2)

−aε∇uε · nε = gε, on Γε,(2.3)

where ∂Ω is a hypersurface in Rd and λd−1(Γε) 6= 0, with λd−1 being the d−1-dimensional Lebesgue
measure. Furthermore, ∂Ωε = Γext ∪ Γε, where Γext ∩ Γε = ∅. We take

fε

(
x,
x

ε

)
:= f0(x) + εf1

(
x,
x

ε

)
gε

(
x,
x

ε

)
:= εg0

(
x,
x

ε

)
.

In this context, fε is a volume (bulk) chemical reaction, while gε is a surface chemical reaction. For
the simplicity of the exposure, we keep the functions fε and gε dependent only on the x-variable.
Minimal modifications are needed to adapt the following calculations for the case when fε and gε
depend on t and on uε.

Let us assume for the moment that the parameters as well as the initial and boundary data are
given such that our microscopic problem (Pε) is well posed.

5



6 2. FORMAL ASYMPTOTIC HOMOGENIZATION

We refer to (2.1)–(2.2) as problem (Pε); the limit problem (as ε → 0) will be correspondingly
denoted by (P0). The task is now to remove (average out) the oscillatory behavior of the solution
to (Pε).

Let us briefly describe the geometry of our perforated domain Ωε. Let Z ⊂ Rd be a hypercube.
Furthermore, let k = (k1, . . . , kd) ∈ Zd be a vector of indices and e = (e1, . . . , ed) be unit vectors in
Rd. For X ⊂ Z, we denote by Xk the shifted subset

Xk := X +

d∑
i=1

kiei.

The pore matrix (or pore skeleton) is defined by

Ωε0 :=
⋃
k∈Zd
{εY k0 : Y k0 ⊂ Ω},

while the total pore space is

Ωε := Ω− Ωε0.

εY k0 is the ε-homotetic set of Y k0 . The total (inner) surface of the skeleton is denoted by

Γε := ∂Ωε0 =
⋃
k∈Zd
{εΓk : εΓk ⊂ Ω}.

Correspondingly, we introduce the unit normal vector nε to Γε.

2.3. The asymptotics homogenization procedure or How to guess “macroscopic”
models?

The key idea is to rely on the following ansatz (often called homogenization ansatz):

(2.4) uε(x) := u0(x, y) + εu1(x, y) + ε2u2(x, y) +O(ε2)
∣∣
where y:= x

ε

.

If ψ is a sufficiently smooth function, then the following calculation rule applies:

d

dx
ψ
(
x,
x

ε

)
= ∂xψ

(
x,
x

ε

)
+

1

ε
∂yψ

(
x,
x

ε

) ∣∣∣
where y:= x

ε

.

In order to simplify the writing, we will not carry with us the expression “where y := x
ε ”, but we

implicitly mean it. Essentially, we imagine x and y to be independent variables.
Now, inserting the ansatz (2.4) into (Pε), we get for (2.1) the following structure:[

1

ε2
T−2 +

1

ε
T−1 + ε0T0

]
(u0, u1, u2, . . . ) = [f0 + εf1] (u0, u1, u2, . . . ) in Ωε.

We obtain(
∇x +

1

ε
∇y
)
·
(
A(y)

(
∇x +

1

ε
∇y
)

(u0 + εu1 + ε2u2 + h.o.t.)

)
= f0 + εf1 +O(ε2).

So,(
∇x +

1

ε
∇y
)
·
(

1

ε
A(y)∇yu0 + ε0

(
A(y)∇xu0 +A(y)∇yu1

)
+ ε1

(
A(y)∇xu1 +A(y)∇yu2

)
+ h.o.t

)
= f0 + h.o.t.
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Next, we group the terms by collecting those having the same powers of ε and get in Ω× Y that

1

ε2
∇y ·

(
A(y)∇yu0

)
+

1

ε

(
∇y ·

(
A(y)∇xu0 +A(y)∇yu1

)
+∇x ·

(
A(y)∇yu0

))
+

ε0
(
∇x ·

(
A(y)∇xu0 +A(y)∇yu1

)
+∇y ·

(
A(y)∇xu1 +A(y)∇yu2

))
+ h.o.t = f0 + h.o.t.

We proceed in the same way with the boundary conditions and get

−A(y)
(
∇x +

1

ε
∇y
)

(u0 + εu1 + ε2u2) + h.o.t. = εg0 + ε2g1

which leads to the relations at ∂Y0, namely:

1

ε
: −A(y)∇yu0 · n(y) = 0,

ε0 : −A(y)∇xu0 · n(y)−A(y)∇yu1 · n(y) = 0,

ε1 : −
(
A(y)∇xu1 +A(y)∇yu2

)
n(y) = g0(x, y).

Consequently, L’Hopital’s rule indicates that as ε → 0 we get in Ω × Y the following auxiliary
problems:

(2.5)

T−2(u0) = 0,

T−1(u0, u1) = 0,

T0(u0, u1, u2) = F0,

where Ω is the initial domain without the perforations, Y is the microstructure within the periodic
cell Z, and F0 is a zero order term in ε including f0 and eventually some boundary terms. The
precise structure of F0 will be clear towards the end of this averaging procedure. Having a glance
at (2.5), we expect already a certain structure for the macroscale equation, but what would be a
good candidate for the solution of such a macroscopic equation?

Let’s examine the first auxiliary problem, i.e., the one corresponding to T−2:
Find u0 = u0(x, y) solution of

∇y ·
(
A(y)∇yu0(x, y)

)
= 0 in Y,(2.6)

−A(y)∇yu0(x, y) · n(y) = 0 at ∂Y0,(2.7)

u0(x, ·) is Y -periodic for each given x ∈ Ω.(2.8)

To ensure the uniqueness of solutions to (2.6)–(2.8), we impose

(2.9)

ˆ
Y

u0(x, y) dy = c,

where c ∈ R is a constant. The structure of (2.6)–(2.8) indicates that u0 is independent of the
choice of y, and hence, we expect the function

u0 = u0(x)

to be the macroscopic solution we are looking for. Consequently, the constant c arising in (2.9)
becomes a function of x and c(x) := u0(x)|Y |.

Let us examine now the next auxiliary problem, i.e., the one corresponding to T−1:

−∇y ·
(
A(y)(∇u0 +∇yu1)

)
= 0,(2.10)

−A(y)∇yu1(x, y) · n(y) = A(y)∇xu0(x) · n(y), at ∂Y0,(2.11)

u1(x, ·) is Y -periodic for each given x ∈ Ω.(2.12)

At this point, we need to recall a theoretical result ensuring the existence and uniqueness of periodic
solutions to elliptic PDEs (see also [PPSW93, Lemma 2.1]).



8 2. FORMAL ASYMPTOTIC HOMOGENIZATION

Lemma 2.1. Let F ∈ L2(Y ), and g ∈ L2(∂Y ). Consider the following boundary-value problem:

−∇ ·
(
A(y)∇ω

)
Aω = F (y), in Y,(2.13)

−A(y)∇ω · n = g(y), at ∂Y,(2.14)

ω is Y − periodic.(2.15)

Then following statements hold:

(i) There exists a weak Y -periodic solution ω to (2.13) if and only if
´
F (y) dy =

´
g(y) dσy.

(ii) If (i) holds, then the uniqueness of weak solutions is ensured up to an additive constant.

We apply now Lemma 2.1 to problem T−1. Rearranging the terms in (2.10), we obtain after
applying Gauß’s theorem that

(2.16) −
ˆ
∂Y

A(y)∇yu1 · n(y) dσy =

ˆ
∂Y0

A(y)∇u0n(y) dσy,

where dσy is the surface measure on ∂Y . Hence, Lemma 2.1 ensures the existence of a unique
(weak) solution u1 to T−1.

For this problem, it is convenient to introduce the so-called cell functions and cell problems.
Namely, we can rewrite u1 as

u1(x, y) = W (y) · ∇u0(x) + ũ1(x),

where the cell function(s)

W (y) =
(
W1(y), . . . ,Wd(y)

)t ∈ Rd

satisfy the cell problems:

−∇y ·
(
A(y)

(
ej +∇yWj(y)

))
= 0, in Y,(2.17)

A(y)∇yWj(y) · nj(y) = 0 at ∂Y0,(2.18)

wj is Y -periodic,

ˆ
Y

w dy = 0.(2.19)

Now, looking to the PDE for u2, namely to the auxiliary problem T0, we note that the following
solvability condition has to be fulfilled:

(2.20)

ˆ
Y

[r. h. s.] dy =

ˆ
∂Y

[bdd. term] dσy.

A careful glance at equation (2.20) should recognize that this is actually a macroscopic (effective)
equation in the sense that the microstructure variable y is averaged out from the equation.

2.4. Structure of the macroscopic equation. Effective coefficients

Now, it only remains to derive the precise structure of the macroscopic equation. The PDE for
u2, i.e., for the auxiliary problem T0, is:

−∇y ·
(
A(y)∇yu2

)
= ∇x ·

(
A(y)∇xu0

)
+∇x ·

(
A(y)∇yu1

)
+∇y ·

(
A(y)∇xu1

)
+ f0, in Y,

−A(y)∇yu2 · n(y) = A(y)∇xu1 · n(y) + g0, at ∂Y0,

u2 is Y -periodic.

Observe that (2.20) gives

I1 + I2 + I3 = I4 + I5,
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where the integral terms Ik (k ∈ {1, . . . , 5}) are defined by

I1 :=

ˆ
Y

∇x ·
(
A(y)∇xu0

)
dy,

I2 :=

ˆ
Y

∇x ·
(
A(y)∇yu1

)
dy +

ˆ
Y

∇y · (A(y)∇xu1) dy,

I3 :=

ˆ
Y

f0 dy,

I4 :=

ˆ
∂Y0

A(y)∇xu1 · n(y) dσy,

I5 :=

ˆ
∂Y0

g0 dσy.

We have

(2.21) I1 =

ˆ
Y

∇x ·
(
A(y)∇xu0

)
dy = ∇x ·

[(ˆ
Y

A(y) dy

)
∇xu0

]
=

(ˆ
Y

A(y) dy

)
: ∇x∇xu0(x).

In (2.21), we have used the inner product between two matrices

A : B := tr(AtB) =
∑
ij

aijbij .

This product1, also called double dot product, is used to represent multiplying and summing across
two indices. It is worth noting that the double dot product of two 2nd order tensors is a scalar.
Some useful properties of the double dot product are listed, for instance, in [PS08, Section 2.2].

Furthermore, I2 = I21 + I22. Note that by periodicity and Gauß’s theorem we obtain

I22 = I4.

Let us now deal with the term I22. We obtain that

I21 =

ˆ
Y

∇x ·
(
A(y)∇yu1

)
dy =

ˆ
Y

A(y) : ∇x∇y
(
W (y) · ∇xu0(x)

)
dy

=

ˆ
Y

(
A(y)∇yW (y)t

)
dy : ∇x∇xu0(x).

Combining now the above results yields the following macroscopic equation:

(2.22) − |Y ||Z|

 
Y

(
A(y) +A(y)∇yW (y)t

)
dy : ∇x∇xu0(x) =

|Y |
|Z|f0(x) +

|∂Y0|
|Z|

 
∂Y0

g0(x, y) dσy,

for a.e. x ∈ Ω with

(2.23) u0(x) = 0 for all x ∈ ∂Ω.

In (2.22), we denote by
ffl
Y f(y) dy the quantity 1

|Y|
´
Y f(y) dy ∈ R for any set Y ⊂ Rδ where

δ ∈ {1, . . . , d}. Note that the factor |Y ||Z| is the so-called volumetric porosity, while |∂Y0|
|Z| is the

surface porosity.

Remark 2.2. Equation (2.22) can also be obtained by integrating (2.20) with respect to y and
then multiplying the result by 1

|Z| ; see [Bea88] for these and related concepts regarding modeling

flow, diffusion and chemical reactions in porous media.

1Given vector fields a, v, we denote a · ∇v := (∇v)a. Similarly, if A is a 2nd order tensor, we denote a · ∇A :=

(∇A)a and understand the notation component-wise. For any scalar function ψ, ∇∇ψ denotes the Hessian matrix.
Note also that, since ∆ψ = ∇ · ∇ψ we can use the notation ∆ψ = I : ∇∇ψ, where I is the identity matrix.
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Remark 2.3. We advise the reader to study from [Hor97, pp. 18–22], the (formal) derivation
of a linear transmission problem for the stationary diffusion equations where the two diffusion
coefficients, say D1 and D2, satisfy the very special scaling (in ε) D1 = ε2D2. The resulting model
is called in the literature a double porosity model or a distributed microstructure model.

2.5. Exercises

Exercise 2.1. Prove (2.16). Show also why Lemma 2.1 does actually apply in this context.

Exercise 2.2. (Effective models in layered media) Let ε be a small positive parameter.
On the set Ω := (0, 1)2 we define the ε-periodic function aε(x) := a(x2/ε) depending only on the
second coordinate x2, and satisfying

0 < m ≤ aε(x) ≤M <∞
for some given (independent of ε) constants m, M . Let qε(x) := q(x/ε) be a given ε-periodic
velocity vector satisfying the divergence-free condition

∇ · qε = 0.

For a given forcing term f , we consider the microscale equation

∇ ·
(
qεuε − aε∇uε

)
= f, in Ω,

with homogeneous Dirichlet boundary conditions.

1. Apply the asymptotic expansion method to determine the effective (macro scale) equation.

2. Determine the effective diffusion tensor explicitly.

Exercise 2.3. Solve exercises 1c, 2 and 4 from [Hol95, pp. 231–233].

Exercise 2.4. Let’s consider the context of Remark 2.3. Redo the calculations from [Hor97]
(loc. cit.) for the case when D1

D2
= O(1).

Exercise 2.5. (An inverse homogenization problem) Consider the two-scale partially-
dissipative coupled reaction-diffusion system discussed in Chapter 6. Propose a microstructure
model that not only makes sense physically, but also gives as ε→ 0 the above mentioned two-scale
system.

Hints

Hint for Exercise 2.3, problems 1c and 2. Strategy 1 (recommended): Proceed as we
worked in this chapter. You need to redo essentially the same calculations. Very few new terms
will appear. Point them out!
Strategy 2 (not recommended): Holmes’s working ideas described in pp. 224–228 can solve this, but
they work only in 1D (due to the use of explicit solutions to the auxiliary problems). His approach
can be “stretched” for other a bit more complex situations as well but it will generally not work
when perforations are included. Try it for the fun, but make sure that you understand how strategy
1 works.

Hint for Exercise 2.3, problem 4. Use the mean-value theorem for integrals.

Hint for Exercise 2.4. Assume the context of Remark 2.3. Formulate the microscopic
problem as a transmission problem by choosing Dε(x) = D1,ε(x) if x ∈ Ω1

ε and Dε(x) = D2,ε(x) if
x ∈ Ω2

ε , where Ωε1 and Ωε2 are the two periodic domains where the diffusion takes place.
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Hint for Exercise 2.5. If you have really no clue, then adapt the setting from [FAZM11]
to the current context.





CHAPTER 3

What should one know before thinking to applying
homogenization?

In this chapter, we review the basic functional analytic notions1 that the reader needs to be
familiar with in order to be able to apply concepts like two-scale convergence to PDE models to
derive in a rigorous manner upscaled model equations. Since the problems treated in this text are
all linear, the key concept helping to pass to the limit ε → 0 is connected to some kind of weak
convergence. The role of this chapter is to elucidate these aspects.

3.1. Weak convergence

Let B be a real Banach space equipped with the norm ‖ · ‖B . Correspondingly, B∗ refers to
the dual space of B, namely

(3.1) B∗ := {ζ : B → R | ζ linear } =: L(B,R).

We endow the space B∗ with the norm

(3.2) ‖ζ‖B∗ := sup
x∈B−{0}

〈ζ, x〉B∗,B
‖x‖B

,

for all ζ ∈ B∗. In (3.2), for a ζ ∈ B∗, the (dual) pairing 〈ζ, x〉B∗,B represents the image ζ(x) of an
element x ∈ B.

For what we are concerned, we are more interested in cases when

B ∈ {Lp(Ω), L2(Ω), H1(Ω), H1
0 (Ω), H1

#(Y ), L2(Ω, H1
#(Y ))},

where Ω and Y are open sets in Rd with Lipschitz boundary and where we take d ∈ {1, 2, 3} and
p ∈ [1,∞].

Note that L2(Ω) or H1(Ω) (or H1
0 (Ω) or L2(Ω;H1

#(Y ))) are Hilbert spaces, say H. Then

〈ζ, x〉H∗,H = (ζ, x) and H∗∗ = H, where (α, β) is the scalar product of the elements α and β from
the Hilbert space H.

Let us introduce a generic sequence of positive numbers (εn) ⊂ R+ such that limn→∞ εn = 0.
Let us abbreviate (εn) (together with all the convergent subsequences of (εn); see Remark 3.6) by
calling it simply ε.

Definition 3.1. (Weak convergence) A sequence (uε) ⊂ B is said to converge weakly to u ∈ B
as ε→ 0 if and only if

(3.3) for all ζ ∈ B∗ we have 〈ζ, uε〉B∗,B → 〈ζ, u〉B∗,B as ε→ 0.

We denote the convergence (3.3) by uε⇀u.

Remark 3.2. Let p ∈]1,∞[. For the choice B := Lp(Ω), the expression uε ⇀ u in Lp(Ω) means
that

(3.4)

ˆ
Ω

uεϕdx→
ˆ

Ω

uϕdx

1Ideally, the reader has previously followed a course related to introductory notions of functional analysis and

a beginner course in partial differential equations.

13
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for all ϕ ∈ Lq(Ω) = (Lp(Ω))
∗
, where 1

p + 1
q = 1.

Proposition 3.3. (Strong convergence) Let (uε) ∈ B. We have uε → u (strongly) in B if and
only if

(i) uε⇀u in B;
(ii) ‖uε‖B→‖u‖B .

Remark 3.4. More on this subject can be found in [CD99] or in [Eva98].

3.2. Compactness

Theorem 3.5. (Eberlein-Smuljan) Let B be a reflexive Banach space and let (uε) be (uniformly)
bounded in B. Then there exists a subsequence (uεk) ⊂ (uε) and a limit point u ∈ B such that
uεk ⇀ u (weakly) in B as k →∞.

Remark 3.6. As a rule, we always denote the subsequence (uεk) mentioned in Theorem 3.5 by
(uε).

Theorem 3.7. (Rellich-Kondrachov) The space W 1,p(Ω) is compactly embedded in Lq(Ω) for

any q ∈ [1, p∗[, where p∗ := dp
d−p is the so-called critical Sobolev exponent.

For instance, if d = 3, Theorem 3.7 says that H1(Ω) is compactly embedded in L6(Ω).
We often use the fact that H1(Ω) is compactly embedded in L2(Ω).
The reader might find it useful to refresh their knowledge about the Fredholm alternative

formulated for periodic elliptic PDEs (cf. e.g. [PS08, pp. 108–113]). We mention this mainly
because we have seen in the previous chapter how important are Fredholm alternative-type results
in handling the auxiliary problems arisen from the use of a two-scale (formal) expansion.

3.3. Two-scale convergence. Definition and properties

We start off this subsection by indicating a crucial property of periodic functions:

Lemma 3.8 (First Oscillation Lemma). Assume Ω to be a hypercube2 in Rd. For any f ∈
C(Ω̄;C#(Y )) it holds for |Y | = 1 that

(3.5) lim
ε→0

ˆ
Ω

f
(
x,
x

ε

)
dx =

ˆ
Ω

ˆ
Y

f(x, y) dxdy.

Proof. This proof is taken from Maria Neuss-Radu’s diploma thesis [NR92]. Let’s denote
i := (i1, . . . , id) ∈ Zd, Yi := i+ Y , and J := {i ∈ Zd : εYi ⊂ Ω}.

For each δ > 0, we can find an ε0 > 0 such that

(1) ˆ
Ω−∪i∈JεYi

f
(
x,
x

ε

)
< δ

(2) ‖f(x, ·)− f(x′, ·)‖C#(Ȳ ) ≤ δ for all |x− x′| < ε and for all ε < ε0.

2This assumption on the geometry of Ω can be removed. We keep it here just for the sake of simplicity of the

proofs.
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We have that ˆ
Ω

f
(
x,
x

ε

)
dx =

∑
εYi⊂Ω

ˆ
εYi

f
(
x,
x

ε

)
dx+O(δ)

(2)
=

∑
εYi⊂Ω

ˆ
εYi

f
(
xi,

x

ε

)
dx+O(δ)

=
∑
εYi⊂Ω

εd
ˆ
Yi

f (xi, y) dy +O(δ)

=

ˆ
Ω

ˆ
Y

f(x, y) dx dy +O(δ).

�

We introduce now the concept of two-scale convergence [All92, Ngu89].

Remark 3.9. The key observation we make at this point is that we expect uε to behave like

u0(x) + εu1

(
x,
x

ε

)
.

This idea complies with the formal asymptotic expansion we used earlier.

Definition 3.10 (Two-scale convergence). Let (uε) be a sequence of functions in L2(Ω). We
say that (uε) converges two-scale to a unique function u0(x, y) ∈ L2(Ω × Y ) if and only if for any
ψ ∈ C∞0 (Ω, C∞# (Y )), we have

(3.6) lim
ε→0

ˆ
Ω

uεψ
(
x,
x

ε

)
dx =

1

|Y |

ˆ
Ω

ˆ
Y

u0(t, x, y)ψ(x, y) dx dy.

We denote (3.6) by uε
2
⇀ u0. Often, we will assume |Y | = 1, but care needs to be paid whether

this assumption makes sense physically and geometrically.3

Remark 3.11. We mention at this point that, if convection dominates diffusion in periodic
media, then the right convergence tool seems to be a variant of (3.6) called two-scale convergence
with drift [AMP10]. A nice introduction to the study of (Taylor’s) dispersion is [vDMPR08].

Theorem 3.12 (Continuity theorem). Let (uε) be a sequence in L2(Ω) and let u0 ∈ L2(Ω×Y )

such that uε
2
⇀ u0 ∈ L2(Ω× Y ). Then we have

(3.7) lim inf
ε→0

‖uε‖L2(Ω) ≥ ‖u0‖L2(Ω×Y ).

For a proof, see [NR92].
The main result of this section is the following (two-scale) compactness result:

Theorem 3.13 (Two-scale compactness). The following statements hold:

(i) From each bounded sequence (uε) in L2(Ω), one can extract a subsequence which two-scale
converges to u0(x, y) ∈ L2(Ω× Y ).

(ii) Let (uε) be a bounded sequence in H1(Ω), which converges weakly to a limit function
u0(x, y) ∈ H1(Ω × Y ). Then there exists u1 ∈ L2(Ω;H1

#(Y )/R) such that up to a subse-

quence (uε) two-scale converges to u0(x, y) and ∇uε 2
⇀ ∇xu0 +∇yu1.

(iii) Let (uε) and (ε∇uε) be bounded sequences in L2(Ω). Then there exists u0 ∈ L2(Ω;H1
#(Y ))

such that up to a subsequence uε and ε∇uε two-scale converge to u0(x, y) and ∇yu0(x, y),
respectively.

3The use of |Y | = 1 can be very misleading especially in the case when the periodic cell is denoted differently,

say by Z, and periodically-placed microstructures are present (see next chapter for more in this direction). Y ⊂ Z
designates then the microstructure and, usually, we have |Y | 6= 1.
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Remark 3.14. You can now use the First Oscillation Lemma, part (i) of the two-scale compact-
ness theorem in combination with the relation between two-scale convergence and weak convergence
to prove rigorously Exercise 3.5 (iii).

As we will see later, we are particularly interested in treating the presence of a periodic array
of inclusions (perforations, microstructures, . . . ). Consequently, a concept of two-scale convergence
is needed to deal with the periodically arranged (hyper)surfaces (of the inclusions boundaries).

Definition 3.15 (Two-scale convergence for ε-periodic surfaces; cf. [NR96]). A sequence of
functions (uε) in L2(Γε) is said to two-scale converge to a limit u0 ∈ L2(Ω × Γ) if and only if for
any ψ ∈ C∞0 (Ω, C∞# (Γ)) we have

lim
ε→0

ε

ˆ
Γε

uε(x)ψ
(
t, x,

x

ε

)
dσx =

ˆ
Ω

ˆ
Γ

u0(x, y)ψ(x, y) dσy dx.

Lemma 3.16 (Second Oscillation Lemma). For all functions f ∈ C0(Ω̄;C0
#(Γ)), it holds that

(3.8) lim
ε→0

ε

ˆ
Γε

f
(
x,
x

ε

)
dσε =

ˆ
Ω

ˆ
Γ

f(x, y) dσ dx.

Theorem 3.17. The following statements hold:

(i) From each bounded sequence (uε) ∈ L2(Γε), one can extract a subsequence uε which two-
scale converges to a function u0 ∈ L2(Ω× Γ).

(ii) If a sequence of functions (uε) is bounded in L∞(Γε), then uε two-scale converges to a
function u0 ∈ L∞(Ω× Γ).

Proof. For the proof of (i), see [NR96]. The proof of (ii) is given for instance in [MCP08]. �

Remark 3.18. In Chapter 6 we treat a real-world application—the corrosion of a concrete
piece. Inherently, the underlying PDE model is of evolution type. The concepts introduced in this
section are applicable to such evolution problems provided a few elementary modifications are made
in order to to cope with the time variable; see e.g. [Eva98, Lio63].

Remark 3.19. It is worth also noting that two-scale like convergence concepts have been
adapted also to work with measures or to be applicable in the stochastic case; see for instance
[LW05, ZP06].

3.4. Exercises

Exercise 3.1. Is the embedding L2(Ω;H1
#(Y )) into L2(Ω;L2

#(Y )) compact? Justify your
answer.

Exercise 3.2. Show that H1
#(Y ) and L2(Ω;H1

#(Y )) are Hilbert spaces.

Exercise 3.3. Show that if uε → u strongly in L2(Ω), then following statements hold:

(i) uε ⇀ u in L2(Ω);

(ii) uε
2
⇀ u0(x, y) in L2(Ω× Y ).

Exercise 3.4. Does the two-scale convergence in L2(Ω × Y ) imply the weak convergence in
L2(Ω)? Show your arguments.

Exercise 3.5. Let u : R → [−1, 1] be defined by u(y) := cos 2πy. Set uε(x) := u
(
x
ε

)
for

x ∈]a, b[, where a, b ∈ R and a < b.

1. Show that uε ⇀ 0 in L2(a, b) as ε→ 0.

2. Can one also have uε → 0 in L2(a, b)? Justify your answer.
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3. We expect that uε
2
⇀ u0 in L2(Ω × Y ). Can you guess what are the best candidates for u0

and Y ?

Exercise 3.6. Consider the domain Ω :=]− 1, 1[ and the function uε : Ω→ R, where

uε(x) :=

{
ε, if x ∈

]
0, 1

ε

[
,

0, if x ∈ R \
]
0, 1

ε

[
.

Show that the sequence (uε) is bounded in L1(Ω) and calculate its weak limit.

Exercise 3.7. Derive (formally) the macroscopic equation and corresponding effective
coefficients for the following microscopic problem, say (Pε):

−div(aε(x)∇uε) = f(x), in Ω,

uε(x) = uD(x), at ∂Ω,

where Ω ⊂ Rd, the matrix aε(x) := A(xε ) has periodic entries, the Dirichlet data uD is smooth
enough, and f is not oscillatory (i.e., f is uniform in ε). Assume that (Pε) is a well-posed problem
and pass to the formal homogenization limit ε→ 0.

Hints

Hint for Exercise 3.3, (ii). Use First Oscillation Lemma in combination with the Conti-
nuity Theorem.

Hint for Exercise 3.7. Make the transformation vε := uε − uD and impose the homogeni-
zation ansatz vε = v0 + εv1 +O(ε) to (Pε) formulated in terms of vε. Note that your domain Ω is
now not perforated, fact which will essentially simplify your arguments.





CHAPTER 4

Homogenization of a linear 2nd order elliptic equation. A
two-scale approach

The plan here is to use the concept of two-scale convergence (as previously introduced in
Definition 3.10) to perform the homogenization of a linear second order elliptic equation posed in
a fixed (non-oscillatory) domain Ω. The structure of this chapter is inspired from lecture notes by
G. Allaire [All02] and is meant to bring the concept of two scale convergence to “action”.

4.1. Setting of the problem. Working hypotheses

Our objective now is to study the following model problem:
Find uε ∈ H1

0 (Ω) such that

−div
(
aε(x)∇uε

)
= f, in Ω ⊂ Rd,(4.1)

uε = 0, on ∂Ω,(4.2)

where aε(x) := A
(
x
ε

)
∈ Rd2 . We refer to (4.1)–(4.2) as problem (Pε).

We consider the following assumptions (H1)–(H4) to be fulfilled:
(H1) The matrix A is Y -periodic and satisfies the coercivity condition:

(4.3) ∃α, β > 0, α ≤ β such that α|ζ|2 ≤
d∑

i,j=1

Aij(y)ζiζj ≤ β|ζ|2∀ζ ∈ Rd;

(H2) Aij ∈ L∞(Y ) for all (i, j) ∈ {1, . . . , d}2, A symmetric;
(H3) f ∈ L2(Ω);
(H4) Ω is a Rd-parallelepiped, while Y is a hypercube of volume 1.

Remark 4.1. Assumptions (H1)–(H4) can be relaxed. However, in this chapter, we prefer
to stick to them simply because they offer the simplest setting where the technique of two-scale
convergence works.

4.1.1. Homogenization procedure. Assume (H1)–(H4). We split the application of the
homogenization procedure into six steps as follows:

Step 1 (Well-posedness of (Pε)). The first thing to do is to define a good concept of weak
solution to problem (Pε) (the microscopic problem). Then one needs to ensure the well-posedness
of problem (Pε). For our example, we have:

Definition 4.2 (Weak solution to (Pε)). uε ∈ H1
0 (Ω) is a weak solution to (Pε) if and only if

for all ϕ ∈ H1
0 (Ω) the following identity holds

(4.4) (aε∇uε,∇ϕ) = (f, ϕ).

A straightforward application of Lax-Milgram lemma (see, for instance, [CD99, Theorem 4.6])
gives the existence and uniqueness of uε ∈ H1

0 (Ω) solving (Pε) in the sense of Definition 4.2.
Showing the stability of uε with respect to the data of (Pε) is an easy-to-do exercise; we leave this
as homework.

19
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Step 2 (ε-independent a priori estimates). Choosing in (4.4) as test function ϕ = uε and using
the coercivity condition (H1), we obtain

α‖uε‖2H1
0 (Ω) ≤ (aε∇uε,∇uε) = (f, uε) ≤ ‖f‖L2(Ω)‖uε‖L2(Ω) ≤ cP ‖f‖L2(Ω)‖uε‖H1

0 (Ω),

where the constant cP > 0 is the one entering Poincaré’s inequality (note that H1
0 (Ω) ⊂ L2(Ω)).

Dividing in the latter expression by ‖uε‖H1
0 (Ω) we are led to the estimate

(4.5) ‖uε‖H1
0 (Ω) ≤

cP
α
‖f‖L2(Ω).

Note that the constant cP
α entering the (energy) estimate (5.5) is independent of ε.

Step 3 (Compactness step). This is basically the true homogenization step. Now, we note that
the hypotheses of the two-scale compactness theorem (i.e., of Theorem 3.13) are fulfilled, and hence,
we can apply this theory to our setting.

Since (uε) is uniformly bounded in H1
0 (Ω), there exist

u0 ∈ L2(Ω× Y ),

u1 ∈ L2(Ω;H1
#(Y )/R),

such that

uε
2
⇀ u0,

∇uε 2
⇀ ∇u0 +∇yu1.

On the other hand, from the fact that the sequence (uε) is uniformly bounded in H1
0 (Ω) and

from the compactness of the embedding H1
0 (Ω) ⊂ L2(Ω), we deduce that (up to subsequences)

uε⇀û0(x, y) (weakly), and respectively, uε → ū0(x) (strongly). Consequently, by the uniqueness of
the weak limit, we get

(4.6) ū0(x) = û0(x, y) = u0(x), a.e. in Ω× Y.
Essentially, this means that the limit function u0 is independent of the microscopic variable y.

Step 4 (Weak formulation of the two-scale limit problem). Let x ∈ Ω. Choosing in Definition 4.2
as test function

(4.7) ϕ(x) = φ(x) + εφ1

(
x,
x

ε

)
,

where

(φ, φ1) ∈ C∞0 (Ω)× C∞0 (Ω;C∞# (Y )),

we obtain: ˆ
Ω

A
(x
ε

)
∇uε(x)∇ϕ(x) =

ˆ
Ω

f(x)ϕ(x),

ˆ
Ω

A
(x
ε

)
∇uε

(
∇φ(x) +∇yφ1

(
x,
x

ε

)
+ ε∇xφ1

(
x,
x

ε

))
=

ˆ
Ω

f(x)

(
φ(x) + εφ1

(
x,
x

ε

))
.

Rearranging the terms, we have
ˆ

Ω

∇uεAt
(x
ε

)(
∇φ(x) +∇yφ1

(
x,
x

ε

))
+ ε

ˆ
Ω

∇uεAt
(x
ε

)
∇xφ1

(
x,
x

ε

)
=

ˆ
Ω

f(x)φ(x) + ε

ˆ
Ω

f(x)φ1

(
x,
x

ε

)
.

Passing now with ε → 0, we get the weak form of the two-scale limit problem. Namely, we
obtain ˆ

Ω

ˆ
Y

(
∇u0(x) +∇u1(x, y)

)
At(y)

(
∇φ(x) +∇yφ1(x, y)

)
=

ˆ
Ω

ˆ
Y

fφ,
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and hence,

(4.8)

ˆ
Ω

ˆ
Y

A(y)
(
∇u0(x) +∇u1(x, y)

)(
∇φ(x) +∇yφ1(x, y)

)
=

ˆ
Ω

fφ.

We consider (4.8) as the weak formulation of the limit two-scale problem, say (P0).
Step 5 (Weak solvability of (P0)). This step takes care of the existence and uniqueness of weak

solutions to the two-scale limit problem (P0).
The limiting process ε → 0 guesses (by means of a subsequence) the existence1 of a weak

solution to (P0). On the other hand, since the problem is linear, one can easily show, by standard
arguments2, the uniqueness of weak solutions to (P0).

Step 6 (Strong formulation of the two-scale limit problem). Let us integrate by parts (P0). We
obtain

ˆ
Ω

ˆ
Y

A(y)∇u0(x)∇φ(x) +

ˆ
Ω

ˆ
Y

A(y)∇yu1(x, y)∇φ(x) +

ˆ
Ω

ˆ
Y

A(y)∇u0(x)∇yφ1(x, y)

+

ˆ
Ω

ˆ
Y

A(y)∇yu1(x, y)∇yφ1(x, y) =

ˆ
Ω

fφ.

This leads to

ˆ
Ω

−divx

(ˆ
Y

A(y)
(
∇u0(x) +∇yu1(x, y)

))
φ(x)−

ˆ
Ω

fφ(x)

=

ˆ
Ω×Y

divy

(
A(y)

(
∇u0(x) +∇yu1(x, y)

))
φ1(x, y)

for all (φ, φ1) ∈ C∞0 (Ω) × C∞0 (Ω;C∞# (Y )). Choosing firstly φ = 0 and then φ1 = 0 (within the

domains Ω and Ω × Y and then at their boundaries), we obtain the strong formulation of the
two-scale limit problem, viz.

−divy

(
A(y)

(
∇u0 +∇yu1

))
= 0, a.e. in Ω× Y,(4.9)

−div

(ˆ
Y

A(y)
(
∇u0(x) +∇yu1(x, y)

))
= f, a.e. in Ω,(4.10)

u = 0, on ∂Ω and u1 is Y -periodic.(4.11)

Note that (4.9) is precisely the ε−2 subproblem used to formulate the cell problem arising in the
formal homogenization procedure. Their role was to eliminate the term u1 in the expansion of uε.
In the same spirit, we can use the PDE (4.9) to eliminate u1 from the strong (and weak) formulation
of the limit two-scale problem. As before, the solution of the cell problem admits the representation

(4.12) u1(x, y) = −
d∑
j=1

wj(y)∂xju0 + ũ1(x),

1Alternatively, one can apply Lax-Milgram lemma this time for the Hilbert space

H := H1
0 (Ω)× L2(Ω;H1

#(Y )/R)

endowed with the norm

‖(u0, u1)‖H := ‖∇u0‖L2(Ω) + ‖∇yu1‖L2(Ω×Y ).

2The uniqueness of weak solutions is obtained directly via a Lax-Milgram argument, or by testing conveniently

with the difference of two distinct weak solutions to (Pε).
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where the cell functions wj are solutions of the cell problems

−divy
(
A(y)∇ywj

)
= −

d∑
i=1

∂yiAij(y), in Y,

ˆ
Y

wj = 0 and wj is Y -periodic for all j ∈ {1, . . . , d}.

Replacing now u1 defined by (4.12) into (4.10), we obtain the desired (homogenized) macroscopic
PDE

(4.13) −
d∑

i,k=1

 d∑
j=1

ˆ
Y

(
Aik −Aij∂yjwk

)
dy

 ∂2
xixk

u0 = |Y |f in Ω.

The coefficient D̄, which is given by

D̄ik :=

 d∑
j=1

ˆ
Y

(
Aik −Aij∂yjwk

)
dy

 ,
is the so called effective (macroscopic) diffusion coefficient.

4.2. A corrector estimate

4.2.1. How good is our averaging method? At this point, we have an averaged (homoge-
nized) model with a computable effective transport coefficient. Inherently, the following unavoidable
question arises: How much information have we lost via averaging? Looking to the structure of
the asymptotic ansatz

(4.14) uε = u0 + εu1 +O(ε)

makes us expect something like
uε − u0

ε
= u1 +O(ε).

In other words, we expect that showing that uε → u0 (strongly in L2(Ω)) is related to controlling
the growth of u1. With other words: the smaller ε is, the better the averaging.

Recall that the two-scale limit problem determines the unique pair (u0, u1) ∈ H1
0 (Ω)×L2(Ω;H1

#(Y )/R).

We claim that these u0 and u1 are precisely the same as those arising in (4.14). We have seen earlier

that ∇uε 2
⇀ ∇u0 + ∇yu1 in [L2(Ω;L2(Y ))]d. Can we turn this weak-type of convergence into a

strong convergence result? The answer is yes, but we need to extract some oscillations3 from the
quantity ∇uε − ∇u0 in order to get this behavior. But, how much oscillations should we then
extract? Inspired by [LNW02, CD99], we give the precise answer in Theorem 4.3.

4.2.2. Main result—a corrector estimate. In this section, we prove the following strong
convergence result:

Theorem 4.3. Let 1 ≤ s, t ≤ ∞ such that 1
s + 1

t = 1. Assume that for all (i, j) ∈ {1, . . . , d}2
we have

(4.15) ∂xi ∈ L2s(Ω), ∂yjwi ∈ L2
#(Y ).

Then

(4.16) ∇uε −∇u0 −∇yu1

(
·, ·
ε

)
→ 0 in [L2(Ω)]d.

3A priori it is not quite clear how much oscillations can one actually extract. Intuitively, the more oscillations
one can control the better the convergence is expected to be. Readers browsing attentively the literature will observe
that the users of periodic unfolding techniques can use their unfolding ideas to derive better results. They don’t

get necessarily faster rates, just the class of microstructures that can be handled is larger. One requires then less
regularity of the shapes of the microstructures.
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Proof. Using the coercivity condition on aε, we get

α

ˆ
Ω

|∇uε −∇u0 −∇yu1|2 dx ≤
ˆ

Ω

A
(x
ε

)
[∇uε −∇u0 −∇yu1] (∇uε −∇u0 −∇yu1)

=

ˆ
Ω

A
(x
ε

)
∇uε∇uε dx−

ˆ
Ω

∇uε
(
A+At

) (x
ε

)
(∇u0 +∇yu1) dx

+

ˆ
Ω

[
A
(x
ε

)
(∇u0 +∇yu1)

]
(∇u0 +∇yu1) dx

=

3∑
k=1

Tk,

where the terms Tk (k ∈ {1, 2, 3}) are defined as follows:

T1 :=

ˆ
Ω

A
(x
ε

)
∇uε∇uε dx,

T2 := −
ˆ

Ω

∇uε
(
A+At

) (x
ε

)
(∇u0 +∇yu1) dx,

T3 :=

ˆ
Ω

[
A
(x
ε

)
(∇u0 +∇yu1)

]
(∇u0 +∇yu1) dx.

We proceed as follows: By the week formulation of (Pε), we know that

ˆ
Ω

A
(x
ε

)
∇uε∇uε dx =

ˆ
Ω

fuε dx.

Passing in this inequality to the two-scale limit ε → 0, we get that T1 →
´

Ω
fu0. Now, using the

symmetry of A, we can rewrite T2 as

T2 = −2

ˆ
Ω

∇uεA
(x
ε

)
(∇u0 +∇yu1) dx

ε→0−→ −2

ˆ
Ω

ˆ
Y

A(y)[∇u0(x) +∇yu1(x, y)](∇u0(x) +∇yu1(x, y)) dxdy.

Similarly, T3 goes to
´

Ω

´
Y
A(y)[∇u0(x) +∇yu1(x, y)](∇u0(x) +∇yu1(x, y)) as ε→ 0.

Combing the above relations, we get using the weak formulation of the two-scale limit problem
(P0) that

0 ≤ lim
ε→0

α

ˆ
Ω

∣∣∣∇uε −∇u0 −∇yu1

(
x,
x

ε

)∣∣∣2 dx

≤
ˆ

Ω

fu0 dx−
ˆ

Ω

ˆ
Y

A(y)
[
∇u0 +∇yu1(x, y)

](
∇u0 +∇yu1(x, y)

)
dxdy = 0.

�

Remark 4.4. The French homogenization community typically call a result of type (4.15) a
corrector. However, from the point of view of applications, more work is to be done to get corrector
estimates, i.e. upper bound estimates on convergence rates inequalities expressing in terms of
quantitative computable inequalities how fast one can approximate uε and ∇uε in terms of u0 and
∇u0 +∇yu1(·, ·ε ), respectively. We will briefly return to this issue at the end of the next chapter.
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4.3. Exercises

Exercise 4.1. Show that ϕ(x) := At
(
x
ε

)
∇xφ1(x, xε ) is allowed as test function in the two-

scale convergence.

Exercise 4.2. Establish the maximal regularity of the cell functions wj , where j ∈ {1, . . . , d}.

Exercise 4.3. Formulate a variant of Lemma 2.34 [PS08, pp. 26–27] suitable for our setting.

Exercise 4.4. Why is the constant cP
α entering (4.5) independent of the choice of ε?

Exercise 4.5. Prove (4.6).

Exercise 4.6. Derive (formally) the macroscopic equation and corresponding effective
coefficients for the following microscopic problem, say (Pε):

−div
(
aε(x)∇uε

)
= f(x), in Ω,

uε(x) = uD(x), at ∂Ω,

where Ω ⊂ Rd, the matrix aε(x) := A(xε ) has periodic entries, the Dirichlet data uD is smooth
enough, and f is not oscillatory (i.e. f is uniform in ε). Assume that (Pε) is a well-posed problem
and do pass to the formal homogenization limit ε→ 0.

Exercise 4.7. Consider the Exercise 4.6. Prove rigorously the asymptotic limit ε→ 0.

Hints

Hint for Exercise 4.6. Make the transformation v := u − uD and work with the PDE in
terms of v.



CHAPTER 5

Homogenization in periodically perforated media

The aim of this chapter is to use the concept of two-scale convergence to perform the homog-
enization of a linear second order elliptic equation posed in a domain with microstructures called
Ωε. The mathematical community typically refers to Ωε as a perforated domain. Most of the steps
mentioned in Chapter 4 will be redone now again, but the central question here is:

To which extent is the geometry of the perforation important for the averaging procedure and
respective outcome?

5.1. Linear elliptic equation in periodically perforated domains

We are considering our model problem posed now in a perforated domain Ωε
1:

Find uε ∈ H1
0 (Ωε) such that

−div
(
aε(x)∇uε

)
= f, in Ωε ⊂ Rd,(5.1)

uε = 0, on ∂Ωε,(5.2)

where aε(x) := A
(
x
ε

)
∈ Rd2 . We refer to (5.1)–(5.2) again as problem (Pε).

As before2, we consider the assumptions (H1)–(H4) to be fulfilled.
The relevant questions here are:

• What means Ωε?
• What are perforations? Microstructures?
• Can we repeat the same strategy as before (fixed domain case—Ω) to pass via two-scale

convergence to the limit ε→ 0 in PDEs defined in perforated domains?

Let us define firstly the basic geometry of the perforations. This is the aim of the next section.

5.1.1. Geometry of perforations. Definition of Ωε. In this section, we rely on the fol-
lowing notation3: Let Z ⊂ Rd be a hypercube. Furthermore, let k = (k1, . . . , kd) ∈ Zd be a vector
of indices and e = (e1, . . . , ed) be the unit vector in Rd. For X ⊂ Z, we recall the notation Xk,
which is the shifted subset

Xk := X +

d∑
i=1

kiei.

1The perforated domain Ωε will be defined in Subsection 5.1.1.
2Similarly to the situation described in the previous chapter, we assume the following:

(H1) The matrix A is Y -periodic and satisfies the coercivity condition:

(5.3) ∃α, β > 0, α ≤ β such that α|ζ|2 ≤
d∑

i,j=1

Aij(y)ζiζj ≤ β|ζ|2∀ζ ∈ Rd;

The ellipticity constants α, β are taken to be independent of ε!
(H2) Aij ∈ L∞(Y ) for all (i, j) ∈ {1, . . . , d}2; A symmetric

(H3) f ∈ L2(Ωε)
(H4) Ωε is the periodically perforated domain, Ω is a Rd-parallelepiped, while Y is a hypercube of volume 1.
3This notation is inspired very much by the one used in [HJ91].

25
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The pore matrix (or pore skeleton) is defined by

Ωε0 :=
⋃
k∈Zd

{
εY k0 : Y k0 ⊂ Ω

}
,

while the total pore space is

Ωε := Ω− Ωε0.

εY k0 is the ε-homotetic set of Y k0 . The total (inner) surface of the skeleton is denoted by

Γε := ∂Ωε0 :=
⋃
k∈Zd

{
εΓk : εΓk ⊂ Ω

}
.

Correspondingly, we introduce the unit normal vector nε to Γε. Let dσε be the corresponding
(oscillating) measure defined on Γε.

5.1.2. Homogenization procedure. Assume (H1)–(H4). We split the application of the
homogenization procedure into seven steps as follows:

Step 1 (Well-posedness of (Pε)).

Definition 5.1 (Weak solution to (Pε)). uε ∈ H1
0 (Ωε) is a weak solution to (Pε) if and only if

for all ϕ ∈ H1
0 (Ωε) the following identity holds

(5.4) (aε∇uε,∇ϕ) = (f, ϕ).

Lax-Milgram lemma ensures the existence and uniqueness of uε ∈ H1
0 (Ωε) solving (Pε) in the

sense of Definition 5.1.
Step 2 (ε-independent a priori estimates). Choosing in (5.4) as test function ϕ = uε and using

the coercivity condition (H1), we obtain

α‖uε‖2H1
0 (Ωε)

≤ (aε∇uε,∇uε) = (f, uε) ≤ ‖f‖L2(Ωε)‖uε‖L2(Ωε) ≤ cP ‖f‖L2(Ωε)‖uε‖H1
0 (Ωε),

where the constant cP > 0 is the one entering Poincaré’s inequality (note that H1
0 (Ω) ⊂ L2(Ω)).

Dividing the latter expression by ‖uε‖H1
0 (Ωε) we are led to the estimate

(5.5) ‖uε‖H1
0 (Ωε) ≤

cP
α
‖f‖L2(Ωε).

Does the constant cP depend on ε? In general the answer is yes, however, for some classes of (nice)
microstructures one can prove that cP is independent of ε. For the microstructure Y0 chosen here,
cP does not depend on ε. Can we now find subsequences uε such that

uε
2
⇀ u0,(5.6)

∇uε 2
⇀ ∇u0 +∇yu1?(5.7)

Not directly, one intermediate step needs to be made.
Step 3 (Extension to fixed domains). At this point, we need extension results for Sobolev spaces.

Essentially, if we can show that the extension of uε is uniformly bounded in H1
0 (Ω), then we are

done since we can simply use the two-scale convergence arguments as before.
(H5) Assume ∂Y0 and ∂Ωε to be Lipschitz.

Lemma 5.2 (Extension lemma). Assume (H5). The following statements hold:

(i) (Extension in the micro cell) If u ∈ H1(Y ), then it exists ũ—extension into Y0 (and thus
on Z) of u—such that

‖ũ‖H1(Z) ≤ c‖u‖H1(Y ).

(ii) (Extension in the macro domain) If uε ∈ H1(Ωε), it exists ũε—extension to Ω of uε—such
that

‖ũε‖H1(Ω) ≤ c‖uε‖H1(Ωε).
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Proof. (i) See any good textbook on function spaces, e.g. [AF03].
(ii) As a basic rule, we consider that summation over k is such that εY ⊂ Ω. We have

‖ũε‖2H1(Ω) =
∑
k∈Zd

ˆ
εZk

(
|ũε(x)|2 + |∇ũε(x)|2

)
dx

y= x
ε=
∑
k∈Zd

εd
ˆ
Zk

(
|ũε(εy)|2 + |∇ũε(εy)|2

)
dy

extension
≤ c

∑
k∈Zd

εd
ˆ
Y k

(
|ũε(εy)|2 + |∇ũε(εy)|2

)
dy

= c
∑
k∈Zd

ˆ
εY k

(
|ũε(x)|2 + |∇ũε(x)|2

)
dx

= c‖uε‖2H1(Ωε)
.

�

Remark 5.3. We just want to note in passing that the best extension result (applicable to
homogenization problems) known until now is the one by Acerbi et al. [ACPDMP92]. The reader
might take the challenge to sketch on paper what kind of microstructures fit to the setting from
[ACPDMP92], and which one are pathological, in the sense that they cannot be treated due to
the lack of extension results (and therefore no rigorous averaging statements can be made).

Using now the information from Step 2, we have just shown that the extension ũε is uniformly
bounded in H1

0 (Ω). Consequently, the homogenization procedure takes the familiar road:
Step 4 (Compactness step).
Step 5 (Weak formulation of the limit two-scale problem).
Step 6 (Weak solvability of (P0)).
Step 7 (Strong formulation of the two-scale limit problem).

5.2. Averaging boundary processes in perforated media

We focus our attention now on the following microscopic problem

−div
(
aε(x)∇uε

)
= fε, in Ωε,(5.8)

−aε(x)∇uε · nε = εgε, at Γε,(5.9)

uε = 0, at ∂Ω.(5.10)

Assume fε and gε to be uniformly bounded in L2(Ωε) and L2(Γε), respectively. Furthermore, assume
(H1)–(H4) and (H5) to hold. Here we have in mind that fε(x) := f

(
x, xε

)
and gε(x) := g

(
x, xε

)
.

We refer to the problem (5.8)–(5.10) as (P̂ε).
We introduce now the following Sobolev space:

H1(Ωε; ∂Ω) := {ϕ ∈ H1(Ωε) : ϕ = 0 at ∂Ω}.
Definition 5.4 (Weak solution to (P̂ε)). uε ∈ H1(Ωε; ∂Ω) is a weak solution to (P̂ε) if and

only if for all ϕ ∈ H1(Ωε; ∂Ω) the following identity holds

(5.11)

ˆ
Ωε

aε(x)∇uε(x)∇ϕ(x) dx =

ˆ
Ωε

fε(x)ϕ(x) dx+ ε

ˆ
Γε

gε(x)ϕ(x) dσε.

Suitable application of the Lax-Milgram lemma ensures the existence and uniqueness of a
uε ∈ H1(Ωε; ∂Ω) satisfying (5.11).

In order to perform the homogenization procedure in this case, a few crucial steps need to be
made:

(i) ‖uε‖H1(Ωε;∂Ω) ≤ c uniformly in ε;
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(ii) The concept of two-scale convergence of (hyper)surfaces is needed.

Main ingredients for (i) are suitable Poincaré and trace inequalities, while for (ii) we need a com-
pactness theorem associated with this type of convergence on surfaces.

Lemma 5.5 (A Poincaré-type inequality). Let Z, Y ⊂ Rd, Z connected, open set in Rd, Z ⊆ Y
such that 0 < |Z| ≤ |Y | with ∂Z and ∂Y of class C1. Let also p ∈ [1,∞]. Then there exists a
constant cP depending only on n, p, Z, and Y , such that

(5.12)
∥∥∥φ−  

Y

φ dy
∥∥∥
Lp(Z)

≤ cP ‖∇φ‖[Lp(Z)]d

for each φ ∈W 1,p(Z).

Proof. We follow the line of arguments of [Eva98, Theorem 1, pp. 275-276]. The proof goes
by contradiction. Assuming (5.12) to be false, results in the fact there would exist, for all k ∈ N, a
function φk ∈W 1,p(Z) satisfying

(5.13)
∥∥∥φk −  

Y

φ dy
∥∥∥
Lp(Z)

≥ k‖∇φk‖[Lp(Z)]d .

For all k ∈ N, we define the function

(5.14) wk(x) :=
φ(x)−

ffl
Y
φdy

‖φ−
ffl
Y
φ dy‖Lp(Z)

.

It is easy to see that

(5.15)

 
Y

wk dx = 0 and ‖wk‖Lp(Z) = 1.

Applying now (5.13) to wk (a renormalized version of φk), we get

(5.16) ‖∇wk‖[Lp(Z)]n <
1

k
for all k ∈ N.

Since wk is bounded in W 1,p(Z), and additionally, since the embedding W 1,p(Z) ↪→ Lp(Z) is
compact (cf. Rellich-Kondrachov Theorem), we deduce that there exist at least a subsequence
(wkj ) ⊂ (wk) such that

wkj → w strongly in Lp(Z).

Using this strong convergence to pass to the limit k →∞ in (5.15), yields
ffl
Y
w dx = 0 and

(5.17) ‖w‖Lp(Z) = 1.

Furthermore, (5.16) also implies that, for all i ∈ {1, . . . , d} and all ϕ ∈ C∞c (Z), we have:ˆ
Z

w
∂ϕ

∂xi
dx = lim

kj→∞

ˆ
Z

wkj
∂ϕkj
∂xi

dx = − lim
kj→∞

ˆ
Z

∂wkj
∂xi

ϕdx = 0.

So, w ∈W 1,p(Z) and ∇w = 0 a.e. Thus w is constant, since Z is a connected set. But, on the other
hand,

ffl
Y
w dy = 0 implies that w = 0 a.e. in Y . From here, we deduce that ‖w‖Lp(Y ) = 0, and

hence, ‖w‖Lp(Z) = 0. This contradicts (5.17), and hence, the proof of the Lemma is completed. �

Remark 5.6. If Z = Y , then the above Lemma reports on the standard Poincaré’s inequality.
A nice reference on Poincaré-type inequalities is [SC02].

Lemma 5.7 (Poincaré’s inequality for perforated media). There exists a constant cP > 0,
independent of ε, such that

(5.18) ‖uε‖L2(Ωε) ≤ cP ‖∇uε‖[L2(Ωε)]d

for all uε ∈ H1(Ωε; ∂Ω).
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Proof. We adapt the proof of [CS98, Lemma 2.1, pp. 14–15]). The extension lemma ensures
the well-definiteness of a linear continuous extension operator

P : H1(Ωε; ∂Ω)→ H1
0 (Ω)

such that Puε = uε a.e. on Ωε and

(5.19) ‖∇(Puε)‖[L2(Ω)]d ≤ c∗‖∇uε‖[L2(Ω)]d ,

where c∗ is the extension constant. Note that c∗ is independent of the choice of ε. By the classical
Poincaré’s inequality, we have that

(5.20) ‖Puε‖L2(Ω) ≤ c̃P ‖∇(Puε)‖[L2(Ω)]d ,

where, obviously, the positive constant c̃P does depend on Ω and d, but it is independent on ε. We
conclude now the proof of this Lemma by noting that

‖uε‖L2(Ωε)

extension in the interior
≤ c?‖Puε‖L2(Ω)

Poincare’s inequality

≤ c?c̃P ‖∇(Puε)‖[L2(Ω)]d

extension in the exterior
≤ c?c̃P c

?‖∇(Puε)‖[L2(Ωε)]d .

Take now

(5.21) cP := c?c̃P c
? > 0

and note that cP is independent of ε. �

The following result is a trace inequality tailored for perforated media. This is a very use-
ful inequality for those applications where (at least part of) the boundary is active. By “active
boundary” we mean that boundary processes (and/or Cauchy fluxes; [Gur93]) are defined there.
In mathematical terms, this is often described by the presence of a Robin-type boundary condition
posed on a subset of Γε.

Lemma 5.8 (Trace inequality). Let ϕ ∈ H1(Ωε). Then there exists a constant ĉ > 0, indepen-
dent of ε, such that the following inequality holds:

(5.22) ε‖ϕ‖2L2(Γε)
≤ ĉ‖ϕ‖2H1(Ωε).

Proof. Consider Fig. 5.1 as reference microstructure picture.

Z

Y0Y = Z \ Ȳ0

Figure 5.1 – Basic geometry of the microstructure.

To be more precise, we define

Y := Z − Ȳ0 and Γ := ∂Y0,
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and let n be the outer normal vector on Γ with |n| = 1, where | · | is here the Euclidean distance.
We introduce the smooth extension N := (N1, . . . , Nd) of the normal unit vector n by

(5.23) Nj(y) := nj(y) on Γ

for all j ∈ {1, . . . , d} such that suppNj is included in a closed “tubular” neighborhood of Γ.
Note that if d = 2, 3, then that tubular neighborhood of Γ is resembling the pillbox from

Gurtin’s Pillbox Lemma [Gur93].
Since Y0 is a ball, the regularity C∞ of Γ supports all following calculations4. We can therefore

assume that we can choose Nj ∈ C1(Z̄). Due to periodicity and to the fact that N‖n (and so
(N,n)σε = 1), we have that

ˆ
Γε

ϕ2 dσε =

ˆ
Γε

ϕ2
2∑
j=1

Nj

(x
ε

)
nj dσε =

ˆ
Γε

ϕ2(x)N
(x
ε

)
n
(x
ε

)
dσε

=

ˆ
Ωε

div
(
ϕ2(x)

)
N
(x
ε

)
=

ˆ
Ωε

d∑
j=1

∂

∂xj

(
ϕ2(x)

)
N
(x
ε

)
dx

=

d∑
j=1

[
2

ˆ
Ωε

Nj

(x
ε

)
ϕ(x)

∂ϕ

∂xj
(xj) +

1

ε

ˆ
Ωε

ˆ
Ωε

∂Nj
(
x
ε

)
∂xj

ϕ2(x) dx

]
.

Consequently, we obtain

‖ϕ‖2Γε ≤
d∑
j=1

[
2 max
x∈Ω̄ε

∣∣∣Nj (x
ε

) ∣∣∣ˆ
Ωε

ϕ(x)
∂ϕ

∂xj
(xj) +

1

ε
max
x∈Ω̄ε

∣∣∣∂Nj (xε )
∂xj

∣∣∣ˆ
Ωε

ˆ
Ωε

ϕ2(x) dx

]

≤ c1‖ϕ‖L2(Ωε)‖∇ϕ‖[L2(Ωε)]d +
1

ε
c2‖ϕ‖2L2(Ωε)

.

We have taken here the constants (c1, c2) := (‖N‖∞, ‖∇N‖∞), where N ∈ C1(Z̄). We now have

‖ϕ‖2L2(Γε)
≤ c1‖ϕ‖L2(Ωε)‖∇ϕ‖[L2(Ωε)]d +

c2
ε
‖ϕ‖2L2(Ωε)

.

Multiplying the last inequality by ε and then using the geometric-arithmetic mean leads to

ε‖ϕ‖2L2(Γε)
≤
(
εc21
2

+ c2

)
‖ϕ‖2L2(Ωε)

+
1

2
‖∇ϕ‖2[L2(Ωε)]2

≤ ĉ‖ϕ‖2H1(Ωε)
.

Note that ĉ := max{c21 + c2,
1
2} is independent of the choice of ε. �

5.3. Exercises

Exercise 5.1. Why is the constant cP
α entering (5.5) independent of the choice of ε? Justify

your answer.

Exercise 5.2. Prove that the constant cP entering (5.21) does not depend on ε.

Exercise 5.3. Let Ω be a bounded domain in R2 with Lipschitz ∂Ω. Take the perforated
domain Ωε ⊂ Ω to be connected such that the perforations do not touch each other, and additionally,
that Γε is Lipschitz. Consider the following problem, say (Pε),

−div
(
aε(x)∇uε

)
= −√εuε + fε, in Ωε,

−aε(x)∇uε · nε = εuε, at Γε.

Assume fε bounded (uniformly w.r.t ε) in L2(Ωε) and let aε satisfy the assumptions (H1)–(H4).

4We need at least Γ ∈ C2.
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1. Show the existence and uniqueness of a weak solution uε to (Pε).

2. Prove that uε is uniformly bounded in H1(Ωε).

3. Show that uε is actually bounded in H1(Ω).

4. Pass in (Pε) via two-scale convergence to the limit ε → 0 and determine the weak form of
the two-scale limit problem, say (P0).

5. Prove the uniqueness of the weak solutions to (P0).

6. Get the strong formulation of (P0). Eliminate u1.

7. Use the expansion uε(x) = u0(x, xε ) + εu1(x, xε ) +O(ε2) and pass to the limit ε→ 0 in (Pε)
via the formal asymptotic homogenization procedure. Compare your result with the answer
to (vi).

8. (Corrector estimate) Which regularity we need to assume/show for the cell functions so that
the following corrector estimate holds:

∇uε −∇u0 −∇yu1

(
·, ·
ε

)
→ 0 strongly in L2(Ω)2.

Exercise 5.4. Assume the hypothesis of Exercise 5.3, Question 8. Prove the convergence
rate

‖uε − u0‖H1(Ωε) ≤ cε
1
2 ,

where the constant c > 0 is independent of ε.

Exercise 5.5. Let Ω be a bounded domain in R2 with Lipschitz ∂Ω. Take the perforated
domain Ωε ⊂ Ω to be connected such that the perforations do not touch each other, and that Γε
is Lipschitz. Additionally, take Γε := ΓDε ∪ ΓNε , where ΓDε ∩ ΓNε = ∅ and meas(ΓDε ) 6= 0. ΓDε is
the Dirichlet boundary, while ΓNε is the corresponding Neumann boundary. Consider the following
problem, say (Pε),

−div
(
aε(x)∇uε

)
= −uε + ε|Y0|, in Ωε,

−aε(x)∇uε · nε = εgε, at ΓNε ,

uε = 0, at ∂Ω ∪ ΓDε .

Assume gε to be bounded (uniformly w.r.t ε) in L2(Γε). Additionally, let aε satisfy the assumptions
(H1)–(H4). Note that here |Y0| denotes the volume of the set (void) |Y0|.

1. Show the existence and uniqueness of a weak solution uε to (Pε).

2. Prove that uε is uniformly bounded in H1
0 (Ωε).

3. Show that uε is actually bounded in H1
0 (Ω).

4. Pass in (Pε) via two-scale convergence to the limit ε → 0 and determine the weak form of
the two-scale limit problem, say (P0).

5. Prove the uniqueness of the weak solutions to (P0).

6. Get the strong formulation of (P0). Eliminate u1.

7. (Corrector estimate) Assume sufficient regularity and prove that

∇uε −∇u0 −∇yu1

(
·, ·
ε

)
→ 0 strongly in L2(Ω)2.

Exercise 5.6. (Double porosity scenario) Let Ω be a bounded domain in R2 with
Lipschitz ∂Ω. Take the perforated domain Ωε ⊂ Ω to be connected such that the perforations do
not touch each other, and assume additionally that Γε is Lipschitz. Consider the following problem,
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say (Pε),

−div
(
aε(x)∇uε

)
+ kε(x)uε = vε, in Ωε,

−div(ε2bε(x)∇vε) = uε, in Ωε,

−aε(x)∇uε · nε = εbε(x)∇vε · nε, at Γε,

uε = vε = 0, at ∂Ω.

Assume fε and gε to be bounded (uniformly w.r.t ε) in L2(Ωε) and, respectively, in L2(Γε). Addi-
tionally, let kε ∈ L∞per(Y ) and aε, bε satisfy the assumptions (H1)–(H4).

1. Show the existence and uniqueness of a weak solution (uε, vε) to (Pε).

2. Prove that uε is uniformly bounded in H1
0 (Ωε). What happens with vε?

3. Show that uε is actually bounded in H1
0 (Ω). What happens with the extension of vε?

4. Pass in (Pε) via two-scale convergence to the limit ε → 0 and determine the weak form of
the two-scale limit problem, say (P0).

5. Prove the uniqueness of the weak solutions to (P0).

6. Get the strong formulation of (P0). Eliminate u1.

Hints

Hint for Exercise 5.4. Get inspiration from Cioranescu and St. Jean Paulin’s book
[CS98].



CHAPTER 6

Multiscale approximation

In this chapter, we present a numerical multiscale methodology applied to a real-world problem—
the corrosion of concrete with sulfate ions. We motivate the need of using a multiscale approach,
state the mathematical problem, and quickly get to the main issue—the numerical solution of a
two-scale PDEs-ODE system by a two-scale finite difference method. The contents of this part
extends the framework of our paper [CM11].

6.1. Multiscale concrete corrosion

Biogenic sulfide corrosion of concrete is a bacterially mediated process of forming hydrogen
sulfide gas and the subsequent conversion to sulfuric acid that attacks concrete and steel within
wastewater environments. The hydrogen sulfide gas is oxidized in the presence of moisture to form
sulfuric acid that attacks the matrix of concrete. The effect of sulfuric acid on concrete and steel
surfaces exposed to severe wastewater environments (like sewer pipes) is devastating, and is always
associated with high maintenance costs.

The process can be briefly described as follows: Fresh domestic sewage entering a wastew-
ater collection system contains large amounts of sulfates that, in the absence of dissolved oxy-
gen and nitrates, are reduced by bacteria. Such bacteria identified primarily from the anaerobic
species Desulfovibrio lead to the fast formation of hydrogen sulfide (H2S) via a complex pathway
of biochemical reactions. Once the gaseous H2S diffuses into the headspace environment above
the wastewater, a sulfur oxidizing bacteria—primarily Thiobacillus aerobic bacteria—metabolizes
the H2S gas and oxidize it to sulphuric acid. It is worth noting that Thiobacillus colonizes on
pipe crowns above the waterline inside the sewage system. This oxidizing process prefers to take
place where there is sufficiently high local temperature, enough productions of hydrogen sulfide gas,
high relative humidity, and atmospheric oxygen; see Section 6.2.2 for more details on the involved
chemistry and transport mechanisms. Good overviews of the civil engineering literature on the
chemical aggression with acids of cement-based materials (focusing on sulfate ingress) can be found
in [BD05, JDM+01, MBH09, TMA03].

If we decouple the mechanical corrosion part (leading to cracking and respective spalling of
the concrete matrix) from the reaction-diffusion-flow part, and look only to the later one, the
mathematical problem reduces to solving a partly dissipative reaction-diffusion system posed in
heterogeneous domains. Now, assuming further that the concrete sample is perfectly covered by a
locally-periodic repeated regular microstructure, averaged and two-scale reaction-diffusion systems
modeling this corrosion processes can be derived; that is precisely what we have done in [FAZM11]
(formal asymptotics for the locally-periodic case) and [FM10] (rigorous asymptotics via two-scale
convergence for the periodic case).

Here, our attention focuses on the two-scale corrosion model. Besides performing the averaging
procedure and ensuring the well-posedness of the resulting model(s), we are interested in simulating
numerically the influence of the microstructural effects on observable (macroscopic) quantities. We
refer the reader to [CFM10], where we performed numerical simulations of such a two-scale model.

6.2. Background and statement of the mathematical problem

33
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6.2.1. Two-scale geometry. We consider the evolution of a chemical corrosion process (sul-
fate attack) taking place in one-dimensional macroscopic region Ω := (0, L), L > 0, that represents
a concrete sample along a line perpendicular to the pipe surface with x = 0 being a point at the
inner surface in contact with sewer atmosphere and x = L being a point inside the concrete wall.
Since we do not take into account bulging of the inner surface due to the growth of soft gypsum
structures, the shape of the domain Ω does not change w.r.t. the time variable t.

We denote the typical microstructure (or standard cell [Hor97]) by Y := (0, `), ` > 0. Usu-
ally cells in concrete contain a stationary water film, and air and solid fractions in different ratios
depending on the local porosity. Generally, we expect that, due to the randomness of the pores
distribution in concrete, the choice of the microstructure essentially depends on the macroscopic po-
sition x ∈ Ω, i.e., we would then have Yx; see [vNM11] for averaging issues of double porosity media
involving locally periodic ways of distributing microstructures, and [FAZM11] for more comments
directly related to the sulfatation problem where pores are distributed in a locally periodic fashion.
In this chapter, we restrict to the case when the medium Ω is made of the same microstructure Y
periodically repeated to pave perfectly the region. Furthermore, since at the microscopic level the
involved reaction and diffusion processes take place in the pore water, we choose to denote by Y
only the wet part of the pore. Efficient direct computations (with controlled accuracy and known
convergence rates) of scenarios involving Yx as well as the corresponding error analysis are generally
open problems in the field of multiscale numerical simulation.

6.2.2. Chemistry. Sewage is rich in sulphur-containing materials and normally it is without
any action on concrete. Under suitable conditions like increased temperature or lower flow velocity
oxygen in sewage can become depleted. Aerobic, purifying bacteria become inactive while anaerobic
bacteria that live in slime layers at the bottom of the sewer pipe proliferate. They obtain needed
oxygen by reducing sulfur compounds. Sulfur reacts with hydrogen and forms hydrogen sulfide
(H2S), which then diffuses in sewage and enters sewer atmosphere. It moves in the air space of
the pipe and goes up towards the pipe wall. Gaseous H2S (further denoted as H2S(g)) enters into
the concrete pores (microstructures) via both air and water parts. H2S(g) diffuses quickly through
the air-filled part of the porous structure over macroscopic distances, while it dissolves in the thin,
stationary water film of much smaller, microscopic thickness that clings on the surface of the fabric.

There are many chemical reactions taking place in the porous microstructure of sewer pipes
which degrade the performance of the pipe structure depending on the intensity of the interaction
between the chemical reactions and the local environment. Here we focus our attention on the
following few relevant chemical reactions:

H2S(aq) + 2O2 → 2H+ + SO2−
4(6.1a)

10H+ + SO−2
4 + organic matter→ H2S(aq) + 4H2O + oxidized matter(6.1b)

H2S(aq) 
 H2S(g)(6.1c)

2H2O + H+ + SO2−
4 + CaCO3 → HCO3− + CaSO4 · 2H2O.(6.1d)

Dissolved hydrogen sulfide (further denoted as H2S(aq)) undergoes oxidation by aerobic bacteria liv-
ing in these films and sulfuric acid H2SO4 is produced (reaction (6.1a)). This aggressive acid reacts
with calcium carbonate (i.e., with our concrete sample) and a soft gypsum layer (CaSO4 · 2H2O)
consisting of solid particles (unreacted cement, aggregate), pore air and moisture is formed (reaction
(6.1d)).

The model considered in this chapter pays special attention to the following aspects:

(i) exchange of H2S from water to the air phase and vice versa (reaction (6.1c);
(ii) production of gypsum at micro solid-water interfaces (reaction (6.1d)).

The transfer of H2S is modeled by means of (deviations from) the Henry’s law, while the production
of gypsum is incorporated in a non-standard non-linear reaction rate, here denoted as η; see (6.7)
for a precise choice. Equation (6.5) indicates the linearity of the Henry’s law structure we have in
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mind. The standard reference for modeling gas-liquid reactions at stationary interfaces (including
a derivation via first principles of the Henry’s law) is [Dan70].

6.2.3. Setting of the equations. Let S := (0, T ) (with T ∈ (0,∞)) be the time interval
during which we consider the process and let Ω and Y as described in Section 6.2.1. We look for
the unknown functions (mass concentrations of active chemical species)

u1 : Ω× S → R —concentration of H2S(g),

u2 : Ω× Y × S → R —concentration of H2S(aq),

u3 : Ω× Y × S → R —concentration of H2SO4,

u4 : Ω× S → R —concentration of gypsum,

that satisfy the following two-scale system composed of three weakly coupled PDEs and one ODE

(6.2)


∂tu1 − d1∂xxu1 = d2∂yu2|y=0, in Ω,

∂tu2 − d2∂yyu2 = −ζ(u2, u3), in Ω× Y,
∂tu3 − d3∂yyu3 = ζ(u2, u3), in Ω× Y,

∂tu4 = η(u3|y=`, u4), in Ω,

together with boundary conditions

(6.3)

u1 = uD1 , on {x = 0} × S,
d1∂xu1 = 0, on {x = L} × S,
−d2∂yu2 = BiM (Hu1 − u2), on Ω× {y = 0} × S,
d2∂yu2 = 0, on Ω× {y = `} × S,
−d3∂yu3 = 0, on Ω× {y = 0} × S,
d3∂yu3 = −η(u3, u4), on Ω× {y = `} × S,

and initial conditions

(6.4)

u1 = u0
1, on Ω× {t = 0},

u2 = u0
2, on Ω× Y × {t = 0},

u3 = u0
3, on Ω× Y × {t = 0},

u4 = u0
4, on Ω× {t = 0}.

Here, dk, k ∈ {1, 2, 3}, are the diffusion coefficients, BiM is a dimensionless Biot number, H is the
Henry’s constant, α, β are air-water mass transfer functions, and η(·) is a surface chemical reaction.
Note that ui (i = 1, . . . , 4) are mass concentrations. Furthermore, all unknown functions, data and
parameters carry dimensions.

Terms like

(6.5) BiM
(
Hu1(x, t)− u2(x, y = 0, t)

)
,

which appears on the right-hand side of (6.2), are usually referred to in the mathematical literature
as production terms by Henry’s or Raoult’s law; see [BJDR98]. The special feature of the scenario
studied in this chapter is that the term (6.5) bridges two distinct spatial scales: one macro with
x ∈ Ω and one micro with y ∈ Y . We call this micro-macro transmission condition.

The initial and boundary data, the parameters as well as the involved chemical reaction rate
are assumed to satisfy the following requirements:

(A1) dk > 0, k ∈ {1, 2, 3}, BiM > 0, H > 0, uD1 > 0 are constants.
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(A2) The function ζ represents the biological oxidation volume reaction between the hydrogen
sulfide and sulfuric acid and is defined by

(6.6) ζ : R2 → R, ζ(r, s) := αr − βs,

where α, β ∈ L∞+ (Y ).
(A3) We assume the reaction rate η : R2 → R+ takes the form

(6.7) η(r, s) =

{
kR(r)Q(s), for all r ≥ 0, s ≥ 0,

0, otherwise,

where k > 0 is the corresponding reaction constant. We assume η to be (globally) Lipschitz
in both arguments. Furthermore, R is taken to be sublinear (i.e., R(r) ≤ r for all r ∈ R, in
the spirit of [Ber75]), while Q is bounded from above by a threshold c̄ > 0. Furthermore,
let R ∈ W 1,∞(0,M3) and Q ∈ W 1,∞(0,M4) be monotone functions (with R strictly
increasing), where the constants M3 and M4 are the L∞ bounds on u3 and, respectively,
on u4. Note that [CFM10, Lemma 2] gives the constants M3,M4 explicitly.

(A4) u0
1 ∈ H2(Ω)∩L∞+ (Ω), (u0

2, u
0
3) ∈

[
L2(Ω;H1(Y ))

]2× [L∞+ (Ω× Y )
]2

, u0
4 ∈ H1(Ω)∩L∞+ (Ω).

Furthermore, it is important to note that in the subsequent analysis we can replace (6.5) by a
more general nonlinear relationship B(u1, u2). In that case assumption (A2) needs to be replaced,
for instance, by

(A2’)

(6.8) B ∈ C1([0,M1]× [0,M2];R), B is globally Lipschitz in both arguments,

where M1 and M2 are sufficiently large positive constants1.

Note that a derivation of the precise structure of B by taking into account (eventually by averaging
of) the underlying microstructure information is still an open problem.

6.2.4. Weak formulation. As a next step, we first reformulate our problem (6.2), (6.3),
(6.4) in an equivalent formulation that is more suitable for numerical treatment. We introduce the
substitution ũ1 := u1 − uD1 to obtain

(6.9)

∂tũ1 − d1∂xxũ1 = d2∂yu2|y=0, in Ω,

∂tu2 − d2∂yyu2 = −ζ(u2, u3), in Ω× Y,
∂tu3 − d3∂yyu3 = ζ(u2, u3), in Ω× Y,

∂tu4 = η(u3|y=`, u4), in Ω,

together with boundary conditions

(6.10)

ũ1 = 0, on {x = 0} × S,
d1∂xũ1 = 0, on {x = L} × S,
−d2∂yu2 = BiM

(
H(ũ1 + uD1 )− u2

)
, on Ω× {y = 0} × S,

d2∂yu2 = 0, on Ω× {y = `} × S,
−d3∂yu3 = 0, on Ω× {y = 0} × S,
d3∂yu3 = −η(u3, u4), on Ω× {y = `} × S,

1Typical choices for M1,M2 are the L∞-estimates on u1 and u2; cf. [CFM10] (Lemma 2) such M1,M2 do

exist.
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and initial conditions

(6.11)

ũ1 = u0
1 − uD1 =: ũ0

1, on Ω× {t = 0},
u2 = u0

2, on Ω× Y × {t = 0},
u3 = u0

3, on Ω× Y × {t = 0},
u4 = u0

4, on Ω× {t = 0}.

We refer to the system (6.9), (6.10), (6.11) as problem (P). Also, for the ease of notation, we denote
ũ1 again as u1 and ũ0

1 as u0
1.

Now, we can introduce our concept of weak solution.

Definition 1 (Concept of weak solution). The vector of functions (u1, u2, u3, u4) with

u1 ∈ L2(S,H1
0 (Ω)),(6.12)

∂tu1 ∈ L2(S × Ω),(6.13)

ui ∈ L2(S,L2(Ω, H1(Y ))), i ∈ {2, 3},(6.14)

∂tui ∈ L2(S × Ω× Y ), i ∈ {2, 3},(6.15)

u4(·, x, y) ∈ H1(S), for a.e. (x, y) ∈ Ω× Y,(6.16)

is called a weak solution to problem (P) if the identities

ˆ
Ω

∂tu1ϕ1 + d1

ˆ
Ω

∂xu1∂xϕ1 =

ˆ
Ω

∂yu2|y=0ϕ1,

ˆ
Ω

ˆ
Y

∂tu2ϕ2 + d2

ˆ
Ω

ˆ
Y

∂yu2∂yϕ2 = −
ˆ

Ω

ˆ
Y

ζ(u2, u3)ϕ2 −
ˆ

Ω

∂yu2|y=0ϕ2,

ˆ
Ω

ˆ
Y

∂tu3ϕ3 + d3

ˆ
Ω

ˆ
Y

∂yu3∂yϕ3 =

ˆ
Ω

ˆ
Y

ζ(u2, u3)ϕ3 −
ˆ

Ω

η(u3|y=`, u4)ϕ3,

and

∂tu4 = η(u3|y=`, u4),

hold for a.e. t ∈ S and for all ϕ := (ϕ1, ϕ2, ϕ3) ∈ H1
0 (Ω)×

[
L2(Ω;H1(Y ))

]2
.

We refer the reader to [CFM10, Theorem 3] for statements regarding the global existence and
uniqueness of such weak solutions to problem (P); see also [MNR10] for the analysis on a closely
related problem.

6.3. Numerical scheme

In order to solve numerically our multiscale system (6.2)–(6.4), we use a semi-discrete approach
leaving the time variable continuous and discretizing both space variables x and y by finite differ-
ences on rectangular grids. In the following paragraphs we introduce the necessary notation, the
scheme and discrete scalar products and norms.

6.3.1. Grids and grid functions. For spatial discretization, we subdivide the domain Ω
into Nx equidistant subintervals, the domain Y into Ny equidistant subintervals and we denote by
hx := L/Nx, hy := `/Ny, the corresponding spatial step sizes. We denote by h the vector (hx, hy)
with length |h|.
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Let

Ωh := {xi := ihx | i = 0, . . . , Nx},
Ωoh := {xi | i = 1, . . . , Nx},
Yh := {yj := jhy | i = 0, . . . , Ny},
Ωeh := {xi+1/2 := (i+ 1/2)hx | i = 0, . . . , Nx − 1},
Y eh := {yj+1/2 := (j + 1/2)hy | i = 0, . . . , Ny − 1},

be, respectively, grid of all nodes in Ω, grid of nodes in Ω without the node at x = 0 (where
Dirichlet boundary condition is imposed), grid of all nodes in Y , grid of nodes located in the middle
of subintervals of Ωh, and grid of nodes located in the middle of subintervals of Yh. Finally, we
define grids ωh := Ωh × Yh and ωeh := Ωh × Y eh .

Next, we introduce grid functions defined on the grids just described. Let Gh := {uh | uh :
Ωh → R}, Goh := {uh | uh : Ωoh → R} and Eh := {vh|vh : Ωeh → R} be sets of grid functions
approximating macro variables on Ω. Let Fh := {uh | uh : ωh → R} and Hh := {vh | vh : ωeh → R}
be sets of grid functions approximating micro variables on Ω × Y . These grid functions can be
identified with vectors in RN , whose elements are the values of the grid function at the nodes of
the respective grid. Hence, addition of functions and multiplication of a function by a scalar are
defined as for vectors.

For uh ∈ Gh we denote ui := uh(xi), and for uh ∈ Fh we denote uij := uh(xi, yj). For vh ∈ Eh
we denote vi+1/2 := vh(xi+1/2), and for vh ∈ Hh we denote vi,j+1/2 := vh(xi, yj+1/2).

We frequently use functions from Fh restricted to the sets Ωh × {y = 0} or Ωh × {y = `}. For
uh ∈ Fh, we denote these restrictions as uh|y=0 and uh|y=`, and we interpret them as functions
from Gh, i.e., uh|y=0 ∈ Gh and uh|y=` ∈ Gh.

6.3.2. Discrete operators. In this section, we define difference operators defined on linear
spaces of grid functions in such a way they mimic properties of the corresponding differential
operators and, together with the scalar products defined in Section 6.3.4, fulfill similar integral
identities.

The discrete gradient operators ∇h and ∇yh are defined as

∇h : Gh → Eh, (∇huh)i+ 1
2

:=
ui+1 − ui

hx
, uh ∈ Gh,

∇yh : Fh → Hh, (∇yhuh)i,j+ 1
2

:=
ui,j+1 − uij

hy
, uh ∈ Fh,

while the discrete divergence operators divh and divyh is

divh : Eh → Goh, (divh vh)i :=
vi+ 1

2
− vi− 1

2

hx
, vh ∈ Eh,

divyh : Hh → Fh, (divyh vh)ij :=
vi,j+ 1

2
− vi,j− 1

2

hy
, vh ∈ Hh.

The discrete Laplacian operators ∆h and ∆yh are defined as ∆h := divh∇h : Gh → Goh and
∆yh := divyh∇yh : Fh → Fh, i.e., the following standard 3-point stencils are obtained:

(∆huh)i =
ui−1 − 2ui + ui+1

h2
x

, uh ∈ Gh,

(∆yhuh)ij =
ui,j−1 − 2uij + ui,j+1

h2
y

, uh ∈ Fh.

To complete the definition of the discrete divergence and Laplacian operators, we need to specify
values of grid functions on auxiliary nodes that fall outside their corresponding grid. At a later
point, we obtain these values from the discretization of boundary conditions by centered differences.
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6.3.3. Semi-discrete scheme. We can now construct a semi-discrete scheme for problem
(6.2). Note that we omit the explicit dependence on t and we interchangeably use the notation duh

dt
and u̇h for denoting the derivative of uh with respect to t.

Definition 2. A quadruple {u1
h, u

2
h, u

3
h, u

4
h} with

u1
h, u

4
h ∈ C1([0, T ];Gh) and u2

h, u
3
h ∈ C1([0, T ];Fh)

is called semi-discrete solution of (6.2), if it satisfies the following system of ordinary differential
equations

du1
h

dt
= d1∆hu

1
h −BiM

(
H(u1

h + uD1 )− u2
h|y=0

)
, on Ωoh,(6.17a)

du2
h

dt
= d2∆yhu

2
h − ζ(u2

h, u
3
h), on ωh,(6.17b)

du3
h

dt
= d3∆yhu

3
h + ζ(u2

h, u
3
h), on ωh,(6.17c)

du4
h

dt
= η(u3

h|y=`, u
4
h), on Ωh,(6.17d)

together with the discrete boundary conditions (i = 0, . . . , Nx)

u1
0 = 0,(6.18a)

d1
1

2

(
(∇hu1

h)Nx+ 1
2

+ (∇hu1
h)Nx− 1

2

)
= 0,(6.18b)

−d2
1

2

(
(∇yhu2

h)i,− 1
2

+ (∇yhu2
h)i, 12

)
= BiM

(
H(u1

i + uD1 )− u2
i,0

)
,(6.18c)

d2
1

2

(
(∇yhu2

h)i,Ny+ 1
2

+ (∇yhu2
h)i,Ny− 1

2

)
= 0,(6.18d)

−d3
1

2

(
(∇yhu3

h)i,− 1
2

+ (∇yhu3
h)i, 12

)
= 0,(6.18e)

d3
1

2

(
(∇yhu3

h)i,Ny+ 1
2

+ (∇yhu3
h)i,Ny− 1

2

)
= −η(u3

i,Ny , u
4
i ),(6.18f)

and the initial conditions

(6.19)
u1
h(0) = P1

hu
0
1, u2

h(0) = P2
hu

0
2,

u3
h(0) = P2

hu
0
3, u4

h(0) = P1
hu

0
4,

where P1
h and P2

h are suitable projection operators from Ω to Ωh and from Ω×Y to ωh, respectively.

Proposition 3. Assume (A1)–(A4) to be fulfilled. Then there exists a unique semi-discrete
solution

{u1
h, u

2
h, u

3
h, u

4
h} ∈ C1([0, T ];Gh)× C1([0, T ];Fh)× C1([0, T ];Gh)× C1([0, T ];Fh)

in the sense of Definition 2.

Proof. The proof, based on the standard ode argument, follows in a straightforward manner.
�

6.3.4. Discrete scalar products and norms. Next, we introduce scalar products and norms
on the spaces of grid functions Gh, Eh, Fh, Gh and we show some basic integral identities for the
difference operators.

Let (γ1
i )Nxi=0 and (γ2

j )
Ny
j=0 be such that

(6.20) γ1
i :=

{
1 1 ≤ i ≤ Nx − 1,
1
2 i ∈ {0, Nx},

, γ2
j :=

{
1 1 ≤ j ≤ Ny − 1,
1
2 j ∈ {0, Ny},
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and define the following discrete L2 scalar products and the corresponding discrete L2 norms

(uh, vh)Gh := hx
∑
xi∈Ωh

γ1
i uivi, uh, vh ∈ Gh,(6.21)

‖uh‖Gh :=
√

(uh, uh)Gh , uh ∈ Gh,(6.22)

(uh, vh)Goh := hx
∑
xi∈Ωoh

γ1
i uivi, uh, vh ∈ Goh,(6.23)

‖uh‖Goh :=
√

(uh, uh)Goh , uh ∈ Goh,(6.24)

(uh, vh)Fh := hxhy
∑

xij∈ωh

γ1
i γ

2
j uijvij , uh, vh ∈ Fh,(6.25)

‖uh‖Fh :=
√

(uh, uh)Fh , uh ∈ Fh,(6.26)

(uh, vh)Eh := hx
∑

xi+1/2∈Ωeh

ui+1/2vi+1/2, uh, vh ∈ Eh,(6.27)

‖uh‖Eh :=
√

(uh,uh)Eh , uh ∈ Eh,(6.28)

(uh, vh)Hh := hxhy
∑

xi,j+1/2∈ωeh

γ1
i ui,j+1/2vi,j+1/2, uh, vh ∈ Hh,(6.29)

‖uh‖Hh :=
√

(uh,uh)Hh , uh ∈ Hh.(6.30)

It can be shown that a discrete equivalent of Green’s formula holds for these scalar products
as well as other identities as is stated in the following lemmas.

Lemma 4 (Discrete macro Green-like formula). Let uh ∈ Gh and vh ∈ Eh such that

u0 = 0, uNx+1 = uNx−1,(6.31)

vNx+1/2 = −vNx−1/2.(6.32)

Then the following identity holds:

(6.33) (uh,divh vh)Goh = −(∇huh, vh)Eh .

Proof. Let us define ϕkh ∈ Gh as ϕkh(xi) = 1 for k = i, and ϕkh(xi) = 0 otherwise. Then, for
uh ∈ Gh, uh =

∑
xi∈Ωh

uiϕ
i
h. Note that for i = 0, . . . , Nx − 1,

(∇hϕkh)i+1/2 =


h−1
x , i = k − 1,

−h−1
x , i = k,

0, otherwise.

Then, using the assumptions on uh and vh, for k = 1, . . . , Nx − 1 we have

(∇hϕkh, vh)Eh = hx

(
vk−1/2

hx
− vk+1/2

hx

)
= −hx

vk+1/2 − vk−1/2

hx
=

− hx(divh vh)k = −hxγ1
kϕ

k
h(xk)(divh vh)k = −(ϕkh,divh vh)Gh ,

for k = 0 we have

(∇hϕ0
h, vh)Eh = −v1/2,
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and for k = Nx we have

(∇hϕNxh , vh)Eh = hx
vNx−1/2

hx
=
hx
2

vNx−1/2 + vNx−1/2

hx
=

− hx
2

vNx+1/2 − vNx−1/2

hx
= −hx

2
(divh vh)Nx = −hxγ1

Nxϕ
Nx
h (xNx)(divh vh)Nx =

− (ϕNxh ,divh vh)Gh .

Hence we obtain

(∇huh, vh)Eh =
∑
xk∈Ωh

uk(∇hϕkh, vh)Eh = u0(∇hϕ0
h, vh)Eh +

Nx−1∑
k=1

uk(∇hϕkh, vh)Eh

+ uNx(∇hϕNxh , vh)Eh = −
Nx∑
k=0

uk(ϕkh,divh vh)Gh = −(uh,divh vh)Gh ,

which proves (6.33). �

Lemma 5 (Discrete micro-macro Green-like formula). Let uh ∈ Fh and vh ∈ Hh such that

−1

2

(
vk,−1/2 + vk,1/2

)
= δ1

k,
1

2

(
vk,Ny−1/2 + vk,Ny+1/2

)
= δ2

k,(6.34)

uk,−1 = uk,1 + 2hyδ
1
k, uk,Ny+1 = uk,Ny−1 + 2hyδ

2
k,(6.35)

for i = 0, . . . , Nx, and δ1
h, δ

2
h ∈ Gh. Then the following identity holds:

(6.36) (uh,divyh vh)Fh = −(∇yhuh, vh)Hh + (uh|y=0, δ
1
h)Gh + (uh|y=Ny , δ

2
h)Gh .

Proof. Similarly to the proof of the previous Lemma, let us define ϕklh ∈ Fh as ϕklh (xij) = 1

if (k, l) = (i, j), and ϕklh (xij) = 0 otherwise. Then, for uh ∈ Fh, uh =
∑
xij∈ωh uijϕ

ij
h . Note that

for i = 0, . . . , Nx, j = 0, . . . , Ny − 1,

(∇yhϕklh )i,j+1/2 =


h−1
y , j = l − 1,

−h−1
y , j = l,

0, otherwise.

Using the assumptions on vh, for k = 0, . . . , Nx, l = 1, . . . , Ny − 1, we then have

(∇yhϕklh , vh)Hh = hxhyγ
1
k

(
vk,l−1/2

hy
− vk,l+1/2

hy

)
= −hxhyγ1

k

vk,l+1/2 − vk,l−1/2

hy
=

− hxhyγ1
k(divyh vh)kl = −hxhyγ1

kγ
2
l ϕ

kl
h (xkl)(divyh vh)kl = −(ϕklh ,divyh vh)Fh;

for l = 0 we have

(∇yhϕk,0h , vh)Hh = −hxhyγ1
k

vk,1/2

hy
= −hxhyγ1

k

1

2

vk,1/2 + vk,1/2

hy
=

= −hxhyγ1
k

1

2

vk,1/2 − vk,−1/2 − 2δ1
k

hy
= −hxhyγ1

k

1

2

vk,1/2 − vk,−1/2

hy
+ hxγ

1
kδ

1
k =

− hxhyγ1
kγ

2
l ϕ

k,0
h (xk,0)(divyh vh)k,0 + hxγ

1
kϕ

k,0
h (xk,0)δ1

k =

− (ϕk,0h ,divyh vh)Fh + (ϕk,0h |y=0, δ
1
h)Gh .

Similarly, we can show that for l = Ny

(∇yhϕk,Nyh , vh)Hh = −(ϕ
k,Ny
h ,divyh vh)Fh + (ϕ

k,Ny
h |y=`, δ

2
h)Gh .
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Hence we obtain

(∇yhuh, vh)Hh =
∑

xkl∈ωh

uk(∇yhϕklh , vh)Hh =

Nx∑
k=0

uk,0(∇yhϕk,0h , vh)Hh

+

Nx∑
k=0

Ny−1∑
l=1

ukl(∇yhϕklh , vh)Hh +

Nx∑
k=0

uk,Ny (∇yhϕk,Nyh , vh)Hh =

−
∑

xkl∈ωh

ukl(ϕ
kl
h ,divyh vh)Fh +

Nx∑
k=0

uk,0(ϕk,0h |y=0, δ
1
h)Gh +

Nx∑
k=0

uk,Ny (ϕ
k,Ny
h |y=`, δ

2
h)Gh =

− (uh,divyh vh)Fh + (uh|y=0, δ
1
h)Gh + (uh|y=`, δ

2
h)Gh ,

which proves (6.36). �

We also frequently make use of the following discrete trace inequality:

Lemma 6 (Discrete trace inequality). For uh ∈ Fh there exists a positive constant C depending
only on Ω such that

(6.37) ‖uh|y=`‖Gh ≤ C(‖uh‖Fh + ‖∇yhuh‖Hh).

Proof. Our proof follows the line of thought of [GHV00]. We have that for uh ∈ Fh

|ui,Ny | ≤
Ny−1∑
j=0

|ui,j+1 − uij |+
Ny∑
j=0

γ2
j hy|uij |.

Squaring both sides of the inequality, we get

(6.38) (ui,Ny )2 ≤ Ai +Bi,

where

Ai := 2

Ny−1∑
j=0

|ui,j+1 − uij |

2

and Bi := 2

Ny∑
j=0

γ2
j hy|uij |

2

.

Applying the Cauchy-Schwarz inequality to Ai, we obtain

Ai ≤ 2

Ny−1∑
j=0

hy

(
ui,j+1 − uij

hy

)2 Ny−1∑
j=0

hy = 2`

Ny−1∑
j=0

hy

(
ui,j+1 − uij

hy

)2

.

Similarly, using the Cauchy-Schwarz inequality we get for Bi

Bi ≤ 2

Ny∑
j=0

γ2
j hy(uij)

2

Ny∑
j=0

γ2
j hy = 2`

Ny∑
j=0

γ2
j hy(uij)

2.

Multiplying (6.38) by γ1
i hx, summing over i ∈ {0, . . . , Nx} and then using the bounds on Ai and

Bi, it yields that:

Nx∑
i=0

γ1
i hx(ui,Ny )2 ≤ 2`

(
Nx∑
i=0

Ny−1∑
j=0

γ1
i hxhy

(
(∇yhuh)i,j+ 1

2

)2

+
∑

xij∈ωh

γ1
i γ

2
j hxhy(uij)

2

)
,

that is

‖uh|y=`‖2Gh ≤ C
(
‖∇yhuh‖2Hh + ‖uh‖2Fh

)
,

from which the claim of the Lemma follows directly. �
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6.4. Approximation estimates

The aim of this section is to derive a priori estimates on the semi-discrete solution. Based on
weak convergence-type arguments, the estimates ensure, at least up to subsequences, a (weakly)
convergent way to reconstruct the weak solution to problem (P).

6.4.1. A priori estimates. This is the place where we use the tools developed in Section 6.3.
In subsequent paragraphs, we refer to the following relations: From scalar product of (6.17a)

with ϕ1
h ∈ Gh, (6.17b) and (6.17c) with ϕ2

h ∈ Fh and ϕ3
h, respectively, and (6.17d) with ϕ4

h ∈ Gh to
obtain

(u̇1
h, ϕ

1
h)Goh = d1(∆hu

1
h, ϕ

1
h)Goh −Bi

M
(
Hu1

h − u2
h|y=0, ϕ

1
h

)
Goh
,(6.39)

(u̇2
h, ϕ

2
h)Fh = d2(∆yhu

2
h, ϕ

2
h)Fh − α(u2

h, ϕ
2
h)Fh + β(u3

h, ϕ
2
h)Fh ,(6.40)

(u̇3
h, ϕ

3
h)Fh = d3(∆yhu

3
h, ϕ

3
h)Fh + α(u2

h, ϕ
3
h)Fh − β(u3

h, ϕ
3
h)Fh ,(6.41)

(u̇4
h, ϕ

4
h)Gh =

(
η(u3

h|y=`, u
4
h), ϕ4

h

)
Gh
.(6.42)

Note that u1
h and ∇hϕ1

h satisfy the assumptions of Lemma 4, u2
h and ∇yhϕ2

h satisfy the assumptions

of Lemma 5 with δ1
k = BiM

d2
(Hu1

k − u2
k,0) and δ2

k = 0, and u3
h and ∇yhϕ3

h with δ1
k = 0 and

δ2
k = − 1

d3
η(u3

k,Ny
, u4
k). Thus, using Lemmas 4, 5 and properties of the discrete scalar products we

get

(u̇1
h, ϕ

1
h)Gh + d1(∇hu1

h,∇hϕ1
h)Eh = −BiM

(
Hu1

h − u2
h|y=0, ϕ

1
h

)
Gh
,(6.43)

(u̇2
h, ϕ

2
h)Fh + d2(∇yhu2

h,∇yhϕ2
h)Hh = BiM (Hu1

h − u2
h|y=0, ϕ

2
h|y=0)Gh(6.44)

− α(u2
h, ϕ

2
h)Fh + β(u3

h, ϕ
2
h)Fh ,

(u̇3
h, ϕ

3
h)Fh + d3(∇yhu3

h,∇yhϕ3
h)Hh = −

(
η(u3

h|y=`, u
4
h), ϕ3

h|y=`

)
Gh

(6.45)

+ α(u2
h, ϕ

3
h)Fh − β(u3

h, ϕ
3
h)Fh ,

(u̇4
h, ϕ

4
h)Gh =

(
η(u3

h|y=`, u
4
h), ϕ4

h

)
Gh
.(6.46)

Lemma 7 (Discrete energy estimates). Let {u1
h, u

2
h, u

3
h, u

4
h} be a semi-discrete solution of (6.2)

for some T > 0. Then it holds that

max
t∈S

(
‖u1

h(t)‖2Gh + ‖u2
h(t)‖2Fh + ‖u3

h(t)‖2Fh + ‖u4
h(t)‖2Gh

)
≤ C,(6.47)

ˆ T

0

(
‖∇hu1

h‖2Eh + ‖∇yhu2
h‖2Hh + ‖∇yhu3

h‖2Hh
)

dt ≤ C,(6.48)

where C := C̄
(
‖u1

h(0)‖2Gh + ‖u2
h(0)‖2Fh + ‖u3

h(0)‖2Fh + ‖u4
h(0)‖2Gh

)
, with C̄ being a positive constant

independent of hx, hy.

Proof. In (6.43)–(6.46), taking (ϕ1
h, ϕ

2
h, ϕ

3
h, ϕ

4
h) = (u1

h, u
2
h, u

3
h, u

4
h), summing the equalities,

applying Young’s inequality on terms with (u2
h, u

3
h)Fh , dropping the negative terms on the right-

hand side, and multiplying the resulting inequality by 2 give

d

dt

(
‖u1

h‖2Gh + ‖u2
h‖2Fh + ‖u3

h‖2Fh + ‖u4
h‖2Gh

)
+ 2d1‖∇hu1

h‖2Eh + 2d2‖∇yhu2
h‖2Hh + 2d3‖∇yhu3

h‖2Hh
≤ −2BiM (Hu1

h − u2
h|y=0, u

1
h)Gh + 2BiM (Hu1

h − u2
h|y=0, u

2
h|y=0)Gh

+ C1‖u2
h‖2Fh + C1‖u3

h‖2Fh + 2
(
η(u3

h|y=`, u
4
h), u4

h − u3
h|y=`

)
Gh
,
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where C1 := α+ β > 0. Expanding the first two terms on the right-hand side we get

− 2(Hu1
h − u2

h|y=0, u
1
h)Gh + 2(Hu1

h − u2
h|y=0, u

2
h|y=0)Gh = −2H‖u1

h‖2Gh
+ 2(1 +H)(u1

h, u
2
h|y=0)Gh − 2‖u2

h|y=0‖2Gh ≤
1 +H

ε
‖u1

h‖2Gh +
(
(1 +H)ε− 2

)
‖u2

h|y=0‖2Gh ,

where we used Young’s inequality with ε > 0. Choosing ε sufficiently small, the coefficient in front
of the last term is negative, so we have that

−2(Hu1
h − u2

h|y=0, u
1
h)Gh + 2(Hu1

h − u2
h|y=0, u

2
h|y=0)Gh ≤ C2‖u1

h‖2Gh ,
where C2 := 1+H

ε > 0, and thus

(6.49)
d

dt

(
‖u1

h‖2Gh + ‖u2
h‖2Fh + ‖u3

h‖2Fh + ‖u4
h‖2Gh

)
+ 2d1‖∇hu1

h‖2Eh + 2d2‖∇yhu2
h‖2Hh + 2d3‖∇yhu3

h‖2Hh
≤ C2‖u1

h‖2Gh + C1‖u2
h‖2Fh + C1‖u3

h‖2Fh + 2
(
η(u3

h|y=`, u
4
h), u4

h − u3
h|y=`

)
Gh
.

For the last term on the right-hand side of the previous inequality we have

2
(
η(u3

h|y=`, u
4
h), u4

h − u3
h|y=`

)
Gh

= 2k
(
R(u3

h|y=`)Q(u4
h), u4

h

)
Gh
−2k

(
R(u3

h|y=`)Q(u4
h), u3

h|y=`

)
Gh︸ ︷︷ ︸

≤0

≤ 2kc̄q
(
R(u3

h|y=`), u
4
h

)
Gh
≤ kc̄q

(
ε‖R(u3

h|y=`)‖2Gh +
1

ε
‖u4

h‖2Gh
)
≤ kc̄q

(
ε‖u3

h|y=`‖2Gh +
1

ε
‖u4

h‖2Gh
)

≤ kc̄q
(
C3ε‖u3

h‖2Fh + C3ε‖∇yhu3
h‖2Hh +

1

ε
‖u4

h‖2Gh
)
,

where we used the assumption (A1), Young’s inequality with ε > 0 and the discrete trace inequality
(6.37) with the constant C3 > 0. Using the result in (6.49) we obtain

(6.50)
d

dt

(
‖u1

h‖2Gh + ‖u2
h‖2Fh + ‖u3

h‖2Fh + ‖u4
h‖2Gh

)
+ d1‖∇hu1

h‖2Eh + d2‖∇yhu2
h‖2Hh + C4‖∇yhu3

h‖2Hh
≤ C2‖u1

h‖2Gh + C1‖u2
h‖2Fh + C5‖u3

h‖2Fh + C6‖u4
h‖2Gh ,

where C4 := d3 − kc̄qC3ε can be made positive for ε sufficiently small, C5 := C1 + kc̄qC3ε, and
C6 := kc̄q 1

ε .
Discarding the terms with discrete gradient, we get

d

dt

(
‖u1

h‖2Gh + ‖u2
h‖2Fh + ‖u3

h‖2Fh + ‖u4
h‖2Gh

)
≤ C7

(
‖u1

h‖2Gh + ‖u2
h‖2Fh + ‖u3

h‖2Fh + ‖u4
h‖2Gh

)
,

where C7 := max{C1, C2, C5, C6}. Applying the Gronwall’s lemma to the previous inequality we
obtain

(6.51) max
t∈S

(
‖u1

h(t)‖2Gh + ‖u2
h(t)‖2Fh + ‖u3

h(t)‖2Fh + ‖u4
h(t)‖2Gh

)
≤
(
‖u1

h(0)‖2Gh + ‖u2
h(0)‖2Fh + ‖u3

h(0)‖2Fh + ‖u4
h(0)‖2Gh

)
eC7T .

Finally, integrating (6.50) over [0, T ] and using (6.51) gives

(6.52)

ˆ T

0

(
‖∇hu1

h‖2Eh + ‖∇yhu2
h‖2Hh + ‖∇yhu3

h‖2Hh
)

dt

≤ 1 + C7Te
C7T

C8

(
‖u1

h(0)‖2Gh + ‖u2
h(0)‖2Fh + ‖u3

h(0)‖2Fh + ‖u4
h(0)‖2Gh

)
,

where C8 := min{d1, d2, C4}. The claim of the lemma directly follows. �
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Lemma 8. Let {u1
h, u

2
h, u

3
h, u

4
h} be a semi-discrete solution of (6.2) for some T > 0. Then it

holds that

max
t∈S

(
‖u̇1

h(t)‖2Gh + ‖u̇2
h(t)‖2Fh + ‖u̇3

h(t)‖2Fh
)
≤ C,(6.53)

ˆ T

0

(
‖∇hu̇1

h‖2Eh + ‖∇yhu̇2
h‖2Hh + ‖∇yhu̇3

h‖2Hh
)

dt ≤ C,(6.54)

where C is a positive constant independent of hx, hy.

Proof. We follow the steps of [MNR10, Theorem 4]. Differentiate (6.43)–(6.45) with respect
to time, take ϕih = u̇ih, i = 1, . . . , 3, discard the negative terms on the right-hand side and sum the
inequalities to obtain

1

2

d

dt

(
‖u̇1

h‖2Gh + ‖u̇2
h‖2Fh + ‖u̇3

h‖2Fh
)

+ d1‖∇hu̇1
h‖2Eh + d2‖∇yhu̇2

h‖2Hh + d3‖∇yhu̇3
h‖2Hh

≤ BiM (1 +H)
(
u̇1
h, u̇

2
h|y=0

)
Gh
−BiM‖u̇2

h|y=0‖2Gh + (α+ β)
(
u̇2
h, u̇

3
h

)
Fh

−
(
∂rη(u3

h|y=`, u
4
h)u̇3

h|y=` + ∂sη(u3
h|y=`, u

4
h)u̇4

h, u̇
3
h|y=`

)
Gh
.

As in the proof of Lemma 7, for the first two terms on the right-hand side we have that

BiM (1 +H)
(
u̇1
h, u̇

2
h|y=0

)
Gh
−BiM‖u̇2

h|y=0‖2Gh ≤ C1‖u̇1
h‖2Gh ,

and for the third term
(α+ β)

(
u̇2
h, u̇

3
h

)
Fh
≤ C2

(
‖u̇2

h‖2Fh + ‖u̇3
h‖2Fh

)
.

Using the Lipschitz property of η, together with Schwarz’s and Young’s inequalities, and assuming
the structural restriction ∂rη > 0, we obtain for the last term on the right-hand side that

−
(
∂rηu̇

3
h|y=` + ∂sηu̇

4
h, u̇

3
h|y=`

)
Gh

= −
(
∂rηu̇

3
h|y=`, u̇

3
h|y=`

)
Gh
−
(
∂sηu̇

4
h, u̇

3
h|y=`

)
Gh

≤ −
(
∂rηu̇

3
h|y=`, u̇

3
h|y=`

)
Gh︸ ︷︷ ︸

≤0

+C

(
1

2ε

∥∥u̇4
h

∥∥2

Gh
+
ε

2
‖u̇3

h|y=`

∥∥2

Gh

)
.

Choosing ε sufficiently small, we get that

−
(
∂rη(u3

h|y=`, u
4
h)u̇3

h|y=` + ∂sη(u3
h|y=`, u

4
h)u̇4

h, u̇
3
h|y=`

)
Gh
≤ C3

∥∥u̇4
h

∥∥2

Gh
.

Putting the obtained results together we finally obtain that

(6.55)
1

2

d

dt

(
‖u̇1

h‖2Gh + ‖u̇2
h‖2Fh + ‖u̇3

h‖2Fh
)

+ d1‖∇hu̇1
h‖2Eh + d2‖∇yhu̇2

h‖2Hh + d3‖∇yhu̇3
h‖2Hh

≤ C1‖u̇1
h‖2Gh + C2

(
‖u̇2

h‖2Fh + ‖u̇3
h‖2Fh

)
+ C3‖u̇4

h‖2Gh .
Grönwall’s inequality gives that

(6.56) max
t∈S

(
‖u̇1

h‖2Gh + ‖u̇2
h‖2Fh + ‖u̇3

h‖2Fh
)
≤ C4

(
‖u̇1

h(0)‖2Gh + ‖u̇2
h(0)‖2Fh + ‖u̇3

h(0)‖2Fh
)
.

In order to estimate the right-hand side in the previous inequality, we evaluate (6.39)–(6.41) at
t = 0 and test with

(
u̇1
h(0), u̇2

h(0), u̇3
h(0)

)
to get

‖u̇1
h(0)‖2Gh + ‖u̇2

h(0)‖2Fh + ‖u̇3
h(0)‖2Fh = d1(∆hu

1
h(0), u̇1

h(0))Goh + d2(∆yhu
2
h(0), u̇2

h(0))Fh

+ d3(∆yhu
3
h(0), u̇3

h(0))Fh −BiM
(
Hu1

h(0)− u2
h(0)|y=0, u̇

1
h(0)

)
Gh

+ (αu2
h(0)− βu3

h(0), u̇3
h(0)− u̇2

h(0))Fh .

Schwarz’s inequality and Young’s inequality (with ε > 0 chosen sufficiently small) together with
the regularity of the initial data yield the estimate

‖u̇1
h(0)‖2Gh + ‖u̇2

h(0)‖2Fh + ‖u̇3
h(0)‖2Fh ≤ C,
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where C does not depend on the spatial step sizes. Returning back to (6.55), integrating it with
respect to t and using (6.56) gives the claim of the lemma. �

In the following lemma we derive additional a priori estimates that will finally allow us to
pass in the limit in the non-linear terms. In order to avoid introducing new grids, grid functions
and associated scalar products for finite differences in x variable, we resort to sum notation in this
proof. To this end, for uh ∈ Fh, let δ+

x uij , δ
−
x uij , δ

+
y uij , δ

−
y uij denote the forward and backward

difference quotients at xij in x- and y-direction, i.e.,

(δ+
x uh)ij :=

ui+1,j − uij
hx

, (δ−x uh)ij :=
uij − ui−1,j

hx
,

(δ+
y uh)ij :=

ui,j+1 − uij
hy

, (δ−y uh)ij :=
uij − ui,j−1

hy
.

Lemma 9 (Improved a priori estimates). Let {u1
h, u

2
h, u

3
h, u

4
h} be a semi-discrete solution of

(6.2) for some T > 0. Then it holds that

max
t∈S

(
hxhy

Nx−1∑
i=0

Ny∑
j=0

(δ+
x u

2
ij)

2 + hxhy

Nx−1∑
i=0

Ny∑
j=0

(δ+
x u

3
ij)

2
)
≤ C,(6.57)

ˆ T

0

hxhy

Nx−1∑
i=0

Ny−1∑
j=0

(δ+
x δ

+
y u

2
ij)

2 dt+

ˆ T

0

hxhy

Nx−1∑
i=0

Ny−1∑
j=0

(δ+
x δ

+
y u

3
ij)

2 dt ≤ C,(6.58)

where C is a positive constant independent of hx, hy.

Proof. Following the steps of [MNR10, Theorem 5], introduce a function ϑ ∈ C∞0 (Ω) such
that 0 ≤ ϑ ≤ 1 and let ϑh := ϑ|Ωh ∈ Gh. Test (6.17b) with −δ−x (ϑ2

i δ
+
x u

2
h)ij , (6.17c) with

−δ−x (ϑ2
i δ

+
x u

3
h)ij , and sum over ωh to form relations analogous to (6.44), (6.45). We get

− hy
Nx∑
i=1

Ny∑
j=0

γ1
i γ

2
j u̇

2
ijδ
−
x (ϑ2

hδ
+
x u

2
h)ij − d2hy

Nx∑
i=1

Ny−1∑
j=0

γ1
i γ

2
j δ

+
y u

2
ijδ

+
y (δ−x (ϑ2

hδ
+
x u

2
h))ij

= −Bim
Nx∑
i=1

γ1
i (Hu1

i − u2
i,0)δ−x (ϑ2

i δ
+
x u

2
h)i,0 + αhy

Nx∑
i=1

Ny∑
j=0

γ1
i γ

2
j u

2
ijδ
−
x (ϑ2

i δ
+
x u

2
h)ij

− βhy
Nx∑
i=1

Ny∑
j=0

γ1
i γ

2
j u

3
ijδ
−
x (ϑ2

i δ
+
x u

2
h)ij ,

− hy
Nx∑
i=1

Ny∑
j=0

γ1
i γ

2
j u̇

3
ijδ
−
x (ϑ2

hδ
+
x u

3
h)ij − d3hy

Nx∑
i=1

Ny−1∑
j=0

γ1
i γ

2
j δ

+
y u

3
ijδ

+
y (δ−x (ϑ2

hδ
+
x u

3
h))ij

=

Nx∑
i=1

γ1
i η(u3

i,Ny , u
4
i )δ
−
x (ϑ2

i δ
+
x u

3
h)i,Ny − αhy

Nx∑
i=1

Ny∑
j=0

γ1
i γ

2
j u

2
ijδ
−
x (ϑ2

i δ
+
x u

3
h)ij

+ βhy

Nx∑
i=1

Ny∑
j=0

γ1
i γ

2
j u

3
ijδ
−
x (ϑ2

i δ
+
x u

3
h)ij .
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Summing the previous two equalities and using the discrete Green’s theorem analogous to (6.33),
Schwarz’s inequality and Young’s inequality we obtain

(6.59)
1

2

d

dt

(
hy

Nx−1∑
i=0

Ny∑
j=0

|ϑiδ+
x u

2
ij |2 + hy

Nx−1∑
i=0

Ny∑
j=0

|ϑiδ+
x u

3
ij |2
)

+ d2hy

Nx−1∑
i=0

Ny−1∑
j=0

|ϑiδ+
x δ

+
y u

2
ij |2

+ d3hy

Nx−1∑
i=0

Ny−1∑
j=0

|ϑiδ+
x δ

+
y u

3
ij |2 ≤ BimHC1

Nx−1∑
i=0

|ϑiδ+
x u

1
i |2 + C2hy

Nx−1∑
i=0

Ny∑
j=0

(ϑiδ
+
x u

2
ij)

2

+ C3hy

Nx−1∑
i=0

Ny∑
j=0

(ϑiδ
+
x u

3
ij)

2 −
Nx−1∑
i=0

(δ+
x η(u3

i,Ny , u
4
i ))(ϑ

2
i δ

+
x u

3
i,Ny ).

We rewrite the last term on the right-hand side as

− k
Nx−1∑
i=0

(δ+
x (R(u3

i,Ny )Q(u4
i )))(ϑ

2
i δ

+
x u

3
i,Ny )

= −k
Nx−1∑
i=0

(
Q(u4

i )δ
+
x R(u3

i,Ny ) +R(u3
i+1,Ny )δ+

x Q(u4
i )
)

(ϑ2
i δ

+
x u

3
i,Ny )

= −k
Nx−1∑
i=0

ϑ2
iQ(u4

i )δ
+
x R(u3

i,Ny )δ+
x u

3
i,Ny︸ ︷︷ ︸

≤0

−k
Nx−1∑
i=0

R(u3
i+1,Ny )δ+

x Q(u4
i )(ϑ

2
i δ

+
x u

3
i,Ny ),

where we used the monotonicity of R and boundedness of Q. To estimate the last term we exploit
the Lipschitz continuity and boundedness of Q and use the discrete trace theorem so that

− k
Nx−1∑
i=0

R(u3
i+1,Ny )δ+

x Q(u4
i )(ϑ

2
i δ

+
x u

3
i,Ny ) ≤ C4

Nx−1∑
i=0

ϑ2
i |δ+

x u
3
i,Nyδ

+
x u

4
i |

≤ C4ε

2

Nx−1∑
i=0

(ϑiδ
+
x u

3
i,Ny )2 +

C4

2ε

Nx−1∑
i=0

(ϑiδ
+
x u

4
i )

2 ≤ C5εhy

Nx−1∑
i=0

Ny∑
j=0

(ϑiδ
+
x u

3
ij)

2

+ C5εhy

Nx−1∑
i=0

Ny−1∑
j=0

(ϑiδ
+
x δ

+
y u

3
ij)

2 +
C4

2ε

Nx−1∑
i=0

(ϑiδ
+
x u

4
i )

2.

Using the latter result in (6.59), we arrive at

(6.60)
1

2

d

dt

(
hy

Nx−1∑
i=0

Ny∑
j=0

(ϑiδ
+
x u

2
ij)

2 + hy

Nx−1∑
i=0

Ny∑
j=0

(ϑiδ
+
x u

3
ij)

2
)

+ d2hy

Nx−1∑
i=0

Ny−1∑
j=0

(ϑiδ
+
x δ

+
y u

2
ij)

2

+ (d3 − C5ε)hy

Nx−1∑
i=0

Ny−1∑
j=0

(ϑiδ
+
x δ

+
y u

3
ij)

2 ≤ BimHC1

Nx−1∑
i=0

|ϑiδ+
x u

1
i |2 + C2hy

Nx−1∑
i=0

Ny∑
j=0

(ϑiδ
+
x u

2
ij)

2

+ (C3 + C5ε)hy

Nx−1∑
i=0

Ny∑
j=0

(ϑiδ
+
x u

3
ij)

2 +
C4

2ε

Nx−1∑
i=0

(ϑiδ
+
x u

4
i )

2.

Applying Gronwall’s inequality and integrating with respect to time we obtain the claim of the
lemma. �
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6.5. Interpolation and compactness

In this section, we derive sufficient results that enable us to show the convergence of semi-
discrete solutions of (6.2). To this end, we firstly introduce extensions of grid functions so that
they are defined almost everywhere in Ω and ω and can be studied by the usual techniques of
Lebesgue/Sobolev/Bochner spaces. Finally, we use the a priori estimates proved in Section 6.4 to
show the necessary compactness for the sequences of extended grid functions.

6.5.1. Interpolation. In this subsection we introduce extensions of grid functions so that
they are defined almost everywhere in Ω and ω.

Definition 10 (Dual and simplicial grids on Ω). Let Ωh be a grid on Ω as defined in Sec-
tion 6.3.1. Define the dual grid Ω�

h as

Ω�
h := {K�

i ⊂ Ω̄ | K�
i := [xi − hx/2, xi + hx/2] ∩ Ω̄, xi ∈ Ωh},

and the simplicial grid Ω�
h as

Ω�
h := {K�

i ⊂ Ω̄ | K�
i := [xi, xi+1] ∩ Ω̄, xi ∈ Ωh}.

Definition 11 (Dual and simplicial grids on Ω× Y ). Let ωh be a grid on Ω× Y as defined in
Section 6.3.1. Define the dual grid ω�

h as

ω�
h := {L�

ij ⊂ Ω̄× Ȳ | L�
ij := [xi − hx/2, xi + hx/2]

× [yj − hy/2, yj + hy/2] ∩ Ω̄× Ȳ , xi ∈ Ωh, yj ∈ Yh},

and the simplicial grid ω�
h as ω�

h := ω/h ∪ ω.h, where

ω/h :=
{
L/ij | L/ij :=

[
(xi, yj), (xi+1, yj), (xi, yj+1)

]
κ ∩ Ω̄× Ȳ ,

i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1
}
,

ω.h :=
{
L.ij | L.ij :=

[
(xi+1, yj+1), (xi+1, yj), (xi, yj+1)

]
κ ∩ Ω̄× Ȳ ,

i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1
}
,

where [x, y, z]κ denotes convex hull of points x, y, z ∈ R2.

Definition 12 (Piecewise constant extension). For a grid function uh we define its piecewise
constant extension ūh as

(6.61) ūh(x) =

{
ui, x ∈ K�

i , uh ∈ Gh,
uij , x ∈ L�

ij , uh ∈ Fh.

Definition 13 (Piecewise linear extension). For a grid function uh ∈ Gh we define its piecewise
linear extension ûh as

(6.62) ûh(x) = ui + (∇huh)i+1/2(x− xi), x ∈ K�
i , uh ∈ Gh,

while for uh ∈ Fh we define it as

(6.63) ûh(x) =

{
uij + δ+

x uij(x− xi) + (∇yhuh)i,j+1/2(y − yj), x ∈ L/ij ,
ui+1,j+1 + δ+

x ui,j+1(xi+1 − x) + (∇yhuh)i+1,j+1/2(yj − y), x ∈ L.ij .

The following lemma shows the relation between discrete scalar products of grid functions and
scalar products of interpolated grid functions in L2(Ω) and L2(Ω × Y ) and follows by a direct
calculation.
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Lemma 14. It holds that

(ūh, v̄h)L2(Ω) = (uh, uh)Gh , uh, vh ∈ Gh,
(∇ûh,∇v̂h)L2(Ω) = (∇huh,∇hvh)Eh , uh, vh ∈ Gh,
(ūh, v̄h)L2(Ω×Y ) = (uh, vh)Fh , uh, vh ∈ Fh,

(∇yûh,∇y v̂h)L2(Ω×Y ) = (∇yhuh,∇yhvh)Hh , uh, vh ∈ Fh.
6.5.2. Compactness. In this subsection we prove our main result. To do this we essentially

use the preliminary results shown in the previous paragraphs and the results of [Lad85]. Basically,
we show the convergence of semi-discrete solutions to a weak solution of problem (P). This result
is stated in the following theorem.

Theorem 15. Assume (A1)–(A4) to be fulfilled. Then the semi-discrete solution {u1
h, u2

h, u3
h,

u4
h} of (6.2) exists on [0, T ] for any T > 0 and its interpolate {û1

h, û2
h, û3

h, û4
h} converge in L2(Ω),

L2(Ω×Y ), L2(Ω×S), L2(Ω), respectively, as |h| → 0 to a weak solution (u1, u2, u3, u4) to problem
(P) in the sense of Definition 1.

Proof. We start off with recovering the initial data. The definition of interpolation of grid
functions leads, as |h| → 0, to

û1
h(0)→ u0

1 weakly in H1(Ω),

û2
h(0)→ u0

2 weakly in L2(Ω;H1(Y )),

û3
h(0)→ u0

3 weakly in L2(Ω;H1(Y )),

û4
h(0)→ u0

4 weakly in L2(Ω).

Let hn be a sequence of spatial space sizes such that |h| → 0 as n → ∞. Consequently, we
obtain a sequence of solutions {u1

hn
, u2
hn
, u3
hn
, u4
hn
} of (6.17) defined on the whole time interval S.

Let us pass to the limit |h| → 0 in the ODE. Note that η(ū3
hn
|y=`, ū

4
hn

) ⇀ q weakly in

L2(S;L2(Ω)), and q still needs to be identified. The way we pass to the limit in the ODE is
based on the following monotonicity-type argument (see [FM10]): using the monotonicity of η
w.r.t. both variables, we can show that ū4

hn
is a Cauchy sequence, and therefore, it is strongly

convergent to u4.
Now, it only remains to pass to the limit in the PDEs. Note that the weak formulation contains

a nonlinear boundary term involving η(·, ·). Exploiting the properties of the interpolations of grid
functions (Lemma 14) we deduce that the same a priori estimates hold also for the interpolated
solution (see also [Lad85]). On this way, we obtain

{û1
hn} is bounded in L∞(0, T ;L2(Ω)),

{û1
hn} is bounded in L2(0, T ;H1(Ω)),

{û2
hn} is bounded in L∞(0, T ;L2(Ω)),

{û3
hn} is bounded in L∞(0, T ;L2(Ω)),

{û4
hn} is bounded in L∞(0, T ;L2(Ω)).

Hence, there exists a subsequence of hn (denoted again by hn), such that

û1
hn ⇀ u1 weakly in L2(S;H1(Ω)),

û2
hn ⇀ u2 weakly in L2(S;L2(Ω)),

û3
hn ⇀ u3 weakly in L2(S;L2(Ω)),

û4
hn ⇀ u4 weakly in L2(S;L2(Ω)).

Since
‖û1

hn‖L2(S,H1(Ω)) + ‖∂tû1
hn‖L2(S,L2(Ω)) ≤ C,
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Lions-Aubin’s compactness theorem, see [Lio63, Theorem 1], implies that there exists a subset
(again denoted by û1

hn
) such that

û1
hn −→ u1 strongly in L2(S × Ω).

To get the desired strong convergence for the cell solutions û2
hn
, û3
hn

, we need the higher regularity
with respect to the variable x, proved in Lemma 9. We remark that the two-scale regularity
estimates imply that

‖û2
hn‖L2(S;H1(Ω,H1(Y ))) + ‖û3

hn‖L2(S;H1(Ω,H1(Y ))) ≤ C.
Moreover, from Lemma 8, we have that

‖∂tû2
hn‖L2(S×Ω×Y ) + ‖∂tû3

hn‖L2(S×Ω×Y ) ≤ C.
Since the embedding

H1(Ω, H1(Y )) ↪→ L2(Ω, Hβ(Y ))

is compact for all 1
2 < β < 1, it follows again from Lions-Aubin’s compactness theorem that there

exist subsequences (again denoted û2
hn
, û3
hn

), such that

(6.64) (û2
hn , û

3
hn) −→ (u2, u3) strongly in L2(S × L2(Ω, Hβ(Y )),

for all 1
2 < β < 1. Now, (6.64) together with the continuity of the trace operator

Hβ(Y ) ↪→ L2(∂Y ), for
1

2
< β < 1,

yield the strong convergence of û2
hn

, û3
hn

until the boundary y = 0. �

6.6. Numerical illustration of the two-scale FD scheme

We close this chapter by illustrating the behavior of the main chemical species driving the whole
corrosion process, namely of H2S(g), and also the one of the corrosion product—the gypsum. To
do these computations we use the reference parameters reported in [CFM10].
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Figure 6.1 – Illustration of concentration profiles for the macroscopic concentration of gaseous H2S
(left) and of gypsum (right). Graphs plotted at times t ∈ {0, 80, 160, 240, 320, 400} in a left-to-right
and top-to-bottom order.
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Fig. 6.1 shows the evolution of u1(x, t) and u4(x, t) as time elapses. Interestingly, although the
behavior of u1 is as expected (i.e., purely diffusive), we notice that a macroscopic gypsum layer
(region where u4 is produced) is formed (after a transient time t∗ > 80) and grows in time. The
figure clearly indicates that there are two distinct regions separated by a slowly moving intermediate
layer: the left region, where the gypsum production reached saturation (a threshold), and the
right region, the place of the ongoing sulfatation reaction (6.1d) (the gypsum production has not
yet reached here the natural threshold). The precise position of the separating layer is a priori
unknown. To capture it simultaneously with the computation of the concentration profile would
require a moving-boundary formulation similar to the one reported in [BJDR98].

6.7. Exercises

Exercise 6.1. Before reading Chapter 7, implement in your favorite programming language
the numerical scheme (6.17), (6.18), (6.19).

Exercise 6.2. Let us have a standard periodicity cell Y consisting of an aggregate B ⊂ Y
with smooth boundary Γ and of the remainder F := Y \ B. Outer normal vector to Γ is denoted
by n. We consider a diffusion process in the whole Y , i.e., flow is allowed to take place within both
B and F with largely disparate diffusivities. In this setting, the following two-scale model can be
obtained by homogenization [Hor97, Chapter 1, Proposition 5.1]:

(6.65)



|F |∂tu(t, x) + q(t, x) = ∇ · (A∇u(t, x)), (t, x) ∈ (0, T )× Ω,

q(t, x) =

ˆ
Γ

aB(y)∇yU(t, x, y) · n dΓ(y), (t, x) ∈ (0, T )× Ω,

∂tU = ∇y · (aB(y)∇yU(t, x, y)) , (t, x, y) ∈ (0, T )× Ω×B,
d(y)aB(y)∇yU(t, x, y) · n = cF (y)u(t, x)− cB(y)U(t, x, y), (t, x, y) ∈ (0, T )× Ω× Γ,

u(t, x) = uD(t, x), (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = uI(x), x ∈ Ω,

U(0, x, y) = UI(x, y), (x, y) ∈ Ω×B.

1. Propose a (semi-)discrete scheme for numerical solution of (6.65) assuming that Y := (0, `)
and Ω := (0, L).

2. Derive the needed a priori estimates and show the convergence of the numerical approximates
to the weak solution to the original two-scale problem.

3. See what needs to be changed if we take Y := (0, `)2.





CHAPTER 7

Computer implementation in C

Out goal in this chapter is to describe in a detailed way a possible computer implementation of
the numerical scheme (6.17), (6.18), (6.19). Our presentation is truly didactic in order to help even
novices in scientific programming to overcome the initial barrier so that they can start writing their
own programs quickly. Also, there is nothing specific in our approach to multiscale problems and
the program can be easily adapted to other scenarios as well. The complete source code is listed in
Appendix A.

7.1. Introduction

Before we start description of the program, we give a general overview of our approach and what
tools we use in the implementation. The particular program we describe here is written in portable
ANSI C for its widespread use in scientific computing and for the sake of speed. However, other
languages like for instance Python with its NumPy package are a viable alternative and thanks
to its hiding of low-level implementation details might be more accessible to a novice scientific
programmer. The reader is encouraged to write its own program in the language of his choice. It
is out of the scope of this chapter to describe how to set up the development and visualization
environment—the variety of operating systems, compilers and IDEs is simply too wide. We just
assume that the reader has access to a text editor, a C compiler and the plotting tool Gnuplot. The
authors developed and tested the program using gcc compiler version 4.2.1. and it should compile
without any errors and warnings with this or any other modern compiler.

The program we present is a straightforward, single-purpose implementation of the numerical
scheme, not a general, industrial-level approach. We wanted to keep things simple and short,
and therefore we neglect many error-checking tests. Parsing of parameters and program options
from disk or command line is another important feature of any serious scientific program that is
nevertheless difficult to implement correctly from scratch unless an external library is used. Since
we wanted to avoid as many external dependencies as possible, we solve it by hard-coding the
problem parameters in the program as pre-processor macros. This approach is very primitive and
the program needs to be recompiled every time we change a parameter, but it is sufficient for our
purpose and is not an issue in our single source file. We do use an external library CVODE [CH96]
for the time integration of the ODE system (6.17), but the use of this excellent, robust library
simplifies the presentation and avoids the need to implement our own solver (which is also difficult
to do in a robust way, see also Exercise 7.5). We recommend the reader to get acquainted with this
library, its philosophy, interface, algorithms and data structures.

7.2. Review of the numerical scheme

In the program we try to follow closely the notation introduced in Chapter 6, so it is useful
to rewrite the scheme and the boundary conditions again in index notation for the sake of clarity.
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Thus, we are looking for the solution (u1
h, u

2
h, u

3
h, u

4
h) of the following system of ODEs:

du1
i

dt
= d1

u1
i−1 − 2u1

i + u1
i+1

h2
x

−Bi
(
Hu1

i − u2
i,0

)
, i = 1, . . . , Nx(7.1)

du2
ij

dt
= d2

u2
i,j−1 − 2u2

ij + u2
i,j+1

h2
y

− k2u
2
ij + k3u

3
ij , i = 0, . . . , Nx, j = 0, . . . , Ny,(7.2)

du3
ij

dt
= d3

u3
i,j−1 − 2u3

ij + u3
i,j+1

h2
y

+ k2u
2
ij − k3u

3
ij , i = 0, . . . , Nx, j = 0, . . . , Ny,(7.3)

du4
i

dt
= η(u3

i,Ny , u
4
i ), i = 0, . . . , Nx,(7.4)

with the boundary conditions

u1
0 = uD1 , u1

Nx+1 = u1
Nx−1,

u2
i,−1 = u2

i,1 +
2hy
d2

Bi
(
Hu1

i − u2
i,0

)
, u2

i,Ny+1 = u2
i,Ny−1,

u3
i,−1 = u3

i,1, u3
i,Ny+1 = u3

i,Ny−1 −
2hy
d3

η(u3
i,Ny , u

4
i ).

After choosing a suitable ordering of the unknowns, this system can be written as

(7.5)
du

dt
= f(u),

where u : [0, T ] → RM is the vector of unknowns and f : RM → RM is the right-hand side and
M := 2Nx + 1 + 2(Nx + 1)(Ny + 1). The number of unknowns is given by the fact that we look for
two macroscopic quantities on a grid with Nx + 1 nodes (but we exclude from the computation the
value of u1

0, because it is given by the Dirichlet boundary condition) and two microscopic quantities
on a grid with (Nx + 1)(Ny + 1) nodes.

We are now ready to start writing the program.

7.3. Implementation

Include files

We first include standard C library header files together with mathematical library functions:

#include <stdlib.h> /* standard library functions */

#include <stdio.h> /* standard input/output functions */

#include <math.h>

We will use the following functions when saving the results to a file:

#include <time.h>

#include <sys/types.h>

#include <sys/stat.h>

Finally, we include header files for the CVODE library and its accompanying data structures:

#include <cvode/cvode.h>

#include <cvode/cvode_spgmr.h>

#include <nvector/nvector_serial.h>

#include <sundials/sundials_math.h>
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Macro definitions and constants

As we stated in the introduction, we use a simple approach to specifying problem parameters
in order to avoid reading a configuration file from disk and parsing its contents—we define them
in the source code as symbolic constants using preprocessor directives. Thus, the Biot number
Bi, Henry’s constant H, maximum concentration of gypsum c̄ and the reaction orders p and q are
defined as

#define BIOT_NUMBER 864.0

#define H 2.5

#define C_BAR 1.0

#define PARTIAL_ORDER_P 1.0

#define PARTIAL_ORDER_Q 1.0

the diffusion coefficients di, i ∈ {1, 2, 3} as

#define D_1 864.0

#define D_2 0.0864

#define D_3 0.0864

and the reaction rates constants α, β and k as

#define ALPHA 7.2

#define BETA 0.84

#define K 1.0

The Dirichlet boundary condition for u1
h at x = 0 is given as

#define U1_D 0.1

and the initial conditions (constant functions) as

#define U1_INIT U1_D

#define U2_INIT 0.0

#define U3_INIT 0.00001

#define U4_INIT 0.0

The two-scale geometry of the problem is given by L, `, Nx, Ny, hx and hy as

#define L_X 500.0

#define L_Y 10.0

#define N_X 256

#define N_Y 32

#define DX (L_X/N_X)

#define DY (L_Y/N_Y)

For convenience we also define constants denoting the number of nodes in the x and y direction
and the total number of unknowns in our ODE system (i.e., the length M of vector u):

#define NEQ_X (N_X+1)

#define NEQ_Y (N_Y+1)

#define NEQ (2*NEQ_X+2*NEQ_X*NEQ_Y-1)

Finally, the following constants define the time interval (0, T ), relative and absolute tolerances for
the CVODE solver, number of output intervals and the time elapsed between two outputs:

#define T 1000.0

#define ABS_TOL 1.0e-9

#define REL_TOL 1.0e-9

#define N_OUT 100

#define DT (T/N_OUT)
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Ordering of unknowns

To obtain a system of ODEs in the form (7.5), we have to choose how to order the variables ukh in
the vector u. This ordering can be essentially arbitrary as long as we use it consistently throughout
the program. However, it can have important impact on performance because, among other effects,
it determines the memory access pattern and thus cache hit success rate. Furthermore, in CVODE
there is a possibility to use a banded approximation to the Jacobian of f as a preconditioner in the
Krylov linear solver and we would like to keep the bandwidth as small as possible.

The simplest ordering is to store the unknowns belonging to u1
h first, then u2

h, u3
h and finally u4

h

(of course, first we have to decide how to order u2
h and u3

h, since they are indexed by two indeces i
and j). However, this ordering is far from the best one. Consider evaluating the right-hand side of
(7.2), where the values u2

ij and u3
ij are needed—these two values are (Nx+1)(Ny+1) positions away

from each other in the vector u, which is against our goal of memory locality and small bandwidth
of the Jacobian. This ordering is illustrated in Fig. 7.1.

u1
1 u1

2 u2
0,0 u2

0,1 u2
1,0 u2

1,1 u2
2,0 u2

2,1 u3
0,0 u3

0,1 u3
1,0 u3

1,1 u3
2,0 u3

2,1 u4
0 u4

1 u4
2

Figure 7.1 – Example of a simple ordering of unknows in the vector u for Nx = 2 and Ny = 1.

A much better way and probably the best we can do is to “interlace” the unknowns in the
following way: for each i, we store u1

i , then u2
i,0, u3

i,0, u2
i,1, u3

i,1, . . . , u2
i,Ny

, u3
i,Ny

and then u4
i .

Finally we increase i and repeat. This ordering is illustrated in Fig. 7.2.

u2
0,0 u3

0,0 u2
0,1 u3

0,1 u4
0 u1

1 u2
1,0 u3

1,0 u2
1,1 u3

1,1 u4
1 u1

2 u2
2,0 u3

2,0 u2
2,1 u3

2,1 u4
2

Figure 7.2 – Example of a good ordering of unknows in the vector u for Nx = 2 and Ny = 1. Note
that the unknown u1

0 is omitted.

In the source code, we implement this ordering using preprocessor macros in the following way:

#define U1(u,xi) u[(xi)*(2*NEQ_Y+2)-1]

#define U2(u,xi,yi) u[(xi)*(2*NEQ_Y+2)+2*(yi)]

#define U3(u,xi,yi) u[(xi)*(2*NEQ_Y+2)+2*(yi)+1]

#define U4(u,xi) u[(xi)*(2*NEQ_Y+2)+2*NEQ_Y]

Here, u is expected to be a pointer to the solution vector, i.e., of type double*. Note the parenthe-
sis around xi and yi—they are important to avoid problems with macro substitution and operator
preference when invoking the macro with arguments like U1(u,i-1). Another important observa-
tion is that we may not try to retrieve the value u1

0, because it is given by the boundary condition
and is not stored in the solution vector u (thus, nor in u). Invoking U1(u,0) leads to accessing
memory at u[-1], which is illegal and can lead to segmentation fault (or other unpredictable
results).

Function declarations

Next, we declare the functions that we use in the program. We define them later. We have a
function for printing parameters used in the computation

void print_summary();

for initializing the solution vector with initial condition

void set_initial_profiles(N_Vector u_vec);

and for setting up the CVODE solver
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void* initialize_cvode(N_Vector u_0_vec, CVRhsFn rhs_fn);

Next, we declare the core function of the program—the implementation of the right-hand side
function f

int two_scale_corrosion_rhs(double t, N_Vector u_vec,

N_Vector udot_vec, void* user_data);

Since this function is called by CVODE routines, its interface (the number and types of its arguments
and the return type) must conform to what CVODE expects. Next, we declare the non-linear
reaction rate function η

double eta(double a, double b);

a function for saving the solution to a file

void save_output(N_Vector u_vec);

and for printing some final statistics for the CVODE solver

void print_final_cvode_stats(void* cvode_mem);

The implementation of print summary, save output and print final cvode stats is not
described in this chapter, but it can be found in Appendix A.

Main function

Next, we define the main function, which is the entry point of the program

int main(void) {

followed by variable declarations. We declare the pointer to the CVODE solver memory block

void* cvode_mem;

the solution vector u vec as a type N Vector that CVODE can work with

N_Vector u_vec;

and finally variables for storing the reached time and the time step

double t, tout;

int iout;

We allocate the solution vector u vec of NEQ elements, check for an error in memory allocation,
immediately initialize its values and save the initial condition to a file

u_vec = N_VNew_Serial((long)NEQ);
if (u_vec == NULL) {

exit(EXIT_FAILURE);

}

set_initial_profiles(u_vec);

save_output(u_vec);

Then, we allocate and initialize the CVODE solver by calling our helper function giving it as
arguments the solution vector and pointer to the function that implements the system’s right-hand
side

cvode_mem = initialize_cvode(u_vec, two_scale_corrosion_rhs);

and we print the summary of used paramaters

print_summary();

Next, we enter the main computational loop of the program: we iterate with iout over the number
of output times given by N OUT

for (iout = 1; iout <= N_OUT; ++iout) {
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In the body of the loop, we calculate the next output time and store it in tout, call the main
routine of CVODE solver CVode and check for success, save the solution and print indication of
progress to the screen

tout = iout*DT;

if (CVode(cvode_mem, tout, u_vec, &t, CV_NORMAL) != 0) {

exit(EXIT_FAILURE);

}

save_output(u_vec);

printf("Step %5u / %5u\r", iout, N_OUT);

fflush(stdout);

}

When the computation is finished, we print some statistics about the CVODE solver, free allocated
memory and exit the program

print_final_cvode_stats(cvode_mem);

N_VDestroy_Serial(u_vec);

CVodeFree(&cvode_mem);

return EXIT_SUCCESS;

}

Initial condition

We initialize the values in u vec from the initial condition, i.e., from the constants U* INIT
defined above. We do this in a helper function set initial profiles which also serves us here
as an example of how to use the macros to access values of the functions ukh, k ∈ {1, 2, 3, 4}. We first
extract the pointer to the actual data from the N Vector structure using the macro NV DATA S.
Then, in the outer loop we iterate over the x-direction, while in the inner loop we iterate over the
y-direction. Note how the access pattern visits all the elements in u vec sequentially and how we
avoid accessing U1(u,0).

void set_initial_profiles(N_Vector u_vec) {

double* u = NV_DATA_S(u_vec);

int xi, yi;

for (xi = 0; xi <= N_X; ++xi) {

if (xi != 0) {

U1(u,xi) = U1_INIT;

}

for (yi = 0; yi <= N_Y; ++yi) {

U2(u,xi,yi) = U2_INIT;

U3(u,xi,yi) = U3_INIT;

}

U4(u,xi) = U4_INIT;

}

}

Setting up the CVODE solver

We set up and initialize the CVODE solver in another helper function, initialize cvode,
which takes the vector with initial condition and the right-hand side function as parameters and
returns a pointer to the allocated CVODE solver memory structure
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void* initialize_cvode(N_Vector u_0_vec, CVRhsFn rhs_fn) {

int flag;

Then, we call CVodeCreate to instantiate a solver object and specify Backward Differentiation
Formula as the linear multistep method and the use of a Newton iteration for solving the non-linear
system

void* cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);

if (cvode_mem == NULL) { exit(EXIT_FAILURE); }

Next, we call CVodeInit to allocate internal object memory and to initialize the solver giving it
the right-hand side function, the initial time 0 and the initial dependent variable vector u 0 vec

flag = CVodeInit(cvode_mem, rhs_fn, 0.0, u_0_vec);

if (flag != 0 ) { exit(EXIT_FAILURE); }

As the next step, we set the scalar relative and absolute tolerances REL TOL and ABS TOL and we
increase the internal maximum number of steps CVODE can take

flag = CVodeSStolerances(cvode_mem, REL_TOL, ABS_TOL);

if (flag != 0 ) { exit(EXIT_FAILURE); }

flag = CVodeSetMaxNumSteps(cvode_mem, 1000000L);

if (flag != 0 ) { exit(EXIT_FAILURE); }

Finally, we call CVSpgmr to specify the linear solver GMRES with no preconditioning (see also
Exercise 7.4) and return the pointer to CVODE memory

flag = CVSpgmr(cvode_mem, PREC_NONE, 30);

if (flag != 0 ) { exit(EXIT_FAILURE); }

return cvode_mem;

}

For additional details, we refer the reader to the CVODE User’s Manual.

Right-hand side function

In this section we describe the core function of the program, two scale corrosion rhs,
that implements the right-hand side f of our system (7.5)

int two_scale_corrosion_rhs(double t, N_Vector u_vec,

N_Vector udot_vec, void *user_data)

{

The arguments represent the current time t (not used in the function, because the right-hand side
does not depend explicitly on time), the vector with dependent variable u vec (should not and is
not changed in the function), the output vector containing f(u) and a pointer to user data, which is
not used in this function because all the parameters are available as global macro constants. Should
our program grow in size and be split into several files, it would be advisable and convenient gather
the parameters into a structure and pass a pointer to this structure when initializing CVode solver
memory. That pointer then would be available here as user data.

Next, we extract pointers to the actual data from u vec and udot vec

double* u = NV_DATA_S(u_vec);

double* udot = NV_DATA_S(udot_vec);

and we declare some variables that we need below

double u1, u2, u3;

double BHu1u2, etau3u4;

double u1_left, u1_right;

double u2_left, u2_right;
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double u3_left, u3_right;

int xi, yi;

Now, we employ the familiar nested loop iterating over the nodes of our two-scale grids and
start evaluating the right-hand side

for (xi = 0; xi <= N_X; ++xi) {

First, we deal with the equation (7.1) by evaluating the two-scale sink/source coupling term
Bi(Hu1

i − u2
i,0), which we store in a local variable for later use when computing the boundary

condition for u2
h

if (xi != 0) {

u1 = U1(u,xi);

} else {

u1 = U1_D;

}

BHu1u2 = BIOT_NUMBER*(H*u1 - U2(u,xi,0));

For the evaluation of discrete Laplacian we need neighboring values at nodes i−1 and i+ 1, but we
have to take into account the Dirichlet boundary condition at x = 0 and zero Neumann condition
at x = L

if (xi != 0) {

if (xi != 1) {

u1_left = U1(u,xi-1);

} else {

u1_left = U1_D;

}

u1_right = (xi != N_X) ? U1(u,xi+1) : u1_left;

Finally, we evaluate the right-hand side of (7.1) and store the value in the udot vec vector

U1(udot,xi) = D_1*(u1_left - 2.0*u1 + u1_right)/(DX*DX)

- BHu1u2;

}

Next, we evaluate the right-hand side of (7.2) and (7.3). We iterate in a loop over nodes of the
grid covering the micro-cell Y

for (yi = 0; yi <= N_Y; ++yi) {

and extract the values of u2
h and u3

h at nodes i − 1, i and i + 1 taking into account the boundary
conditions. Note that we store the value of η(u3

i,Ny
, u4
i ) for later reuse to avoid recomputing this

(possibly expensive) function

if (yi != 0) {

u2_left = U2(u,xi,yi-1);

u3_left = U3(u,xi,yi-1);

} else {

u2_left = U2(u,xi,1) + 2.0*DY/D_2*BHu1u2;

u3_left = U3(u,xi,1);

}

u2 = U2(u,xi,yi);

u3 = U3(u,xi,yi);

if (yi != N_Y) {

u2_right = U2(u,xi,yi+1);

u3_right = U3(u,xi,yi+1);

} else {
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etau3u4 = eta(u3, U4(u,xi));

u2_right = u2_left;

u3_right = u3_left - 2.0*DY/D_3*etau3u4;

}

Now, all that remains is to evaluate the right-hand side of (7.2)

U2(udot,xi,yi) = D_2*(u2_left - 2.0*u2 + u2_right)/(DY*DY)

- ALPHA*u2 + BETA*u3;

of (7.3)

U3(udot,xi,yi) = D_3*(u3_left - 2.0*u3 + u3_right)/(DY*DY)

+ ALPHA*u2 - BETA*u3;

}

of (7.4)

U4(udot,xi) = etau3u4;

}

and exit the function return 0 to indicate success to the caller

return 0;

}

We conclude the description of the program by listing the function eta, whose implementation
is straightforward

double eta(double a, double b) {

if (a > 0.0 && b < C_BAR) {

return K*pow(a, PARTIAL_ORDER_P)*pow(C_BAR - b, PARTIAL_ORDER_Q);

} else {

return 0.0;

}

}

7.4. Exercises

Exercise 7.1. Even if the program described in this chapter consists of only single file, it
depends on an external library, whose header and library files can be located in different places
depending on the operating system and compiler. As the source code and number of files grows,
there arise internal dependencies between individual components. In order to facilitate portability
and ease of compilation under different environments, various tools have been developed over years.
As you extend the program and write your own, knowledge of such a tool can come very handy.
CMake1 is one such popular, modern tool that enables portable compilation under Windows as well
as UNIX-based systems (e.g., Linux or Mac OS X). Write a CMake script for compiling our simple
program and try to compile it under different operating systems and compilers.

Exercise 7.2. Learn how to use Gnuplot2 and write a script for visualization of the numerical
data from our program.

Exercise 7.3. Implement the simple ordering described in the text of this chapter and see
if and how it affects the performance compared to our good ordering. Determine the bandwidth of
the Jacobian of f in both cases.

1http://www.cmake.org/
2http://www.gnuplot.info/

http://www.cmake.org/
http://www.gnuplot.info/
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Exercise 7.4. CVODE library offers various dense and Krylov iterative linear solvers (with
or without preconditioning) that are used in the non-linear Newton solver.

1. Learn how to set up CVODE to use these solvers and modify the code accordingly.

2. Experiment with different solvers and see if and how they affect the performance of the
program.

3. Modify the source code to use the built-in preconditioner CVBANDPRE and experiment,
how the simple and good ordering affect the performance.

Exercise 7.5. Remove the dependence on the external CVODE library by implementing
your own time integration solver. For instance, try to implement an explicit Runge-Kutta method
with embedded higher-order estimate so that you can change the time step size adaptively, and
compare the performance of both solvers. As a simpler alternative, try to use a Runge-Kutta solver
as implemented, e.g., in GSL3.

Exercise 7.6. Taking inspiration from the program presented in this chapter implement
the numerical scheme from Exercise 6.2. Start with Ω and Y being one-dimensional as in this
chapter. To make the simulation more interesting, try to take the relevant problem parameters
(like d(y), cF (y) and cB(y)) non-constant depending on y. Try to extend the program for Y being
two-dimensional.

3http://www.gnu.org/s/gsl/

http://www.gnu.org/s/gsl/
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Source code

#include <stdlib.h> /* standard library functions */

#include <stdio.h> /* standard input/output functions */

#include <math.h>

#include <time.h>

#include <sys/types.h>

#include <sys/stat.h>

/* CVODE header files */

#include <cvode/cvode.h>

#include <cvode/cvode_spgmr.h>

#include <nvector/nvector_serial.h>

#include <sundials/sundials_math.h>

/* parameters */

#define BIOT_NUMBER 864.0

#define H 2.5

#define C_BAR 1.0

#define PARTIAL_ORDER_P 1.0

#define PARTIAL_ORDER_Q 1.0

/* diffusivities */

#define D_1 864.0

#define D_2 0.0864

#define D_3 0.0864

/* rate constants */

#define ALPHA 7.2

#define BETA 0.84

#define K 1.0

/* boundary and initial conditions */

#define U1_D 0.1

#define U1_INIT U1_D

#define U2_INIT 0.0

#define U3_INIT 0.00001

#define U4_INIT 0.0

/* geometry */

#define L_X 500.0

#define L_Y 10.0

#define N_X 256

63
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#define N_Y 32

#define DX (L_X/N_X)

#define DY (L_Y/N_Y)

#define NEQ_X (N_X+1)

#define NEQ_Y (N_Y+1)

#define NEQ (2*NEQ_X+2*NEQ_X*NEQ_Y-1)

/* time integration and output*/

#define T 1000.0

#define ABS_TOL 1.0e-9

#define REL_TOL 1.0e-9

#define N_OUT 100

#define DT (T/N_OUT)

/* macros to access solution vector */

#define U1(u,xi) u[(xi)*(2*NEQ_Y+2)-1]

#define U2(u,xi,yi) u[(xi)*(2*NEQ_Y+2)+2*(yi)]

#define U3(u,xi,yi) u[(xi)*(2*NEQ_Y+2)+2*(yi)+1]

#define U4(u,xi) u[(xi)*(2*NEQ_Y+2)+2*NEQ_Y]

void print_summary();

void set_initial_profiles(N_Vector u_vec);

void* initialize_cvode(N_Vector u_0_vec, CVRhsFn rhs_fn);

int two_scale_corrosion_rhs(double t, N_Vector u_vec,

N_Vector udot_vec, void* user_data);

double eta(double a, double b);

void save_output(N_Vector u_vec);

void print_final_cvode_stats(void* cvode_mem);

int main(void) {

void* cvode_mem;

N_Vector u_vec;

double t, tout;

int iout;

u_vec = N_VNew_Serial((long)NEQ);
if (u_vec == NULL) {

exit(EXIT_FAILURE);

}

set_initial_profiles(u_vec);

save_output(u_vec);

cvode_mem = initialize_cvode(u_vec, two_scale_corrosion_rhs);

print_summary();

for (iout = 1; iout <= N_OUT; ++iout) {

tout = iout*DT;

if (CVode(cvode_mem, tout, u_vec, &t, CV_NORMAL) != 0) {

exit(EXIT_FAILURE);
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}

save_output(u_vec);

printf("Step %5u / %5u\r", iout, N_OUT);

fflush(stdout);

}

print_final_cvode_stats(cvode_mem);

N_VDestroy_Serial(u_vec);

CVodeFree(&cvode_mem);

return EXIT_SUCCESS;

}

void set_initial_profiles(N_Vector u_vec) {

double* u = NV_DATA_S(u_vec);

int xi, yi;

for (xi = 0; xi <= N_X; ++xi) {

if (xi != 0) {

U1(u,xi) = U1_INIT;

}

for (yi = 0; yi <= N_Y; ++yi) {

U2(u,xi,yi) = U2_INIT;

U3(u,xi,yi) = U3_INIT;

}

U4(u,xi) = U4_INIT;

}

}

void* initialize_cvode(N_Vector u_0_vec, CVRhsFn rhs_fn) {

int flag;

void* cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);

if (cvode_mem == NULL) { exit(EXIT_FAILURE); }

flag = CVodeInit(cvode_mem, rhs_fn, 0.0, u_0_vec);

if (flag != 0 ) { exit(EXIT_FAILURE); }

flag = CVodeSStolerances(cvode_mem, REL_TOL, ABS_TOL);

if (flag != 0 ) { exit(EXIT_FAILURE); }

flag = CVodeSetMaxNumSteps(cvode_mem, 1000000L);

if (flag != 0 ) { exit(EXIT_FAILURE); }

flag = CVSpgmr(cvode_mem, PREC_NONE, 30);

if (flag != 0 ) { exit(EXIT_FAILURE); }

return cvode_mem;

}

int two_scale_corrosion_rhs(double t, N_Vector u_vec,

N_Vector udot_vec, void *user_data)

{

double* u = NV_DATA_S(u_vec);

double* udot = NV_DATA_S(udot_vec);

double u1, u2, u3;

double BHu1u2, etau3u4;
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double u1_left, u1_right;

double u2_left, u2_right;

double u3_left, u3_right;

int xi, yi;

for (xi = 0; xi <= N_X; ++xi) {

if (xi != 0) {

u1 = U1(u,xi);

} else {

u1 = U1_D;

}

BHu1u2 = BIOT_NUMBER*(H*u1 - U2(u,xi,0));

if (xi != 0) {

if (xi != 1) {

u1_left = U1(u,xi-1);

} else {

u1_left = U1_D;

}

u1_right = (xi != N_X) ? U1(u,xi+1) : u1_left;

U1(udot,xi) = D_1*(u1_left - 2.0*u1 + u1_right)/(DX*DX)

- BHu1u2;

}

for (yi = 0; yi <= N_Y; ++yi) {

if (yi != 0) {

u2_left = U2(u,xi,yi-1);

u3_left = U3(u,xi,yi-1);

} else {

u2_left = U2(u,xi,1) + 2.0*DY/D_2*BHu1u2;

u3_left = U3(u,xi,1);

}

u2 = U2(u,xi,yi);

u3 = U3(u,xi,yi);

if (yi != N_Y) {

u2_right = U2(u,xi,yi+1);

u3_right = U3(u,xi,yi+1);

} else {

etau3u4 = eta(u3, U4(u,xi));

u2_right = u2_left;

u3_right = u3_left - 2.0*DY/D_3*etau3u4;

}

U2(udot,xi,yi) = D_2*(u2_left - 2.0*u2 + u2_right)/(DY*DY)

- ALPHA*u2 + BETA*u3;

U3(udot,xi,yi) = D_3*(u3_left - 2.0*u3 + u3_right)/(DY*DY)

+ ALPHA*u2 - BETA*u3;

}

U4(udot,xi) = etau3u4;

}

return 0;

}
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double eta(double a, double b) {

if (a > 0.0 && b < C_BAR) {

return K*pow(a, PARTIAL_ORDER_P)*pow(C_BAR - b, PARTIAL_ORDER_Q);

} else {

return 0.0;

}

}

void print_summary() {

printf("Omega = (0,%f)\n", L_X);

printf("Y = (0,%f)\n", L_Y);

printf("grid size = %u x %u\n", NEQ_X, NEQ_Y);

printf("step sizes: h_x = %f, h_y = %f\n", DX, DY);

printf("d_1 = %f, d_2 = %f, d_3 = %f\n", D_1, D_2, D_3);

printf("alpha = %f, beta = %f, k = %f\n", ALPHA, BETA, K);

printf("Biot = %f, c_bar = %f, H = %f, p = %f, q = %f\n",

BIOT_NUMBER, C_BAR, H, PARTIAL_ORDER_P, PARTIAL_ORDER_Q);

printf("u1_D = %f\n", U1_D);

printf("u1_0 = %f, u2_0 = %f, u3_0 = %f, u4_0 = %f\n",

U1_INIT, U2_INIT, U3_INIT, U4_INIT);

printf("time interval = (0,%f)\n", T);

printf("relative tolerance = %g\nabsolute tolerance = %g\n\n",

REL_TOL, ABS_TOL);

}

void save_output(N_Vector u_vec) {

static int count = 0;

static char output_dir[256];

char filename[512];

int xi, yi;

FILE* fout;

double* u = NV_DATA_S(u_vec);

if (count == 0) {

time_t rawtime;

struct tm* timeinfo;

time(&rawtime);

timeinfo = localtime(&rawtime);

strftime(output_dir, (size_t)255, "result_%Y%m%d_%H%m%S", timeinfo);

if (0 != mkdir(output_dir, 0755)) {

perror("Failed to create output directory");

exit(EXIT_FAILURE);

} else {

printf("Writing results to directory: %s\n", output_dir);

}

}

sprintf(filename, "%s/u1_%05u.dat", output_dir, count);

fout = fopen(filename, "wt");
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if (fout == NULL) {

perror("Failed to create output file for u1");

exit(EXIT_FAILURE);

}

fprintf(fout, "%f %f\n", 0.0, U1_D);

for (xi = 1; xi <= N_X; ++xi) {

fprintf(fout, "%f %f\n", xi*DX, U1(u,xi));

}

fclose(fout);

sprintf(filename, "%s/u2_%05u.dat", output_dir, count);

fout = fopen(filename, "wt");

if (fout == NULL) {

perror("Failed to create output file for u2");

exit(EXIT_FAILURE);

}

for (xi = 0; xi <= N_X; ++xi) {

for (yi = 0; yi <= N_Y; ++yi) {

fprintf(fout, "%f %f %f\n", xi*DX, yi*DY, U2(u,xi,yi));

}

fprintf(fout, "\n");

}

fclose(fout);

sprintf(filename, "%s/u3_%05u.dat", output_dir, count);

fout = fopen(filename, "wt");

if (fout == NULL) {

perror("Failed to create output file for u3");

exit(EXIT_FAILURE);

}

for (xi = 0; xi <= N_X; ++xi) {

for (yi = 0; yi <= N_Y; ++yi) {

fprintf(fout, "%f %f %f\n", xi*DX, yi*DY, U3(u,xi,yi));

}

fprintf(fout, "\n");

}

fclose(fout);

sprintf(filename, "%s/u4_%05u.dat", output_dir, count);

fout = fopen(filename, "wt");

if (fout == NULL) {

perror("Failed to create output file for u4");

exit(EXIT_FAILURE);

}

for (xi = 0; xi <= N_X; ++xi) {

fprintf(fout, "%f %f\n", xi*DX, U4(u, xi));

}

fclose(fout);

++count;
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}

void print_final_cvode_stats(void* cvode_mem) {

long int lenrw, leniw ;

long int lenrwLS, leniwLS;

long int nst, nfe, nsetups, nni, ncfn, netf;

long int nli, npe, nps, ncfl, nfeLS;

/* CVODE solver stats */

CVodeGetWorkSpace(cvode_mem, &lenrw, &leniw);

CVodeGetNumSteps(cvode_mem, &nst);

CVodeGetNumRhsEvals(cvode_mem, &nfe);

CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);

CVodeGetNumErrTestFails(cvode_mem, &netf);

CVodeGetNumNonlinSolvIters(cvode_mem, &nni);

CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);

/* Spils (linear solver) stats */

CVSpilsGetWorkSpace(cvode_mem, &lenrwLS, &leniwLS);

CVSpilsGetNumLinIters(cvode_mem, &nli);

CVSpilsGetNumPrecEvals(cvode_mem, &npe);

CVSpilsGetNumPrecSolves(cvode_mem, &nps);

CVSpilsGetNumConvFails(cvode_mem, &ncfl);

CVSpilsGetNumRhsEvals(cvode_mem, &nfeLS);

printf("\n\nFinal CVODE statistics:\n\n");

printf("Real workspace size = %5ld\n", lenrw);

printf("Integer workspace size = %5ld\n", leniw);

printf("Linear solver real workspace size = %5ld\n", lenrwLS);

printf("Linear solver integer workspace size = %5ld\n", leniwLS);

printf("Number of steps taken = %5ld\n", nst);

printf("Number of RHS evaluations = %5ld\n", nfe);

printf("Number of RHS evaluations in linear solver = %5ld\n", nfeLS);

printf("Number of nonlinear solver iterations = %5ld\n", nni);

printf("Number of linear solver iterations = %5ld\n", nli);

printf("Number of linear solver setups = %5ld\n", nsetups);

printf("Number of error test fails = %5ld\n", netf);

printf("Number of preconditioner evaluations = %5ld\n", npe);

printf("Number of preconditioner solves = %5ld\n", nps);

printf("Number of nonlinear convergence fails = %5ld\n", ncfn);

printf("Number of linear solver convergence fails = %5ld\n\n", ncfl);

}
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[BJDR98] M. Böhm, F. Jahani, J. Devinny, and G. Rosen, A moving-boundary system modeling corrosion of

sewer pipes, Appl. Math. Comput. 92 (1998), 247–269.

[BLP78] A. Bensoussan, J. L. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-
Holland, Amsterdam, 1978.

[CD99] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathe-

matics and Its Applications, vol. 17, Oxford University Press, Oxford, 1999.
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[HJ91] U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous

media, J. Differential Equations 92 (1991), no. 2, 199–225. MR MR1120903 (92i:76095)
[Hol95] M. H. Holmes, Introduction to Perturbation Methods, Texts in Applied Mathematics, vol. 20, Springer

Verlag, Berlin, 1995.

71



72 BIBLIOGRAPHY

[Hor93] U. Hornung, Models for flow and transport through porous media derived by homogenization, Tech.

Report 1148, IMA Preprint Series, 1993.
[Hor97] U. Hornung (ed.), Homogenization and Porous Media, Interdisciplinary Applied Mathematics, vol. 6,

Springer-Verlag, New York, 1997. MR MR1434315 (98h:76128)

[HW85] F. Howes and S. Whitaker, The spatial averaging theorem, Chemical Engineering Science 40 (1985),
no. 8, 1387–1392.

[JDM+01] F. Jahani, J. Devinny, F. Mansfeld, I. G. Rosen, Z. Sun, and C. Wang, Investigations of sulfuric acid

corrosion of the concrete, I: Modeling and chemical observations, J. Environ. Eng. 127 (2001), no. 7,
572–579.

[JKO94] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral

Functionals, Springer Verlag, Berlin, 1994.
[Lad85] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New

York, 1985.
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[MBH09] W. Müllauer, R. E. Beddoe, and D. Heinz, Sulfate attack on concrete – Solution concentration and
phase stability, Concrete in Aggressive Aqueous Environments, Performance, Testing and Modeling,

RILEM Publications, 2009, pp. 18–27.

[MCP08] A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using
homogenization techniques, SIAM J. Math. Anal. 40 (2008), no. 1, 215–237.

[MNR10] A. Muntean and M. Neuss-Radu, A multiscale Galerkin approach for a class of nonlinear coupled
reaction-diffusion systems in complex media, J. Math. Anal. Appl. 371 (2010), no. 2, 705–718.

[MV10] C. C. Mei and B. Vernescu, Homogenization Methods for Multiscale Mechanics, World Scientific, New

Jersey, 2010.
[Ngu89] G. Nguestseng, A general convergence result for a functional related to the theory of homogenization,

SIAM J. Math. Anal 20 (1989), 608–623.

[NR92] M. Neuss-Radu, Homogenization techniques, Diploma thesis, University of Cluj-Napoca, Romania,
and University of Heidelberg, Germany, 1992.

[NR96] , Some extensions of two-scale convergence, C. R. Acad. Sci. Paris Sér. I Math 332 (1996),
899–904.

[PPSW93] L. E. Persson, L. Persson, N. Svanstedt, and J. Wyller, The Homogenization Method: An Introduction,

Studentlitteratur, Chartwell Bratt, Lund, Sweden, 1993.
[PS08] G. A. Pavliotis and A. M. Stuart, Multiscale Methods: Averaging and Homogenization, Texts in

Applied Mathematics, vol. 53, Springer Verlag, Berlin, 2008.

[SC02] L. Saloff-Coste, Aspects of Sobolev-type Inequalities, Lecture Note Series of London Mathematical
Society, vol. 289, Cambridge University Press, 2002.

[TMA03] R. Tixier, B. Mobasher, and M. Asce, Modeling of damage in cement-based materials subjected to

external sulfate attack. I: Formulation, J. Mat. Civil Engng. 15 (2003), 305–313.
[vDMPR08] C. J. van Duijn, A. Mikelic, I. S. Pop, and C. Rosier, Effective dispersion equations for reactive flows
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