Towards best-case response times of real-time tasks under fixed-priority scheduling with deferred preemption

Reinder J. Bril
Technische Universiteit Eindhoven (TU/e), Den Dolech 2, 5600 AZ Eindhoven, The Netherlands
r.j.bril@tue.nl

Wim F.J. Verhaegh
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
wim.verhaegh@philips.com

Abstract

In this paper, we present lower bounds for best-case response times of periodic tasks under fixed-priority scheduling with deferred preemption (FPDS) and arbitrary phasing. Our analysis is based on a dedicated conjecture for a Δ-optimal instant, and uses the notion of best-case occupied time. We briefly compare best-case analysis and worst-case analysis for FPDS and arbitrary phasing.

1 Introduction

Based on the seminal paper of Liu and Layland [8], many results have been achieved in the area of analysis for fixed-priority preemptive scheduling (FPPS). Arbitrary preemption of real-time tasks has a number of drawbacks, though. In particular in systems using cache memory, e.g. to bridge the speed gap between processors and main memory, arbitrary preemptions induce additional cache flushes and reloads. As a consequence, system performance and predictability are degraded, complicating system design, analysis and testing [4, 5, 7, 10]. Although fixed-priority non-preemptive scheduling (FPNS) may resolve these problems, it generally leads to reduced schedulability compared to FPPS. Therefore, alternative scheduling schemes have been proposed between the extremes of arbitrary preemption and no preemption. These schemes are also known as deferred preemption or co-operative scheduling [3], and are denoted by fixed-priority scheduling with deferred preemption (FPDS) in the remainder of this paper.

Best-case response time analysis of periodic real-time tasks under FPDS and arbitrary phasing has been addressed in a number of papers [3, 7, 2]. Best-case response time analysis received considerably less attention, and is the topic of this paper. It is based on a dedicated theorem for a so-called Δ-optimal instant, and uses a notion which we term best-case occupied time. For space considerations, we only discuss results; proofs will appear elsewhere. Application of best-case response times, e.g. to analyze jitter in distributed multiprocessor systems, also falls outside the scope of this paper.

This paper is organized as follows. Section 2 describes best-case analysis of periodic tasks under FPPS and arbitrary phasing. For completeness reasons, we start with a recapitulation of best-case response times. We subsequently address best-case occupied times. In Section 3, we present our results for FPDS and arbitrary phasing. In Section 4, we briefly compare the approaches for best-case analysis and worst-case analysis.

2 Best-case analysis for FPPS

2.1 Basic model

We assume a single processor and a set Γ of n periodic, independent tasks τ1, τ2, . . . , τn. Each task τi is characterized by a (release) period Ti ∈ R+, a (best-case) computation time Ci ∈ R+, and a (relative) deadline Di ∈ R+. In this paper, we assume that a task’s deadline does not exceed its period, i.e. Di ≤ Ti for all i. A release of a task is also termed a job. The release of task τi at time φi ∈ R with 0 ≤ φi < Ti serves as a reference release. Time φi is also termed the phasing of task τi, and φ = (φ1, . . . , φn) is called the phasing of the task set Γ. We assume that we do not have control over the phasing φ, for instance since the tasks are released by external events, so we assume that any arbitrary phasing may occur. This assumption is common in real-time scheduling literature [6, 8]. We also assume other standard basic assumptions [8], i.e. tasks are ready to run at the start of each period and do no suspend themselves, tasks will be preempted instantaneously when a higher priority task becomes ready to run, a job of task τi does not start before its previous job is completed, and the overhead of context
switching and task scheduling is ignored. Finally, we assume that the tasks are given in order of decreasing priority, i.e. task \(\tau_1 \) has highest priority and task \(\tau_n \) has lowest priority.

2.2 Recapitulation of best-case response times

The best-case response time of a task is the length of the shortest interval from a task’s release till its completion. To determine best-case response times under arbitrary phasing, it suffices to consider only so-called optimal (or favourable) instants \([9, 1] \). For FPPS, an optimal instant for task \(\tau_i \) is given by a point in time in which the completion of \(\tau_i \) coincides with the simultaneous release of all higher priority tasks. From this notion of optimal instants, it has been derived that the best-case response time \(BR_i \) of a task \(\tau_i \) is given by the largest \(x \in \mathbb{R}^+ \) that satisfies

\[
x = C_i + \sum_{j<i} \left(\left\lfloor \frac{x}{T_j} \right\rfloor - 1 \right) C_j. \tag{1}\n\]

Assuming an optimal instant at time 0, the factor \(\left(\left\lfloor \frac{x}{T_j} \right\rfloor - 1 \right) \) in (1) gives the best-case number of preemptions that an execution of task \(\tau_i \) suffers from task \(\tau_j \) in an interval \((-x,0)\). In order to calculate the best-case response times, we can use the following iterative procedure based on recurrence relationships. The procedure starts with an upper bound. When the worst-case response time \(WR_i \) of \(\tau_i \) is known, we can use it as initial value.

\[
BR_i^{(0)} = WR_i \n\]

\[
BR_i^{(k+1)} = C_i + \sum_{j<i} \left(\left\lfloor \frac{BR_j^{(k)}}{T_j} \right\rfloor - 1 \right) C_j
\]

The procedure is stopped when the same value is found for two successive iterations of \(k \), yielding the largest solution of the recursive equation, i.e. the best-case response time of \(\tau_i \). Termination of the procedure is ensured by the fact that the sequence \(BR_i^{(k)} \) is bounded (from below by \(C_i \), and from above by \(WR_i \)) and non-increasing, and that different values for successive iterations differ at least \(\min_{j<i} C_j \). Table 1 provides an example with characteristics of a task set \(\Gamma \) consisting of three tasks, and the response times under FPPS. We used the superscript \(P \) to denote FPPS in Table 1. Similarly, we will use superscript \(D \) later to denote FPDS.

Figure 1 shows a timeline with the executions of these three tasks and an optimal instant at time zero for task \(\tau_3 \). Note that for the construction of the best-case response time of task \(\tau_1 \) using a timeline:

- we first draw the releases and executions of the higher priority tasks before their simultaneous release, and
- we subsequently draw the execution of \(\tau_3 \) backwards in time.

<table>
<thead>
<tr>
<th>(\tau_1)</th>
<th>(\tau_2)</th>
<th>(\tau_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_i)</td>
<td>(D_i)</td>
<td>(C_i)</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1 + 2</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>2 + 2</td>
</tr>
<tr>
<td>(BR_i^{P})</td>
<td>(WR_i^{P})</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>(BR_i^{D})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Task characteristics and response times under FPPS and FPDS.

2.3 Best-case occupied time

The best-case occupied time of a task is closely related to its best-case response time. The best-case occupied time \(BO_i \) of a task \(\tau_i \) is defined as the length of the shortest interval from a release of that task during which the processor is occupied with the execution of \(C_i \) of that job and executions of higher priority tasks till the moment that the same job could start an additional bit of computation. Because that additional bit of computation extends \(BR_i \) backwards in time (see Figure 1), \(BO_i \) of task \(\tau_i \) is equal to \(BR_i \) extended with all aligning preceding executions of higher priority tasks.

Given this above definition, we may simply derive the best-case occupied time \(BO_3 \) for \(\tau_3 \) from Figure 1. \(BO_3 \) extends \(BR_3 \) with the aligning preceding executions of both \(\tau_1 \) and \(\tau_2 \), i.e. \(BO_3 = BR_3 + C_1 + C_2 = 21 \).

To determine best-case occupied times under arbitrary phasing, we can use a similar approach as for best-case response times. However, rather than considering releases of higher priority tasks in an interval \((-x,0)\), we need to consider releases of those tasks in an interval \([-x,0)\), i.e. including those at time \(x \). This can be done by using the floor rather than the ceiling function, and adding a term 1, i.e. the best-case occupied time \(BO_i \) of a task \(\tau_i \) is given by the largest \(x \in \mathbb{R}^+ \) that satisfies

\[
x = C_i + \sum_{j<i} \left\lfloor \frac{x}{T_j} \right\rfloor C_j. \tag{2}\n\]

![Figure 1. Timeline under FPPS with an optimal instant at time zero for task \(\tau_3 \).](image-url)
Assuming a optimal instant at time 0, the factor τ_{ij} in (2) gives the best-case number of preemptions that an execution of task τ_i suffers from task τ_j in an interval $[−x, 0)$. Similarly to best-case response times, we can use an iterative procedure based on recurrence relationships to calculate best-case occupied times. When the worst-case response time WR_i of τ_i is known, we can use it as initial value.

$$BO_i^{(0)} = WR_i$$
$$BO_i^{(k+1)} = C_i + \sum_{j<i} BO_j^{(k)} \cdot T_j$$

The procedure is stopped when the same value is found for two successive iterations of k, yielding the largest solution of the recursive equation. The iterative procedure is ensured to terminate for the same reasons as the termination of the procedure for the best-case response time.

Unlike the best-case response time, the best-case occupied time is well defined for a computation time of zero. In this case, the best-case occupied time is equal to the best-case start time, i.e., the length of the shortest interval from a release of a task till the start of its execution. For our model, the best-case start time is equal to zero for all tasks.

3 Best-case analysis for FPDS

3.1 Refined model

For FPDS, we need to refine our basic model of Section 2.1. Each job of task τ_i is now assumed to consist of m_i subjobs. The j^{th} subjob of τ_i is characterized by a computation time $C_{i,j} \in \mathbb{R}^+$. We assume that subjobs are non-preemptive. Hence, tasks can only be preempted at subjob boundaries, i.e., at so-called preemption points. For convenience, we will use the term F_i to denote the computation time C_{i,m_i} of the final subjob of τ_i. Note that when $m_i = 1$ for all i, we have FPNS as special case.

To illustrate the model, consider the task characteristics of Table 1, i.e., let $m_1 = 1, m_2 = 2$ with $C_{2,1} = 1$ and $C_{2,2} = 2$, and $m_3 = 2$ with $C_{3,1} = C_{3,2} = 2$ for FPDS. As illustrated in [2], task set Γ is schedulable under FPDS, i.e., $WR_i^{D} \leq D_i$ for all tasks τ_i of Γ. Figure 2 shows a timeline with the executions of these three tasks under FPDS with a simultaneous release at time zero. Note that both task τ_1 and task τ_2 have releases with a response time equal to their computation time in this figure, e.g., at time 0 and 7, respectively. Hence, $BR_1^{P} = 1$ and $BR_2^{P} = 2$ for our example.

In the remainder, we will parameterize BR_i and BO_i of task τ_i with C_i when needed.

Figure 2. Timeline under FPDS with a simultaneous release of all tasks at time zero.

3.2 Best-case response times

The non-preemptive nature of subjobs may cause blocking of a task by lower priority tasks under FPDS. Whereas we are interested in the maximum blocking of task τ_i by lower priority tasks for worst-case response times [1], we are interested in the minimum blocking of task τ_i for best-case response times. In this paper, we make the safe, i.e., pessimistic, assumption that the minimum blocking equals zero, which gives rise to a lower bound for the best-case response time.

The highest priority task τ_1 experiences a minimum blocking equal to zero for a simultaneous release of all tasks. Hence, the best-case response time of τ_1 under FPDS and arbitrary phasing is equal to its computation time, i.e.,

$$BR_1^{D} = C_1.$$ (3)

To determine best-case response times under FPDS and arbitrary phasing for a lower priority task τ_i (with $1 < i \leq n$), we revisit optimal instants. We can determine lower bounds for best-case response times of lower priority tasks using the following conjecture, which we merely postulate in this paper.

Conjecture 1 A Δ-optimal instant of a lower priority task τ_i (with $1 < i \leq n$) under FPDS and arbitrary phasing occurs when the final sub-job of τ_i starts a (sufficiently small) finite time $\Delta > 0$ before the simultaneous release of all tasks with a higher priority than τ_i.

Based on this conjecture, we now determine a lower bound for the best-case response time of τ_i. Task τ_i can only be preempted at subjob boundaries by higher priority tasks. As mentioned above, we assume that the minimum blocking of task τ_i is equal to zero. Hence, we may ignore tasks with a lower priority than task τ_i when determining a lower bound for the best-case response time of τ_i. The non-preemptive nature of the subjobs of τ_i may result in deferred preemptions by higher priority tasks. Although that has an influence on the order of the executions of the subjobs of tasks, it does not influence the total amount of time spent...
on those executions. The minimal amount of time spent on executions of all but the final subjob of τ_i, including the (deferred) preemptions of higher priority tasks is given by $BR^D_i(C_i - F_i)$. According to Conjecture 1, the final subjob of τ_i has to start (a sufficiently small) finite $\Delta > 0$ before the simultaneous release of its higher priority tasks. Hence, the minimal amount of time spent from the release of τ_i on executions of τ_i and its higher priority tasks till the simultaneous release of those higher priority tasks is given by $BR^D_i(C_i - F_i + \Delta)$. This latter value is equal to $BO^P_i(C_i - F_i)$ plus a finite time $\Delta > 0$. A lower bound for the best-case response time BR^D_i of τ_i is therefore given by

$$BR^D_i \geq BO^P_i(C_i - F_i) + F_i.$$ \hspace{1cm} (4)

3.3 An example

To illustrate the analysis, consider the task characteristics of Table 1. As shown in [2], task set Γ is schedulable under FPDS, i.e. $WR^D_i \leq D_i$ for all three tasks τ_i of Γ. Figure 3 shows a timeline with the executions of these three tasks and a Δ-optimal instant at time zero for task τ_3.

![Timeline under FPDS](image)

Figure 3. Timeline under FPDS with a Δ-optimal instant at time zero for task τ_3.

Using (4) yields $BR^D_3 \geq BO^P_3(C_3 - F_3) + F_3 = BO^P_3(2) + 2 = 7 + 2 = 9$. Note that this lower bound of 9 for BR^D_3 of task τ_3 is larger than its computation time C_3, which equals 4, and is smaller than BR^P_3, which equals 16.

4 Discussion

In this section we briefly compare the approaches for best-case analysis and worst-case analysis for FPDS under arbitrary phasing.

Both worst-case response times and best-case response times under FPDS can be expressed in terms of response times and occupied times under FPSS. Worst-case analysis for FPDS is based on a so-called ε-critical instant [2], where ε is an infinitesimal time larger than zero. Such an instant is a supremum for all but the lowest priority task, i.e. that instant can not be assumed. Conversely, best-case analysis for FPDS is based on a Δ-optimal instant, where Δ is a (sufficiently small) finite time larger than zero. Therefore, a Δ-optimal instant can be assumed.

Acknowledgements

We thank Jan H.M. Korst and Clemens C. Wüst for their comments on a previous version of this paper.

References

