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Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car
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Abstract We consider a PDE-based approach for finding minimal paths for the Reeds-Shepp car. In
the model we minimize a (data-driven) functional involving both curvature and length penalization, with
several generalizations. Our approach encompasses the two and three dimensional variants of this model,
state dependent costs (modeling mobility), and moreover, the possibility of removing the reverse gear of
the vehicle.

Study objectives on the minimal path model:

– We study exact solutions of the model in the case of uniform cost (i.e. constant mobility) for the 2D
model. For details on how this extends to the 3D model see [28].

– We prove both global and local controllability results of the models.
– We compute distance maps w.r.t. highly anisotropic Finsler functions, which approximate the singular

(pseudo)-metrics underlying the model. The computation is done via eikonal equations on the manifold
Rd × Sd−1. We justify the use of our approximating metrics by proving convergence results.

– We compute solutions (minimizing geodesics) of the data-driven variant of the model by a Fast-
Marching (FM) method, building on Mirebeau [56,55]. The FM method is based on specific discretiza-
tion stencils which are adapted to the preferred directions of the metric and obey a generalized acuteness
property. The shortest paths can be found with a gradient descent method on the distance map, which
we formalize in a theorem.

– We compare, for uniform costs, numeric solutions to exact solutions by Duits & Sachkov [28,24,57].
– We apply our curve optimization model in Rd×Sd−1 with data-driven cost for the extraction of complex

tubular structures from medical images, e.g. crossings, and incomplete data due to occlusions or low
contrast. Numerical experiments show the high potential of our method in two applications: vessel
tracking in retinal images for the case d = 2 by Bekkers et al. [9], and brain connectivity measures
from diffusion weighted MRI-data for the case d = 3.

Literature: This section of the lecture notes is primarily based on the following scientific works [9,26,
24,27,28,56,57,66,67].
Learning objectives:

– Understand the procedure of geodesic tracking in orientation scores.
– Know the procedure for globally optimal path optimization in position and orientation space. This

procedure is an intrinsic gradient descent on distance maps obtained via the eikonal equation on
Rd × Sd−1.

– Understand the concept of local and global controllability.
– Know how to derive exact solutions for the uniform cost and d = 2, via the Pontryagin maximum

principle.
– Know how to set up the Hamiltonian system for the model.
– Know how to derive all preservations laws of the Hamiltonian system.
– Understand the notion of topological interest points such as keypoints and cusps, and know how to

compute them.
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– Understand the notion of Maxwell points (where global optimality is lost) and conjugate points (where
local optimality is lost).

– Understand the general numerical procedures for solving the eikonal equations.
– Be able to apply vessel tracking in orientation scores via a prepared Mathematica notebook and under-

stand the connection of the code to the theory.

NB:
Technical parts and exercises with extra material are indicated in blue and may be skipped: The black text
forms the core of the course and its exam. Regular exercises are indicated in red. The black text and the
red exercises nor do not rely on the blue text nor do they rely on the blue exercises.

1 Introduction

Shortest paths in position and orientation space are central in this paper. Dubins describes in [23] the
problem of finding shortest paths for a car in the plane between initial and final points and direction, with
a penalization on the radius of curvature, for a car that has no reverse gear. Reeds and Shepp consider
in [62] the same problem, but then for a car that does have the possibility for backward motion. In both
papers, the focus lies on describing and proving the general shape of the optimal paths, without giving
explicit solutions for the shortest paths.

This can be considered a curve optimization problem in the space R2 × (R/2πZ), equipped with the
natural Euclidean metric but only among curves γ(t) = (x(t), y(t), θ(t)) subject to the constraint that
(ẋ(t), ẏ(t)) is proportional to (cos θ(t), sin θ(t)). Formulating the problem this way, it becomes one of the
simplest examples of sub-Riemannian (SR) geometry: the tangent vector γ̇(t) is constrained to remain
in the span of (cos θ(t), sin θ(t), 0) and (0, 0, 1). The SR curve optimization problem and the properties
of its geodesics in R2 × S1 have been studied and applied in image analysis by [60,18,24,12,57,52,2,11],
whereas a complete and optimal synthesis for the geometric control problem on R2× S1 with uniform cost
is provided by Sachkov [66]. Properties of SR geodesics in Rd × Sd−1 with d = 3 have been studied in [28]
and for general d in [27].

On the left in Fig. 1, we show an example of an optimal path between two points in R2 × S1. The
projection on R2 of this curve shows a cusp, after which the car continues in reverse (the red part of the
line). From the perspective of image analysis applications this is undesirable and it is a valid question what
the optimal paths are if cusps and reverse gear are not allowed. In this paper, similar to the difference
between the Dubins car and the Reeds-Shepp car, we also consider this variant: it can be accounted for by
requiring that the spatial propagation is forward. This variant falls outside the SR framework and requires
asymmetric Finsler geometry instead.

Furthermore, we would like to extend the metric using two data-driven factors that can vary with
position and orientation. This can be used to compute shortest paths for a car, where for example road
conditions and obstacles are taken into account. In [9] it is shown that this approach is useful for tracking
vessels in retinal images. Likewise, the 3D variant of the problem provides a basis for algorithms for
blood vessel detection in 3D MRA data, or detection of shortest paths and quantification of structural
connectivity in 5D diffusion weighted MRI data of the brain.

1.0.1 A distance function and the corresponding shortest paths on Rd × Sd−1

We fix the dimension d ≥ 2, and let M := Rd × Sd−1 be the 2d− 1 dimensional manifold of positions and
orientations. We use a Finsler metric1 on the tangent bundle of M, F : T (M)→ [0,+∞] , of which specific
properties are discussed later, to define a geometry on M. Any such Finsler metric F induces a measure
of length LengthF on the class of paths with Lipschitz regularity, defined as2

LengthF (γ) :=

∫ 1

0

F(γ(t), γ̇(t)) dt,

1 We use the common terminology of Finsler metric, although F is also called ‘Finsler function’, since formally it is not
a metric.

2 In contrast to previous works [28,12,9,51,24] we parameterize such that the time integration stays on [0, 1], and t > 0
is not a priori reserved (unless explicitly stated otherwise) for arclength parametrization (which satisfies Fγ(t)(γ̇(t)) = 1).
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Fig. 1 Top: Example of a shortest path with (left) and without (right) reverse gear in R2 × S and its projection on R2.
The black arrows indicate the begin and end condition in the plane. In the left figure, the projection of the path has a
cusp, after which the line is covered backwards (the red part). On the right, backward motion is not possible. Instead,
according to our model, the shortest path is a concatenation of an in-place rotation (green), a SR geodesic, and again
an in-place rotation. Bottom: corresponding control sets as defined in (7) for the allowed velocities at each position and
orientation, with BF0

on the left and BF+
0

on the right.

with the convention γ̇(t) := d
dtγ(t). The path is said to be normalized w.r.t. F iff F(γ(t), γ̇(t)) =

LengthF (γ) for all t ∈ [0, 1]. Any Lipschitz continuous path of finite length can be normalized by a
suitable reparametrization. Finally, the pseudo-distance dF : M×M→ [0,+∞] is defined for all p,q ∈ M
by

dF (p,q) := inf{LengthF (γ) | γ ∈ Γ, γ(0) = p, γ(1) = q}, (1)

with Γ := Lip([0, 1],M). Normalized minimizers of (1) are called minimal geodesics from p to q w.r.t. F .
For certain pairs (p,q) these minimizers may not be unique, and these points are often of interest.

Definition 1 (Maxwell point) Let pS ∈ M be a fixed point source and γ ∈ Γ a geodesic connecting pS
with q ∈ M, q 6= pS . Then q is a Maxwell point if there exists another extremal path γ̃ ∈ Γ connecting pS
and q, with LengthF (γ) = LengthF (γ̃). If q is the first point (distinct from pS) on γ where such γ̃ exists,
then q is called the first Maxwell point. The curves γ, γ̃ lose global optimality after the first Maxwell point.

1.1 Geometry of the Reeds-Shepp model

We introduce the metric F0 underlying the Reeds-Shepp car model, and the metric F+
0 corresponding to

the variant without reverse gear. Let (p, ṗ) ∈ T (M) be a pair consisting of a point p ∈ M and a tangent
vector ṗ ∈ Tp(M) at this point. The physical and angular components of a point p ∈ M are denoted by
x ∈ Rd and n ∈ Sd−1, and this convention carries over to the tangent:

p = (x,n), ṗ = (ẋ, ṅ) ∈ Tp(M).



4 R. Duits et al.

Fig. 2 left; lifting of planar curves into position and orientation space, right; lifting of 2D image data to data on position
and orientation space (via an orientation score transform) yielding the mobility C(x, y, θ) in orange. In this lifted data
(orientation score), crossings are disentangled and tracking is performed.

We say that ẋ is proportional to n, that we write as ẋ ∝ n, if and only if there exists a λ ∈ R such that
ẋ = λn. We define

F0(p, ṗ)2 :=

{
C21(p)|ẋ · n|2 + C22(p)‖ṅ‖2 if ẋ ∝ n,

+∞ otherwise.
(2)

F+
0 (p, ṗ)2 :=

C
2
1(p)|ẋ · n|2 + C22(p)‖ṅ‖2 if ẋ ∝ n and

ẋ · n ≥ 0,
+∞ otherwise.

(3)

Here ‖ · ‖ denotes the norm and “·” the dot product of the Euclidean space Rd. The functions C1 and C2
are assumed to be continuous on M, and uniformly bounded from below by a positive constant δ > 0. In
applications, C1 and C2 are chosen so as to favor paths which remain close to regions of interest, e.g. along
blood vessels in retinal images. Note that their physical units are distinct: if one wishes dF to have the
dimension [T ] of a travel time, then C−1

1 is a physical, (strictly) spatial velocity [Length][T ]−1, and C−1
2 is

an angular velocity [Rad][T ]−1. For simplicity one often sets C1 = ξC2, where ξ−1 > 0 is a unit of spatial
length. The special case C1(p) = ξC2(p) = ξ for all p ∈ M is referred to as the uniform cost case.

Often in applications, such as vessel tracking in orientation scores [9], we consider the case C1(p) =
ξC(p) and C2(p) = C(p). In this case C(x,n) is a general ‘mobility’ for the lifted Reeds-Shepp car to be
at position x ∈ Rd with orientation n ∈ Sd−1 in the orientation score. If it is low the car can proceed
with low local cost, if it is high the car can proceed with high local costs. For now, the precise choice of
continuously differentiable C : Rd × Sd−1 → [δ,∞] is not crucial, you can assume it to be given. To get an
impression of how such a mobility looks like in practice, see the orange densities in Fig. 2.
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1.2 The eikonal equation and the fast marching algorithm

We compute the distance map to a point source on a volume using the relation to eikonal equations. Let
pS ∈ M be an arbitrary source point, and let U be the associated distance function

U(p) := dF (pS,p). (4)

Then U is the unique viscosity solution [21,20] to the eikonal PDE:{
F∗(p,dU(p)) = 1 for all p ∈ M \ {pS},
U(pS) = 0.

(5)

Here F∗ is the dual metric of F and dU is the differential of the distance map U . However, for these
relations to hold, and for numerical discretization to be practical, F should be at least continuous3. We
therefore propose in Section 2.3 for both F0 and F+

0 an approximating metric, that we denote by Fε and
F+
ε , respectively, that are continuous and converge to F0 and F+

0 as ε → 0. The approximating metrics
correspond to a highly anisotropic Riemannian and Finslerian metric, rather than a sub-Riemannian or
sub-Finslerian metric. The metric Fε is in line with previous approximations [18,9,67] for the case d = 2.

We will design (in Section 7) a monotone and causal discretization scheme for the static Hamilton-
Jacobi PDE (5), which allows to apply efficient, single pass Fast-Marching Algorithm [74]. Let us emphasize
that designing a causal discretization scheme for (5) is non-trivial, because its local connectivity needs to
be obey an acuteness property [70,76] depending on the geometry defined by F . We provide constructions
for the metrics Fε or F+

ε of interest, based on the earlier works [56,55].
In all cases, the reader should keep in mind the key practical advantages of considering eikonal equations

(and the induced wavefront propagation) on M = Rd×Sd−1 instead of considering them on position space
Rd only:

– Wavefront propagations in position space leaks at crossings, whereas wavefront propagation in M works
generically at crossings (regardless the type of crossing).

– Wavefront propagations in position space often requires cumbersome multi-valued solutions [69],
whereas wavefront propagation does not require such post-fixes.

– Wavefront propagations in position space typically fails at bifurcations and wavefront propagation in
M via F+

0 deals with bifurcations.
– Wavefront propagations do not intrinsically encode alignment of local orientations requiring ad-hoc

modeling, whereas wavefront propagation in position and orientation space include this4.

See Fig. 3 for a visual impression on these advantages of wavefront propagation. See Fig. 4 where our
vessel tracking algorithm in metric space model (M, d+F0

) performs better than a state-of-the-art industrial
method acting directly in the image domain.

1.3 Shortest Paths and Minimal Distances in Medical Images

The application of the proposed method for finding shortest paths has been shown to be useful for vessel-
tracking in retinal images [9], see Fig. 5 (top, right). A related approach using fast marching with elastica
functionals can be found in [15,16]. The sub-Riemannian approach by Bekkers et al. [9] concerns the two-
dimensional Reeds-Shepp car model with reverse gear, where 2D gray-scale images are first lifted to an
orientation score defined on the higher dimensional manifold R2 × S1. There, the combination of the sub-
Riemannian metric, the cost function derived from the orientation score, and the numerical fast-marching
solver, provided a solid approach to accurately track vessels in challenging sets of images.

For this reason, we apply the same strategy to diffusion-weighted MRI data. For such images, a signal
related to the amount of diffusion is measured, which in the case of neuroimages is considered to be
related to the underlying cell-structure. The images can in a natural way be considered to have domain
Ω ⊂ R3× S2. Fig. 5 (bottom) illustrates such images. On the left we use a glyph visualization, that shows

3 From a theoretical standpoint, one may rely on the notion of discontinuous viscosity solution [7]. But this concept is
outside of the scope of this paper, and in addition it forbids the use of a singleton {pS} as the target set.

4 Akin to cortical models for line perception in the primary visual cortex of the human visual system [18,60].
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Fig. 3 Top: An invertible orientation score is an image representation that provides a complete overview of how the image
is decomposed out of local orientations. Botttom: Conventional wavefront propagation in images (in red) typically leaks
at crossings, whereas the wavefront propagation in orientation scores (in green) does not suffer from this fundamental
complication. A minimum intensity projection over orientation gives the optimal fronts in the image. The orange densities
denote mobility in the score. This regulates the speed of the propagation of the green opaque spheres; left: propagation
symmetric sub-Riemannian spheres (in (M, dF0

), right: propagation asymmetric Finsler spheres (in (M, dF+
0

).

a surface for each grid point, where the distance from the surface to the corresponding grid point x is
proportional to the data-value U(x,n) and the coloring is related to the orientation n ∈ S2.

A large number of tractography methods exist, that are designed to estimate/approximate the fiber
paths in the brain based on dMRI data. Most of these methods construct tracks that locally follow the
structure of the data, see e.g. [73,22] or references in [45]. More related to our approach are geodesic
methods, that have the advantage that they minimize a functional, and thereby are less sensitive to noise
and provide a certain measure of connectivity between regions. These methods can be based on diffusion
tensors in combination with Riemannian geometry on position space, e.g. [42,48,44]. One can also make
use of the more general Finsler geodesic tracking to include directionality [53,54], and use high angular
resolution data (HARDI), examples of which can be found in [69,5]. Recently, a promising method has been
proposed, based on geodesics on the full position and orientation space using a data-adaptive Riemannian
metric [59]. We also work on this joint space of positions and orientations, but use either Riemannian
or asymmetric Finsler metrics that are highly anisotropic, that we solve by a numerical fast marching
method that is able to deal with this high anisotropy. We show on artificial datasets how our method can
be employed to give global minimizers between two regions w.r.t the imposed Finsler metric, and that
these paths correctly follow the bundle structure.
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Problem

Solution

Vessel tracking in  
orientation scores

Vessel tracking in 2D X-ray data

Fig. 4 Current vessel track-
ing in 2D X-ray images with
coronary arteries at Philips-
IGT-S fails at crossings. In
contrast vessel tracking via
anisotropic fast-marching
along optimal geodesics in 3D
orientation scores of 2D im-
ages does not suffer from such
crossings and bifurcations.

Fig. 5 Challenges and applications. Top row: the case d = 2, with a toy problem for finding the shortest way with or
without reverse gear (blue and red, respectively) to the exit in Centre Pompidou (top left) and a vessel tracking problem in
a retinal image. Bottom row: the case d = 3, connectivity in (simulated) dMRI data. Left: visualization of a dataset with
two crossing bundles without torsion, with a glyph visualization of the data in R3 × S2 and a magnification of one such
glyph, indicating two main fiber directions. Right: the spatial configuration in R3 of bundles with torsion in an artificial
dataset on R3 × S2.

1.4 Contributions and Outline

The extension to 3D of the Reeds-Shepp metric and the adaptation to model shortest paths for cars that
cannot move backwards are new and provide an interesting collection of new theoretical and practical
results:

– In Theorem 1 we show that the Reeds-Shepp model is globally and locally controllable, and that the
Reeds-Shepp model without reverse gear is globally but not locally controllable. Hence the distance
map loses continuity.
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– We introduce regularizations Fε and F+
ε of the Reeds-Shepp metrics F0 and F+

0 , which make our
numerical discretization possible. We show that both the corresponding distances converge to dF0

and
dF+

0
as ε→ 0 and the minimizing curves converge to the ones for ε = 0, see Theorem 2.

– We present and prove for d = 2 and uniform cost a theorem that describes the occurrence of cusps
for the SR Reeds-Shepp model F0, and that using F+

0 leads to geodesics that are a concatenation of
purely angular motion, a sub-Riemannian geodesic without cusps and again a purely angular motion.
We call the positions where in-place rotation (or purely angular motion) takes place keypoints. For
uniform cost, we show that the only possible keypoints are the begin and end point, and for many end
conditions we can describe how this happens. The precise theoretical statement and proof are found in
Theorem 3.

– Furthermore, we show in Theorem 4 how the geodesics can be obtained from the distance map, for a
general Finsler metric, and in the more specific cases that we use in this paper. For our cases of interest,
we show that backtracking of geodesics is either done via a single intrinsic gradient descent (for the
models with reverse gear), or via two intrinsic gradient descents (for the model without reverse gear).

– For our numerical experiments we make use of a Fast-Marching implementation, for d = 2 introduced
in [56]. In Section 6 we give a summary of the numerical approach for d = 3, but a detailed discussion of
the implementation and an evaluation of the accuracy of the method is beyond the scope of this paper,
and will follow in future work. For d = 2, we show an extensive comparison between the models with
and without reverse gear for uniform cost, to illustrate the useful principle of the keypoints, and to show
the qualitative difference between the two models. In examples with non-uniform cost, see for example
the top row of Fig. 5, we show that the model places the keypoints optimally at corners/bifurcations
in the data, where the in-place rotation forms a natural, automatic ‘re-initialization’ of the tracking.
For d = 3, we give several examples to show the influence of the model parameters, in particular
the cost parameter. The examples indicate that the method adequately deals with crossing or kissing
structures.

Outline In Section 2, we give a detailed overview of the theoretical results of the paper. The theorems 1, 3
and 4 are discussed and proven in Sections 4, 5 and 6, respectively. The reader who is primarily interested
in the application of the methods may choose to skip these three sections. The proof of Theorem 2 is given
in Appendix A. We discuss the numerics briefly in Section 7. Section 8 contains all experimental results.
Conclusion and discussion follow in Section 9. For an overview of notations, Appendix F may be helpful.

2 Main results

In this section, we state formally the mathematical results announced in Section 1. Some preliminaries
regarding the distance function are introduced in the Section below. Results regarding the exact Reeds-
Shepp car models are gathered in Section 2.2. The description of the approximate models and the related
convergence results appear in Section 2.3. Analysis of special interest points (cusps and keypoints) are
done in Section 2.4. Results on the eikonal equation, and subsequent backtracking of optimal geodesics via
intrinsic gradients is presented in Section 2.5.

2.1 Preliminaries on the (pseudo) Distance Function and Underlying Geometry

Geometries on the manifold of states M = Rd × Sd−1 are defined by means of Finsler metrics which are
functions F : T (M) → [0,+∞]. On each tangent space, the metric should be 1-homogeneous, convex and
quantitatively non-degenerate with a uniform constant δ > 0: for all p = (x,n) ∈ M, ṗ, ṗ0, ṗ1 ∈ Tp(M),
and λ ≥ 0:

F(p, λṗ) = λF(p, ṗ),

F(p, ṗ0 + ṗ1) ≤ F(p, ṗ0) + F(p, ṗ1),

F(p, ṗ) ≥ δ
√
‖ẋ‖2 + ‖ṅ‖2. (6)

A weak regularity property is required as well, see the next remark. The induced distance dF , defined in
(1), obeys dF (p,q) = 0 iff p = q, and obeys the triangle inequality. However, unlike a regular distance,
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dF needs not be finite, or continuous, or symmetric in its arguments. Note that F0 and F+
0 as defined in

(2) and (3), respectively, indeed satisfy the properties in (6).

Remark 1 In contrast to the more common definition of Finsler metrics, we will not assume the Finsler
metric to be smooth on T (M), but use a weaker condition instead. Following [14], we require that the sets

BF (p) := {ṗ ∈ TpM | F(p, ṗ) ≤ 1} (7)

are closed and vary continuously with respect to the point p ∈ M in the sense of the Hausdorff distance.
The sets BF (p) are illustrated in Fig. 1 for the models of interest. The condition implies that a minimal
path exists from p to q ∈ M whenever dF (p,q) is finite, and is used to prove convergence results in
Appendix A.

A common technique in optimal control theory is to reformulate the shortest path problem defining
the distance dF (p,q) into a time optimal control problem. That is, for p ∈ [1,∞] one has by Hölder’s
(in)equality, time re-parametrization, and by 1-homogeneity of F in its 2nd entry, that:

dF (p,q) = inf{
1∫
0

F(γ(t), γ̇(t)) dt | γ ∈ Γ1, γ(0) = p, γ(1) = q}

= inf{(
1∫
0

|F(γ(t), γ̇(t))|p dt)
1
p|γ ∈ Γ, γ(0) = p, γ(1) = q}

= inf{T ≥ 0 | ∃γ ∈ ΓT , γ(0) = p, γ(T ) = q,∀t∈[0,T ] γ̇(t) ∈ BF (γ(t))},

(8)

where ΓT := Lip([0, T ],M), and with BF (p) as defined in (7).

Exercise 1 Show that the (pseudo)-distance dF (p,q) in (8) does not depend on the choice of (monotonic)
parameterization of the curve γ(·).

Exercise 2 Prove both equalities in (8).

The latter reformulation is used in Appendix A to prove convergence results via closedness of con-
trollable paths and Arzela-Ascoli’s theorem, based on a general result originally applied to Euler elastica
curves in [14].

In the special case F = F0 the geodesics are SR geodesics. If F = F0 the Finsler function is obtained
by the square root of quadratic form associated to a SR metric G0|p (·, ·) = F0(p, ·)2 on a SR manifold
(M,∆,G0), where ∆ ⊂ T (M) is a strict subset of allowable tangent vectors that comes along with the
horizontality constraint

ẋ(t) = (ẋ(t) · n(t))n(t), ∀t ∈ [0, 1], (9)

that arises from (2). For details on the case d = 2 see [12,66], for d = 3 see [28].
Finally, we note that for the uniform cost case (ξ−1C1 = C2 = 1), the problem is covariant with

respect to rotations and translations. For the data-driven case, such covariance is only obtained when
simultaneously rotating the data-driven cost factors C1, C2. Therefore, only in the uniform cost case, for
d = 2, 3, we shall use a reference point (‘the origin’) e ∈ Rd × Sd−1. To adhere to common conventions we
use

e = (0,a) ∈ Rd × Sd−1, with

a := (1, 0)T if d = 2 and

a := (0, 0, 1)T if d = 3.

(10)

2.2 Controllability of the Reeds-Shepp model

A model (M,F) is globally controllable if the distance dF takes finite values on M×M. In Theorem 1 we
show that this is indeed the case for F = F0 and F = F+

0 , given in (2) and (3). Local controllability is
satisfied when dF satisfies a certain continuity requirement: if p → q ∈ (M, ‖ · ‖), with ‖ · ‖ denoting the
standard (flat) Euclidean norm on M = Rd × Sd−1, we must have dF (p,q) → 0. We prove in Theorem
1 that (M,F0) is locally controlabble, but (M,F+

0 ) is not. Indeed the SR Reeds-Shepp car can achieve
sideways motions by alternating the forward and reverse gear with slight direction changes, whereas the
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model without reverse gear lacks this possibility. For completeness, the theorem contains a standard (rough)
estimate of the distance near the source (due to well-known estimates [43,72,18,61]).

Furthermore, we prove existence of minimizers for the Reeds-Shepp model without reverse gear. Ex-
istence results of minimizers of the model with reverse gear (the SR model) already exist, by the Chow-
Rashevski theorem and Fillipov theorems [2].

Theorem 1 ((Local) controllability properties) Minimizers exist for both the classical Reeds-Shepp
model, and for the Reeds-Shepp model without reverse gear. Both models are globally controllable.

– The Reeds-Shepp model without reverse gear is not locally controllable, since

lim sup
p′→p

dF+
0

(p,p′) ≥ 2πδ, for all p ∈ M. (11)

If the cost C2 = δ is constant on M, then this inequality is sharp:

lim sup
p′→p

dF+
0

(p,p′) = lim
µ↓0

dF+
0

((x,n), (x− µn,n)) = 2πδ. (12)

– The sub-Riemannian Reeds-Shepp model is locally controllable, since

dF0
(p,p′) = O

(
C2(p)‖n− n′‖+

√
C2(p)C1(p)‖x− x′‖

)
as p′ = (x′,n′)→ p = (x,n). (13)

For a proof see Section 4.

Exercise 3 Use the result of the previous theorem to show that for the uniform cost case ξ−1C1 = C2 = 1
with ξ = 1 one has that

– the quasi distance mapping dF+
0

(pS , ·), given by (8) and (3), is not continuous on M w.r.t. metric

topology of the standard distance given by

d(p1,p2) = d((x1,n1), (x2,n2)) =
√
‖x1 − x2‖2 + | arccos(n1 · n2)|2,

for all p1 = (x1,n1),p2 = (x2,n2) ∈ M.
(14)

– the symmetric distance mapping dF0
(pS , ·), given by (8) and (2), is continuous on M w.r.t. metric

topology of the standard distance given by (14).
– the symmetric distance spheres

SFR (pS) := {p ∈ M | dF (pS ,p) = R} with F = F0, (15)

are compact.

Exercise 4 (the scaling homothety)
Consider pS := (0, 0, 0) and d = 2.
Let ξ > 0 denote a stiffness parameter ξ−1 > 0 with physical dimension [Length].

Recall F0 was given by Eq. (2) which includes relative cost-functions C1 and C2. Let F0,ξ denote
the special case where the Finsler function is induced by constant relative costs: C1 = ξ > 0 and C2 = 1.

Let dF0,ξ
be the metric induced by F = F0,ξ given by (8). Consider the corresponding spheres SF0,ξ

R (pS)
given by (15). Define a scaling operator on M:

Φξ(x, y, θ) = (ξx, ξy, θ).

Let us write Γ (·) = (X(·), Y (·), Θ(·)) = Φξ(γ(·)) for the scaled output curve.

a Show that
F0,ξ(γ(t), γ̇(t)) = F0,1(Γ (t), Γ̇ (t)),

for all t ∈ (0, 1), and check that the physical dimensions are consistent in this identity.
b Show that

SF0,ξ

R (pS) = Φ−1
ξ (SF0,1

R (pS)).

for all R > 0.
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Fig. 6 Levelsets for d = 2 of the (approximating) metrics Fε(0, (ẋ, ẏ, θ̇)) = 1 (left) and F+
ε (0, (ẋ, ẏ, θ̇)) = 1 (right), with

ε = 0.2 (top) and ε = 0 (bottom). In this example, C2(0) = 2C1(0).

2.3 A Continuous Approximation for the Reeds-Shepp geometry

We introduce approximations Fε and F+
ε of the Reeds-Shepp metrics F0 and F+

0 , depending on a small
parameter 0 < ε ≤ 1, which are continuous and in particular take only finite values. This is a prerequisite
for our numerical methods. Both approximations penalize the deviation from the constraints of collinearity
ẋ ∝ n, and in addition, F+

ε penalizes negativity of the scalar product ẋ · n, appearing in (2) and (3). For
that purpose, we introduce some additional notation: for ẋ ∈ Rd and n ∈ Sd−1 we define

‖ẋ ∧ n‖2 := ‖ ẋ‖2 − |ẋ · n|2, (16)

(ẋ · n)− := min{0, ẋ · n}, (ẋ · n)+ := max{ẋ · n, 0}.

These are respectively the norm of the orthogonal projection5 of ẋ onto the plane orthogonal to n, and
the negative and positive parts of their scalar product. The two metrics Fε,F+

ε : T (M)→ R+ are defined
for each 0 < ε ≤ 1, as follows: for (p, ṗ) ∈ T (M) with components p = (x,n) and ṗ = (ẋ, ṅ) we define

Fε(p, ṗ)2 :=C1(p)2(|ẋ · n|2 + ε−2‖ẋ ∧ n‖2) + C2(p)2‖ṅ‖2, (17)

F+
ε (p, ṗ)2 := C1(p)2(|ẋ · n|2 + ε−2‖ẋ ∧ n‖2 + (ε−2 − 1)(ẋ · n)2−) + C2(p)2‖ṅ‖2 (18)

= C1(p)2((ẋ · n)2+ + ε−2‖ẋ ∧ n‖2 + ε−2(ẋ · n)2−) + C2(p)2‖ṅ‖2. (19)

See Fig. 6 for a visualization of a levelset of both metrics in R2 × S1. Note that Fε is a Riemannian
metric on M (with the same smoothness as the cost functions C2, C1), and that F+

ε is neither Riemannian
nor smooth due to the term (ẋ · n)−. One clearly has the pointwise ‘convergence’ Fε(p, ṗ)→ F0(p, ṗ) on
R ∪ {∞} as ε → 0, and likewise F+

ε (p, ṗ) → F+
0 (p, ṗ). The use of Fε and F+

ε is further justified by the
following convergence result.

Theorem 2 (Convergence of the Approximative Models to the Exact Models) One has the
pointwise convergence: for any p,q ∈ M

dFε(p,q)→ dF0
(p,q),

dF+
ε

(p,q)→ dF+
0

(p,q),
as ε→ 0.

5 The quantity ‖ẋ ∧ n‖ is also the norm of the wedge product of ẋ and n, but defining it this way would require
introducing some algebra which is not needed in the rest of this paper.
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Fig. 7 Illustration of cusps in symmetric distance minimizers in M = Rd × Sd−1. Left: cusps in spatial projections x(·)
of symmetric SR distance (ε = 0) minimizers γ(·) = (x(·),n(·)) for d = 2, right: cusps (red dots) appearing in spatial
projections of symmetric SR distance geodesics for d = 3. In the 3D case we indicate the corresponding rotations Rn1 via
a local 3D frame.

Consider for each ε > 0 a minimizing path γ∗ε from p to q, with respect to the metric Fε, parametrized
at constant speed

Fε(γ∗ε (t), γ̇∗ε (t)) = dFε(p,q), ∀t ∈ [0, 1].

Assume that there is a unique minimal path γ∗ from p to q with respect to the sub-Riemannian distance
dF0

(in other words q is not within the cut locus of p), parametrized at constant speed:

F0(γ∗(t), γ̇∗(t)) = dF0
(p,q), ∀t ∈ [0, 1].

Then γ∗ε → γ∗ as ε→ 0, uniformly on [0, 1]. Likewise replacing Fε with F+
ε for all ε ≥ 0.

The proof, presented in Appendix A is based on a general result originally applied to the Euler elastica
curves in [14]. Combining Theorem 2 with the local controllability properties established in Theorem 1,
one obtains that dFε → dF0

locally uniformly on M ×M, and that the convergence dF+
ε
→ dF+

0
is only

pointwise.

Remark 2 If there exists a family of minimal geodesics (γ∗i )i∈I from p to q with respect to F0 (resp. F+
0 ),

then one can show that for any sequence εn → 0 one can find a subsequence and an index i ∈ I such that
γ∗εϕ(n)

→ γ∗i uniformly as n→∞.

2.4 Points of Interest in Spatial Projections of Geodesics for the Uniform Cost Case: Cusps vs. Keypoints

Next we provide a theorem that tells us in each of the models/metric spaces (M, dF0
), (M, dFε) and

(M, dF+
0

), (M, dF+
ε

), with C1 = C2 = 1 and d = 2 where cusps occur in spatial projections of geodesics or

where keypoints with in-place rotations take place.

Definition 2 (Cusp) A cusp point x(t0) on a spatial projection of a (SR-)geodesic t 7→ (x(t),n(t)) in M
is a point where

ũ(t0) = 0, and ˙̃u(t0) 6= 0,

where ũ(t) := n(t) · ẋ(t) for all t.
(20)

I.e. a cusp point is a point where the spatial control aligned with n(t0) vanishes and switches sign locally.
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Although this definition explains the notion of a cusp geometrically (as can be observed in Fig. 1 and
Fig. 7), it contains a redundant part for the relevant case of interest: the second condition automatically
follows when considering the SR geodesics in (M, dF0

). The following lemma gives a characterization of a
cusp point in terms of the distance function along a curve.

Lemma 1 Consider a SR-geodesic γ = (x,n) : [0, 1] → (M, dF0
), parametrized at constant speed, and

which physical position x(·) is not identically constant. Denote pS := γ(0) and U(·) := dF0
(pS , ·). Let

t0 ∈ (0, 1) be such that U is differentiable at γ(t0) = (x(t0),n(t0)). Then

x(t0) is a cusp point ⇔ n(t0) · ẋ(t0) = 0

⇔ n(t0) · ∇RdU(x(t0),n(t0)) = 0.
(21)

The proof can be found in Appendix C.

Definition 3 (Keypoint) A point x̃ on the spatial projection of a geodesic γ(·) = (x(·),n(·)) in M is a
keypoint of γ if there exist t0 < t1, such that x(t) = x̃ and ṅ(t) 6= 0 for all t ∈ [t0, t1], i.e., a point where
an in-place rotation takes place.

Definition 4 We define the set R ⊂ M to be all endpoints that can be reached with a geodesic γ∗ :
[0, 1]→ M in (M, dF0

) whose spatial control ũ(t) stays positive for all t ∈ [0, 1].

Remark 3 The word ‘geodesic’ in this definition can (in the case d = 2) be replaced by ‘globally minimizing
geodesic’ [12]. For a definition in terms of the exponential map of a geometrical control problem Pcurve,
see e.g. [24,27], in which the same positivity condition for ũ is imposed. Fig. 8 shows more precisely what
this set looks like for d = 2 [24], in particular that it is contained in the half-space a · x ≥ 0, and for d = 3
[27]. We extend these results with the following theorem.

Theorem 3 (Cusps and Keypoints) Let ε > 0, d = 2, C1 = C2 = 1. Then,

– in (M, dF0
) cusps are present in spatial projections of almost every optimal SR geodesics when their

times t are extended on the real line until they reach their cut-time. In fact, the straight-lines connecting
specific boundary points p = (x,n) and q = (x + λn,n) with λ ∈ R are the only exceptions.

– in (M, dF+
ε

) and (M, dFε) and (M, dF+
0

) no cusps appear in spatial projections of geodesics.

Furthermore,

– in (M, dF0
), (M, dFε) and (M, dF+

ε
) keypoints only occur with vertical geodesics (moving only angularly).

– in (M, dF+
0

) keypoints only occur at the endpoints of minimal paths.

An optimal geodesic γ+ in (M, dF+
0

) departing from e = (0, 0, 0) and ending in p = (x, y, θ) has

A) no keypoint if p ∈ R,
B) a keypoint in (0, 0) if x < 0,
C) a keypoint only in (x, y) if6

C1) p ∈ R
c

and x ≥ 2,
C2) p ∈ R

c
and 0 ≤ x < 2 and

|y| ≤ −ixE
(
iarcsinh

(
x√

4−x2

)
, x

2−4
x2

)
, where E(z,m) denotes the Elliptic integral of the second

kind.

Remark 4 In case A, γ+ is an optimal geodesic in (M, dF0
) as well. In case B, γ+ departs from a cusp.

In case C, γ+ is a concatenation of an optimal geodesic in (M, dF0
) and an in-place rotation. For other

endpoints (x, y, θ) for geodesics departing from e with 0 ≤ x < 2, other than the ones reported in C2 it is
not immediately clear what happens, due to [24, Thm.9]. Also points with x < 0 may have keypoints at
the end as well. See Fig. 9 where various cases of minimizing geodesics in (M, dF+

0
) are depicted.

Remark 5 See [38, Fig. 6] to see the smoothing effect of taking ε small but nonzero on the cusps of
non-optimal geodesics in (M, dFε) and keypoints in (M, dF+

ε
).

6 Here R
c

= M \R denotes the complement of the closure R of R, and E(z,m) =
∫ z
0

√
1−m sin2 v dv.
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Fig. 8 The set R of endpoints reachable from the origin e (recall (10)) via SR geodesics whose spatial projections do not
exhibit cusps has been studied for the case d = 2 (left), and for the case d = 3 (right). For d = 2 it is contained in x ≥ 0
and for d = 3 it is contained in z ≥ 0. The boundary of this set contains of endpoints of geodesics departing at a cusp
(in red) or of endpoints of geodesics ending in a cusp (in blue). If an endpoint (x,n) is placed outside R (e.g. the green
points above) then following the approach in Theorem 4, depending on its initial spatial location it first connects to a blue
point (x,nnew) via a spherical geodesic end then connects to the origin e via a SR geodesic. Then it has a keypoint at
the endpoint. For other locations spatial locations (orange points), the geodesic has the keypoint in the origin, or even at
both boundaries, cf. Fig. 9.

2.5 The Eikonal PDE Formalism

As briefly discussed in Section 1.2, continuous metrics like Fε and F+
ε for any ε > 0, allow to use the

standard theory of viscosity solutions of eikonal PDEs, and thus to design provable and efficient numerical
schemes for the computation of distance maps and minimal geodesics. More precisely, consider a continuous
Finsler function F ∈ C0(T (M),R+), and define the dual Finsler function F∗ on the co-tangent bundle as
follows: for all (p, p̂) ∈ T ∗(M)

F∗(p, p̂) := sup
ṗ∈TpM\{0}

〈p̂, ṗ〉
F(p, ṗ)

. (22)

The distance map U = dF (pS, ·) from a given source point pS ∈ M is the unique solution, in the sense of
viscosity solutions, of the static Hamilton Jacobi equation: U(pS) = 0, and for all p ∈ M

F∗(p,dU(p)) = 1. (23)

Furthermore, if γ is a minimal geodesic from pS to some p ∈ M, then it obeys the ordinary differential
equation (ODE): {

γ̇(t) = −L dp̂F∗(γ(t),dU(γ(t))), L := dF (pS,p)

γ(0) = p, γ(1) = pS .
(24)

for any t ∈ [0, 1] such that the differentiability of U and F∗ holds at the required points. The proof of the
ODE (24) is for completeness derived in Proposition 4 of Appendix B, where we also discuss in Remark
16 the common alternative formalism based on the Hamiltonian. We denoted by dp̂F∗ the differential of
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Fig. 9 Shortest paths for d = 2 using the Finsler functions F0 (blue) and F+
0 (red), with point source pS = (0, 0, 0)

and varying end conditions. Row A: p = (0, 0.8, πn/4). Row B: p = (0.8, 0.8, πn/4). Row C: p = (−0.8, 0, πn/4). Here
n = 1, . . . , 8, corresponding to the columns. When there are two optimal geodesics, both are drawn. Circles around the
begin or end point indicate in-place rotation of the red curve at that point. We see that whenever the blue geodesic
has a cusp, the red geodesic has at least one in-place rotation (keypoint). This numerically supports our statements in
Theorem 3 considering cusps and keypoints. For high accuracy we applied the relatively slow iterative PDE approach [9]
on a 101× 101× 64-grid in M to compute dF0

(p,pS) and dF+
0

(p,pS), see [38, App. B].

the dual metric F∗ with respect to the second variable p̂, hence dp̂F∗(p, p̂) ∈ T ∗∗p (M) ∼= Tp(M) is indeed
a tangent vector to M, for all (p, p̂) ∈ T ∗M.

Remark 6 (Steepest Descent)
The ODE (24) boils down to a steepest descent on the distance map. It is sometimes re-formulated as a
steepest ascent7 where one interchanges the role of pS and p above and where one applies t 7→ 1− t. Note
that this time inversion yields a plus sign instead of a minus sign in the righthand side of the PDE in (24).

In the rest of this section, we specialize (23) and (24) to the metrics Fε and F+
ε . Our first result

provides explicit expressions for the dual metrics (required for the eikonal equation).

Proposition 1 For any 0 < ε ≤ 1, the duals to the approximate Reeds-Shepp metrics Fε and F+
ε are: for

all (p, p̂) ∈ T ∗(M), with p = (x,n) and p̂ = (x̂, n̂)

F∗ε (p, p̂)2 = (C2(p))−2‖n̂‖2 + (C1(p))−2(|x̂ · n|2 + ε2‖x̂ ∧ n‖2)

F+∗
ε (p, p̂)2 = (C2(p))−2‖n̂‖2 + (C1(p))−2(|x̂ · n|2 + ε2‖x̂ ∧ n‖2 − (1− ε2)(x̂ · n)2−)

= (C2(p))−2‖n̂‖2 + (C1(p))−2((x̂ · n)2+ + ε2(x̂ · n)2− + ε2‖x̂ ∧ n‖2)

(25)

In order to relate the Finslerian HJB equation (23) and backtracking equation (24) to some more
classical Riemannian counterparts, we introduce two Riemannian metric tensor fields on M. The first is
defined as the polarisation of the norm Fε(p, ·)

Gp;ε(ṗ, ṗ) = |Fε(p, ṗ)|2 = C21(p)((ẋ · n)2 + ε−2‖ẋ ∧ n‖2) + C22(p)‖ṅ‖2 , (26)

where ṗ = (ẋ, ṅ), and then one can also rely on gradient fields p 7→ G−1
p;εdU(p) relative to this metric.

This has benefits if it comes to geometric understanding of the eikonal equation and its tracking. Even in
the analysis of the non-symmetric case –where one does not have a single metric tensor– this notion plays

7 In both the ascent and descent formulations one must keep in mind that the distance function is not differentiable at
the origin.
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a role, as we will see in the next main theorem. To this end, in the non-symmetric case, we shall rely on a
second spatially isotropic metric tensor given by:

G̃p;ε(ṗ, ṗ) := C21(p) ε−2 ‖ẋ‖2 + C22(p)‖ṅ‖2. (27)

We denote by ∇Sd−1 the gradient operator on Sd−1 with respect to the inner product induced by the
embedding Sd−1 ⊂ Rd, and by ∇Rd the canonical gradient operator on Rd.

Corollary 1 Let ε ≥ 0. Then the eikonal PDE (5) for the case (M,Fε) now takes the form√
‖∇Sd−1U(p)‖2

C22(p)
+

ε2‖∇RdU(p)‖2+(1−ε2)|n·∇RdU(p) |2

C21(p)
= 1,

⇔
Gp;ε|p

(
G−1
p;εdU(p) ,G−1

p;εdU(p)
)

= 1.

The eikonal PDE (5) for the case (M,F+
ε ) now takes the explicit form:√

‖∇Sd−1U
+(p)‖2

C22(p)
+

ε2‖∇RdU
+(p)‖2+(1−ε2)| (n·∇RdU

+(p) )+ |2
C21(p)

= 1

⇔
Gp;ε|p

(
G−1
p;εdU

+(p) ,G−1
p;εdU

+(p)
)

= 1,

if p ∈ M+ := {p ∈ M | 〈dU+(p),n〉 > 0},

G̃p;ε

∣∣∣
p

(
G̃−1
p;εdU

+(p) , G̃−1
p;εdU

+(p)
)

= 1,

if p ∈ M− := {p ∈ M | 〈dU+(p),n〉 < 0}.

for those p ∈ M+ ∪M− where U+ is differentiable8.

The proof of Proposition 1 and Corollary 1 can be found in Section 6.

We finally specialize the geodesic ODE (24) to the models of interest. Note that in the case of
F+
ε , the backtracing switches between qualitatively distinct modes, respectively almost sub-Riemannian

and almost purely angular, in the spirit of Theorem 3. Given ε > 0 and n ∈ Sd−1 let Dεn denote the
d × d symmetric positive definite matrix with eigenvalue 1 in the direction n, and eigenvalue ε2 in the
orthogonal directions :

Dεn := n⊗ n + ε2(Id−n⊗ n). (28)

Theorem 4 (Back-tracking) Let 0 < ε < 1. Let pS ∈ M be a source point. Let U(p) := dFε(p,ps),
U+(p) := dF+

ε
(p,ps) be distance maps from ps, w.r.t. Finsler function Fε, and F+

ε . Let γ, γ+ : [0, 1]→ M
be normalized geodesics of length L starting at ps in (M, dFε) resp. (M, dF+

ε
). Let time t ∈ [0, 1].

For the Riemannian approximation paths of the Reeds-Shepp car we have, provided that U is differen-
tiable at γ(t) = (x(t),n(t)), that

γ̇(t) = LG−1
γ(t);εdU(γ(t))

⇔{
ṅ(t) = L C2(γ(t))−1 ∇Sd−1U(γ(t)),
ẋ(t) = L C1(γ(t))−1 Dεn(t)∇RdU(γ(t)).

(29)

For the approximation paths of the car without reverse gear we have, provided that U+ is differentiable
at γ+(t) = (x+(t),n+(t)), that

γ̇+(t) = L

{
G−1
γ+(t);εdU

+(γ+(t)) if γ+(t) ∈ M+,

G̃−1
γ+(t);εdU

+(γ+(t)) if γ+(t) ∈ M−,
(30)

with G̃p;ε(ṗ, ṗ) given by (27), with disjoint Riemannian manifold splitting M = M+∪M−∪∂M±. Manifold

M+ is equipped with metric tensor Gε, M− is equipped with metric tensor G̃ε and

∂M± := M+ \M+ = M− \M− (31)

denotes the transition surface (surface of keypoints).

8 On ∂M± distance function U+ is not differentiable
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Remark 7 The general abstract formula (30) reflects that the backtracking in (M,F+) is a combined
gradient descent flow on the distance map U+ on a splitting of M into two (symmetric) Riemannian
manifolds. Its explicit form (likewise (29)) is

ṅ+(t) = L C2(γ+(t))−1 ∇Sd−1U+(γ+(t)),

ẋ+(t) = L


C1(γ+(t))−1 Dεn(t)∇RdU

+(γ+(t))

if γ+(t) ∈ M+,

ε2 C1(γ+(t))−1 ∇RdU
+(γ+(t))

if γ+(t) ∈ M−,

(32)

Note that for the (less useful) isotropic case ε = 1, models F1 and F+
1 coincide and geodesics consist of

straight lines x(·) in Rd and great circles n(·) in Sd that do not influence each other.

Remark 8 In Theorem 4, we assumed distance maps U and U+ to be differentiable along the path, which
is not always the case. In points where the distance map is not differentiable, one can take any sub-gradient
in the sub-differential ∂U(p) in order to identify Maxwell points (and Maxwell strata). In particular, in SR
geometry, the set of points where the squared distance function (dF0

(·, e))2 is smooth is open and dense in
any compact subset of M, see [1, Thm. 11.15]. The points where it is non-smooth are rare and meaningful:
they are either first Maxwell points, conjugate points or abnormal points. The last type does not appear
here, because we have a 2-bracket generating distribution, see e.g. [28, Remark 4] and [1, Ch. 20.5.1.]. At
points in the closure of the first Maxwell set, two geodesically equidistant wavefronts collide for the first
time, see for example [9, Fig.3, Thm 3.2] for the case d = 2 and C = C1 = C2 = 1. See also Fig. 9, where for
some end conditions 2 optimally back-tracked geodesics end with the same length in such a first Maxwell
point. The conjugate points are points where local optimality is lost, for a precise definition see e.g. [1,
Def. 8.43].

Remark 9 Recall the convergence result from Theorem 2, and the non-local controllability for the model
(M, dF+

0
). From this we see that the convergence holds pointwise but not uniformly (otherwise the limit

distance dF+
0

was continuous). Nevertheless the minimal paths converge strongly as ε ↓ 0, and we see that

the spatial velocity tends to 0 in (32) if ε ↓ 0 if γ∗ε (t) ∈ M−. In the SR case ε = 0, the gradient flows
themselves fit continuously and the interface ∂M± is reached with ẋ · n = 0 (and ẋ = 0).

Theorem 4 can be extended to the SR case:

Corollary 2 (SR Backtracking) Let the cost C1, C2 be smooth, let the source pS ∈ M and p 6= pS ∈ M
be such that they can be connected by a unique smooth minimizer γ∗ε in (M,Fε) and γ∗0 in (M,F0), such
that γ∗ε (t) is not a conjugate point for all t ∈ [0, 1] and all sufficiently small ε > 0, say ε < ε0, for some
ε0 > 0. Then defining U0 : q ∈ M 7→ dFε(ps,q) one has

γ̇∗0 (t) = U0(p)G−1
γ∗0 (t);0

dU0(γ∗0 (t)), t ∈ [0, 1],

assuming U0 is differentiable at γ∗0 (t). In addition U0 satisfies the SR eikonal equation:√
Gp;0

(
G−1
p;0dU0(p),G−1

p;0dU0(p)
)

= 1,

with respect to sub-Riemannian metric tensor field p 7→ Gp;0 given by

Gp(ṗ, ṗ) = (C1(p))2 (ẋ · n)2 + (C2(p))2 ‖ṅ‖2, (33)

for all p = (x,n) ∈ M and all ṗ = (ẋ, ṅ) ∈ Tp(M) with constraint n = ± ẋ
‖ẋ‖ recall Fig. 2.

Proof. From our assumptions on p and γ∗ε (t) for ε < ε0, we have, recall Remark 8, that (Uε(·))2 is
differentiable at γ∗ε (t) for all 0 ≤ t ≤ 1 and 0 ≤ ε < ε0. This implies that Uε is differentiable at {γ∗ε (t) 0 <
t ≤ 1}, for all 0 < ε < ε0.

From Theorem 2 we have pointwise convergence Uε(p)→ U0(p) and uniform convergence γ∗ε → γ∗0 as
ε ↓ 0. Moreover, as γ∗ε and γ∗0 are solutions of the canonical ODEs of Pontryagin’s Maximum Principle,
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the trajectories are continuously depending on ε > 0, and so are the derivatives γ̇∗ε . As a result, we can
apply the backtracking Theorem 4 for ε > 0 and take the limits:

γ̇∗0 (t) = lim
ε↓0

γ̇∗ε (t)

Thm. 4
= lim

ε↓0
Uε(p) (G−1

γ∗ε (t);ε
dUε)(γ

∗
ε (t))

= U0(p)

(
lim
ε↓0
G−1
γ∗ε (t);ε

)(
lim
ε↓0

(dUε(γ
∗
ε (t)))

)
Thm. 2

= U0(p)G−1
γ∗0 (t);0

(dU0)(γ∗0 (t)).

(34)

Furthermore,

1 = lim
ε↓0

√
Gp;ε

(
G−1
p;εdUε(p),G−1

p;εdUε(p)
)

=
√
Gp;0

(
G−1
p;0dU0(p),G−1

p;0dU0(p)
)

where we recall Corollary 1. Here due to our assumptions, Uε and U0 are both differentiable at p. Note
that the limit for the inverse metric G−1

p,ε as ε ↓ 0 exists, recall Cor. 1.

Now that we stated our 4 main theoretical results we will prove them in the subsequent sections (and
Appendix A). Before that, we would like to study the optimal geodesic procedure:

3 Computing Optimal Geodesics in M

3.1 The Procedure for Computing Optimal Geodesics in M

Let us consider the procedure for computing optimal geodesics in metric space (M, dF ):

– Step 1: Compute the dual Finsler function F∗.
– Step 2: Derive the eikonal system (5).
– Step 3: Obtain the distance map as the viscosity solution of the eikonal system.
– Step 4: Compute the derivative dF∗ of the dual Finsler function (w.r.t. 2nd entry).
– Step 5: Apply backtracking via an intrinsic gradient descent (24) on the distance map.

for two special (uniform cost) cases for which we can derive exact analytic solutions:

1. The isotropic Riemannian case (M, dF1
) with ξ−1C1 = α−1C2 = 1, with ξ > 0, α > 0 and d ∈ {2, 3}

and ε = 1.
2. The sub-Riemannian case (M, dF0

) with ξ−1C1 = C2 = 1, with ξ > 0 and d ∈ {2, 3} and ε = 0.

3.1.1 Intermezzo: The General Procedure for setting up Geodesic Equations in Riemannian manifolds

Let (M,G) be a smooth Riemannian manifold of dimension n with a given smooth parametrization

p = X(x1, . . . , xn)

and with a metric tensor field p 7→ G|p =
n∑

ij=1

gij(p) dxi
∣∣
p
⊗ dxj

∣∣
p

that is expressed in the dual basis dxi

such that
〈dxi

∣∣∣
p
, ∂xj |p〉 = δij ,

for all p ∈ M . Here we briefly recall the standard ODE for computing the geodesics on the smooth
Riemannian manifold (M,G): The ODE’s (in the given coordinate system) that describe the geodesics

t 7→ γ(t) := X(x1(t), . . . , xn(t))

are given by :

ẍi +
n∑

k,j=1

Γ ikj ẋ
kẋj = 0 for all i = 1 . . . , n,
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where the coordinate-dependent(!) Christoffel symbols9 Γ kij are given by

∂xi∂xjX =
n∑
k=1

Γ kij(X(·)) ∂xkX.

It can be shown that

Γ kij =
1

2

n∑
l=1

gkl(∂xigjl + ∂xjgli − ∂xlgij).

where gij denotes the components of the inverse matrix of matrix [gij ].

Exercise 5 Let n0 ∈ S2 and n ∈ S2. Consider the curve optimization problem on S2:

dS2(n0,n) = inf
n(·) ∈ Lip([0, 1], S2)

n(0) = n0,
n(1) = n

1∫
0

‖n′(s)‖ds = arccos(n0 · n). (35)

a Derive the equations for geodesic back-tracking (24) without relying on Euler angles.
b Express the geodesic equations for the specific case n0 = ez = (0, 0, 1), and only for geodesics that

do not pass (0, 0,±1), in standard Euler angles n(β, γ) = (cos γ sinβ, sin γ sinβ, cosβ)T , β ∈ (0, π),
γ ∈ [0, 2π).

c Show that the geodesics at b. lay on great circles.
d What is the 1st Maxwell time for the geodesics on S2 departing from a fixed point n0?
e What is the 1st conjugate time for the geodesics on S2 departing from a fixed point n0?
f What is the cut-locus for problem (35)?

3.2 Two examples with analytic solutions

3.2.1 The isotropic Riemannian uniform cost case

Set ξ−1C1 = α−1C2 = 1, with ξ > 0, α > 0 and d ∈ {2, 3} and ε = 1. Then due to the isotropy ε = 1 the
Finsler function is no longer truly dependent on p:

F1(p, ṗ) =
√
ξ2‖ẋ‖2 + α2‖ṅ‖2.

Next we follow the 5 steps of the backtracking procedure and derive the exact solutions.
Step 1: Compute the dual Finsler function:

F∗1 (p, p̂) =
√
ξ−2‖x̂‖2 + α−2‖n̂‖2 with p̂ = (x̂, n̂) ∈ T ∗p(M). (36)

where T ∗p(M) is the dual space to Tp(M).
Step 2: Derive the eikonal system:{√

ξ−2‖∇RdU(p)‖2 + α−2‖∇Sd−1U(p)‖2 = 1 for all p ∈ M \ {pS},
U(pS) = 0.

(37)

Step 3: Derive the viscosity solution:

U(p) =
√
ξ2‖x− x0‖2 + α2|dSd−1(n0,n)|2, with p = (x,n),pS = (x0,n0), (38)

where dSd−1 denotes the usual distance on Sd−1.
Step 4: Compute the derivative of the dual Finsler function (w.r.t. 2nd entry only):

dF∗1 (p, p̂) =
1√

ξ−2‖x̂‖2 + α−2‖n̂‖2
(ξ−2x̂, α−2n̂), with p̂ = (x̂, n̂).

9 Associated to the usual torsion-free, metric compatible Levi-Civita connection.
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Step 5: Apply backtracking. In addition to (24) we reverse time t 7→ 1− t as this is how it is implemented
(i.e. backtracking from end-point back to source point pS = (x0,n0):

ẋ(t) = −dF1
(p,pS) ξ−2∇RdU(x(t),n(t)), t ∈ [0, 1]

ṅ(t) = −dF1
(p,pS) α−2∇Sd−1U(x(t),n(t)),

x(0) = x,
n(0) = n

(39)

which has the following exact solutions

x(t) = x0 + (1− t)(x− x0),
n(t) = Rn0→n,(1−t) d

Sd−1 (n0,n) (n0),
(40)

where Rn0→n,ψ denotes the in-planar counter-clockwise rotation in the plane spanned by n0 and n about
angle ψ. So we conclude that the spatial part of the geodesics describe straight-line motions, whereas
the angular part of the geodesics describe great circle motions. In this case the minimal paths are not
dependent on ξ and α, in contrast to the distance. We also see that for ξ > 0 and α > 0 there are no
Maxwell-points.

Exercise 6 a Verify all steps of the above procedure (and verify in particular Eq. (36), (39) and (40)).
Here you may restrict yourself to the case d = 2.

b What happens if ξ > 0 stays fixed and α→∞?
c What happens to the equations when considering non-uniform cost:

1 6= ξ−1C1 = C2 = C ∈ C1([δ,∞)) ?
d Why is it important to have a lowerbound C ≥ δ > 0?
e Explicitly compute Rn0→n1,tdSd−1 (n0,n1) for d = 2.
f Explicitly compute Rn0→n1,tdSd−1 (n0,n1) for d = 3 and n0 · n1 ≥ 0.
g Show that if α > 0 stays fixed and ξ →∞ the isotropic Riemannian curve optimization problem with

uniform cost on M is no longer controllable.

3.2.2 The sub-Riemannian uniform cost case

Let us consider the special case (M, dF0
) with ξ−1C1 = C2 = 1, with ξ > 0 and d ∈ {2, 3} and ε = 0.

Intuitively, one considers a Reeds-Shepp vehicle with two degrees of freedom:

– Hit the gas via spatial control ũ(t) := ẋ(t) · n(t).
– Turn the wheel via angular velocity control ṅ(t).

The fact that ε = 0 corresponds to infinite costs for the vehicle to move sidewards, recall Figure 2. Recall
also that F0 was given by (2).

Next we follow the 5 steps of the backtracking procedure and we derive the exact solutions afterwards.
For simplicity
Step 1: Compute the dual Finsler function:

F∗0 (p, p̂) =
√
ξ−2|n · x̂|2 + α−2‖n̂‖2 with p̂ = (x̂, n̂) ∈ Tp(M). (41)

Step 2: Derive the eikonal system:{√
ξ−2|n · ∇RdU(p)|2 + α−2‖∇Sd−1U(p)‖2 = 1 for all p ∈ M \ {pS},

U(pS) = 0.
(42)

Step 3: Derive the viscosity solution. This must be done numerically [67,56,9]. We return to this in
Section 7. For now we just write U(p) = dF0

(p,p0).

Step 4: Compute the derivative of the dual Finsler function (w.r.t. 2nd entry only):

dF∗0 (p, p̂) =
(ξ−2n x̂ · n, n̂)

F∗0 (p, p̂)
, with p̂ = (x̂, n̂).
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Step 5: Apply backtracking. In addition to Eq. (24) we reverse time t 7→ 1 − t as this is how it is
implemented (i.e. backtracking from end-point p = (x,n) back to source point pS = (x0,n0):

ẋ(t) = −U(p) 1
ξ2 n(t) (n(t) · ∇RdU)(x(t),n(t)), t ∈ [0, 1],

ṅ(t) = −U(p) ∇Sd−1U(x(t),n(t)),
x(0) = x,
n(0) = n.

(43)

Exercise 7 Verify each of the above steps (except for step 3).

Exercise 8 Indicate after a careful study of the next paragraph (where application of the Pontryagin
Maximum Principle (PMP) provides exact solutions for the sub-Riemannian geodesics) for each step the
relation to the Pontryagin Maximum Principle.

Exercise-Mathematica 1. Identify the 5 steps for computing optimal sub-Riemannian geodesics in SE(2)
in the notebook ”SE2 SRGeodesicsCeq1UpwindPDE.nb”
(downloadable at www.LieAnalysis.nl > Education > Lecture 5-Tracking > Eikonal Solver Upwind).
In this notebook the Eikonal equation is solved using an iterative upwind scheme. Perform the tasks at the
end of the notebook:

– Identify different types of geodesics, i.e. U-curves, S-curves, sub-Riemannian geodesics with and without
cusps, Asymmetric Finsler geodesics with and without key-points.

– Locate Maxwell-points.

Remark: In case you do not have the latest version of Mathematica installed and still would like
to see how the notebooks work in practice you can look at ‘HTML Renders from the Notebooks’ at
http://www.lieanalysis.nl/education/,
where notebooks including output can be viewed (without running Mathematica).

Exercise-Mathematica 2. Reproduce the exercises of Exercise 1 using the notebook
”SE2 SRGeodesicsCeq1FastMarching.nb”
(downloadable at www.LieAnalysis.nl > Education > Lecture 5-Tracking > Fast marching).
In this notebook the Eikonal equation is solved using a fast marching solver.

3.2.3 Derivation of Exact Cuspless sub-Riemannian Geodesics via PMP

Let us derive the geodesics in the case (M, dF0
) with ξ−1C1 = C2 = 1, with ξ > 0, ε = 0. In this case the

geodesics are sub-Riemannian geodesics. But now let us, for the sake of simplicity, constrain ourselves to
d = 2. In this section, for simplicity we set pS = p0 = p(0), (and do not apply backtracking like in (43).

The Pontryagin Maximum Principle (PMP) [1,2] starts with the derivation of the Hamiltonian. In our
settings (of a 1-homogeneous Finsler function) the Hamiltonian for F = F0 is by definition given by

H(p, p̂) := sup
ṗ∈Tp(M)

{
〈p̂, ṗ〉 − (F0(p, ṗ))2

}
= sup

ṗ∈Tp(M)

{
〈p̂, ṗ〉 − G|p;0 (ṗ, ṗ)

}
.

(44)

Now we can compute this in a simple way by introducing a left-invariant frame and corresponding left-
invariant coordinate system, as this is a moving frame of reference intrinsically attached to the Reeds-Shepp
car. We write

ṗ = u1 A1|p + u2 A2|p + u3 A3|p and p̂ = λ1 ω
1
∣∣∣
p

+ λ2 ω
2
∣∣∣
p

+ λ3 ω
3
∣∣∣
p

(45)

with left-invariant vector fields and duals

A1 = cos θ ∂x + sin θ ∂y, A2 = − sin θ ∂x + cos θ ∂y, A3 = ∂θ,
ω1 = cos θ dx+ sin θ dy, ω2 = − sin θ dx+ cos θ dy, ω3 = dθ.

(46)
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where we use the common short notation ∂x := ∂
∂x . Recall that

〈ωi
∣∣∣
p
, Aj |p〉 = δij , (47)

with δij equals 1 if i = j and 0 if i 6= j.

Definition 5 We use the following short notation:

γ̇i(t) := 〈ωi
∣∣∣
γ(t)

, γ̇(t)〉 for i = 1, 2, 3 and all t ∈ [0, 1].

Exercise 9 Use (45) and (47) to verify that

ui(t) = γ̇i(t) for i = 1, 2, 3. (48)

Set distribution ∆ := span{A1,A3} and consider sub-Riemannian manifold (SE(2),∆,G). Then (44)
reduces to a Fenchel transform on R2:

H = sup
(u1,0,u3)T∈R3

{u1λ1 + u3λ3 − ξ2|u1|2 − |u3|2} =
1

2

∑
i∈{1,3}

|ui|2

|ξi|2 =
1

2

(
ξ−2λ21 + λ23

)
=

1

2
(49)

with ξ1 = ξ, ξ3 = 1.

Exercise 10 In case d = 2 we have M ≡ SE(2) the roto-translation group on the plane that acts transi-
tively on M by

(x, R)� (x′,n′) = (Rx′ + x, Rn′).

with group product
(x, R)(x′, R′) = (Rx′ + x, RR′). (50)

Identify θ with Rθ the counter clockwise rotation about angle θ. Let e = (0, 0, θ = 0) ∈ M be the unity
element.

– Verify that the left-invariant vector fields on SE(2) are given by push-forward of the left-multiplication
Lgh = gh

Ai|g = (Lg)∗Ai with A1 = ∂x|e , A2 = ∂y|e , A3 = ∂θ|e .
– Verify that they can also be obtained by infinitesimal generators of the right-regular representation
RgU(h) = U(hg) for all g, h ∈ SE(2):

Ai = dR(Ai) with (dR(Ai)U)(g) = lim
h↓0

U(gehAi)− U(g)

h
i = 1, 2, 3 for all U : SE(2)→ R smooth .

– Explain why the above procedures to compute a basis for the Lie-algebra L(G) of left-invariant vector
fields work on Lie groups G in general, and verify that dR : Te(G)→ L(G) is a Lie algebra isomorphism.

Exercise 11 The definition of the Hamiltonian is a coordinate free definition. Verify this explicitly with
a similar computation in the fixed frame of reference with

ṗ = (ẋ, ẏ, θ̇) = ẋ ∂x + ẏ ∂y + θ̇ ∂θ and p̂ = px dx+ py dy + pθ dθ

where you must obtain the same Hamiltonian (expressed in a different coordinate system).

Now that the Hamiltonian H is explicitly computed (49) we compute its lift (the corresponding Hamil-

tonian vector field)
−→
H on the cotangent bundle given by

∀ṗ∈Tp(M)∀λ̇∈T (T ∗p (M)) : σ(
−→
H (p, p̂), (ṗ, λ̇) ) = 〈dp̂H(p, p̂), (ṗ, λ̇))〉 with canonical volume form σ = dp∧dp̂,

or shortly σ(
−→
H (p, p̂), · ) = 〈dp̂H(p, p̂), ·〉, and write the so-called Hamiltonian flow on the cotangent

bundle T ∗(M) = {(p0, p̂0) | p̂0 ∈ T ∗p0
(M)} for SR-geodesics:
d
dτ

(
p(τ)
p̂(τ)

)
=
−→
H (p(τ), p̂(τ)),

p(0) = p0,
p̂(0) = p̂0 subject to H(p0, p̂0) = 1

2

(51)
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Remark 10 Throughout the remainder of this section we will use sub-Riemannian arclength parameter

τ = t dF0
(pS ,p) ∈ [0, dF0

(pS ,p)]⇔ t ∈ [0, 1],

as this is more convenient for analytic (rather than numeric) computations.

The first component of this vector ODE gives the flow on the base manifold M for the state variables and
is therefore called “the horizontal part”, whereas the second component gives the flow of the momentum
variables and is therefore called “the vertical part”. In explicit left-invariant coordinates (45) this geometric
flow can be written (where we write γ(τ) = p(τ) for the geodesics) in a relatively simple form:

γ̇1(τ) = u1(τ) = ξ−2λ1(τ),
γ̇2(τ) = u2(τ) = 0,
γ̇3(τ) = u3(τ) = λ3(τ)

λ̇1(τ) = λ2(τ)u3(τ) = λ2(τ)λ3(τ),

λ̇2(τ) = −λ1(τ)u3(τ) = −λ1(τ)λ3(τ),

λ̇3(τ) = λ2(τ)u1(τ) = −ξ−2 λ2(τ)λ1(τ),

λ1(0) = λ10,
λ2(0) = λ20,
λ3(0) = λ30,
with ξ−2λ210 + λ230 = 1.

γ(0) = p0,

(52)

Remark 11 The Hamiltonian flow is a linear operator and therefore it is denoted by et
−→
H :

(γ(τ), λ(τ)) = eτ
−→
H (γ(0), λ(0)),

where we use the notation
(γ(τ), λ(τ)) = (p(τ), p̂(τ)).

However, in practice (e.g. when solving a boundary value problem) one wants to solve for the geodesic γ(·)
separately without knowledge of the momentum λ(·). Then a serious challenge arises as the Hamiltonian
flow couples momentum λ and velocity γ̇ whose components are given by (45).

To tackle this problem, the general idea is to first isolate the momentum in a nonlinear ODE that
only involves momentum (like we did in the middle three equations of (52)), then solve this ODE, and
then substitute these momentum solutions in the first 3 equations of (52). This gives the velocity of the
geodesics. Finally, the geodesics themselves follow by integration of these velocities.

The Exponential Map of the Hamiltonian Flow and a Fundamental Symmetry

In the next few exercises we are going to

1. derive and understand the PDE system (52),
2. give an important geometric interpretation for PDE system (52),
3. analytically solve PDE system (52) for ‘cuspless’ geodesics.

Before that we define 2 typical tools from geometric control theory:

1.) The solver that solves (51) ⇔ (52) is typically denoted by the exponential map10 of the geometrical
control problem. as follows

γ(τ) = (x(τ), y(τ), θ(τ)) = EXPp0(τ, p̂0) = Π ◦ eτ
→
H

(
p0

p̂0

)
,

10 This exp map should not be mistaken for the usual exponential map from Lie algebra to Lie group! For an intuitive
geometric visualization of the exponential map (with a domain restriction such that only endpoints of ‘cuspfree’ geodesics
appear in the range) see [24, Fig.11,Thm.6].
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with manifold projection Π(p, p̂) = p.

2.) It can be shown that

∀h0∈SE(2)∀τ∈R : EXPh0p0
(τ,CoAd(h0)p̂0) = h0 EXPp0(τ, p̂0), (53)

where the co-adjoint action is given by CoAd(h0) = (Ad(h−1
0 ))∗. Here the adjoint-representation is given

by the push-forward (recall Part I) of the conjugation operator, i.e. Ad(g) = (LgRg−1)∗, where Lgp = gp
and Rgp = pg−1 where we identify M with the Lie group SE(2) equipped with group product (50). This
invariance property can be used to select a single element on the co-adjoint orbit

{CoAd(h0)p̂0 | h0 ∈ SE(2)}

that allows for simple computation of γ̃min(τ) after which the true minimizer is found by11

γmin(τ) = h−1
0 γ̃(τ).

Exercise 12 Two questions on the Hamiltonian system (52) structure. Let us restrict ourselves to ξ = 1.

a) Compute the structure constants ckij of the Lie algebra which are given by

[Ai,Aj ] := AiAj −AjAi =
3∑
k=1

ckij Ak, (54)

b) Express the (left-invariant) sub-Riemannian metric tensor field (33) as

G0 =
∑

i,j∈{1,3}

gij ω
i ⊗ ωj ,

where we recall (46), and compute the constants components gij w.r.t. the left-invariant frame.
c) Show that the ODE in (52) is given by12

γ̇i = λi := λi for i ∈ {1, 3}
γ̇2 = 0,

λ̇i = −
3∑
k=1

∑
j∈{1,3}

ckijλkλ
j for i ∈ {1, 2, 3}.

Exercise 13 Questions on different fundamental approaches to the Hamiltonian system (52):

a) Poisson brackets are given by

{f, g} =
3∑
i=1

(
∂f

∂p̂i

∂g

∂pi
− ∂f

∂pi

∂g

∂p̂i

)
Show that

{f, g} =
3∑
i=1

(
∂f

∂λi
Aig −

∂g

∂λi
Aif

)
and show that the ODE in (52) can be computed by13{

ui = {H, ui}, (horizontal part)

λ̇i = {H, λi}, (vertical part),

for i = 1 . . . , 3.

11 Note that the Hamiltonian (49) is affected when such a left shift is applied.
12 with λj =

∑
j′∈{1,3} g

jj′λj′ = (ξj)−1 with ξ1 = ξ = 1 and ξ2 = 1 since we have a diagonalized inverse SR-metric on

the dual ∆∗ of the distribution ∆.
13 In fact this is the common way to derive the canonical equations.
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b) Study the left Cartan connection∇ in Appendix D. Show that the Hamiltonian system of the Pontryagin
maximum principle (52) is equivalent to{

γ̇ = G−1
0 P∆∗λ (horizontal part),

∇∗
∣∣∣
γ̇
λ = 0 (vertical part).

where λ denotes a covector field, i.e. a section in the cotangent bundle

T ∗(M) = {(p, p̂) | p ∈ M, p̂ ∈ T ∗p(M)}.

c) Compute the auto-parallels ∇γ̇ γ̇ = 0 in the sub-Riemannian manifold.
d) Give a geometric interpretation of the above two exercises (hint: see Theorem 7 and Figure 20 in

Appendix D).

Exercise 14 Derive a complete set of functionally independent first integrals (preservation laws) of the
Hamiltonian system (52).

Exercise 15 The Hamiltonian system (52) can be solved analytically [57]. The elegant general formulas
are technical and involve many Jacobi functions. It boils down to phase portrait analysis of the mathe-
matical pendulum. In this exercise we set ξ = 1.

a.) Show that the vertical part of the Hamiltonian equations boils down to the well-known mathematical
pendulum ODE given by

ν̈(τ) = − sin ν(τ), ν(τ) ∈ (−π, 3π).

hint: apply the substitution ν = 2 · arg{−λ3 + iλ1} and c = ν̇ = −2 · λ2.

b.) Show that under the above substitution the horizontal part of the Hamiltonian equations is given by

ẋ = sin ν
2 cos θ ,

ẏ = sin ν
2 sin θ ,

θ̇ = − cos ν2 .

c.)] Plot the phase portrait of the mathematical pendulum ODE above. What can be said about the
shape of the spatial projections of the sub-Riemannian geodesics?
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Exercise 16 For the specific case of sub-Riemannian geodesics γ whose spatial projections do not exhibit
cusps one can obtain a simpler analysis of the solutions [24,28] as only for these ‘cuspfree’ geodesics one
can use spatial arclength parametrization:

s 7→ γ(τ(s)) = (x(s), θ(s)), with ‖ d
ds

x(s)‖ = 1.

In this exercise we will derive these solutions of the ‘cuspless’ sub-Riemannian geodesics step by step.
Recall that the ‘cuspless’ sub-Riemannian geodesics in (M ≡ SE(2), dF0

) (with forward spatial control)
are minimizers of the following problem

dF0
(p0,p) = min

γ = (x(·),n(·)) ∈ Lip([0, 1],M)
γ(0) = p0

γ(1) = p = (x, y, θ),
ẋ ∝ n.

1∫
0

F0,ξ(γ(t), γ̇(t)) dt ,

with Finsler function14 :

F0,ξ|p (ṗ, ṗ) =

{√
ξ2|ẋ · n|2 + ‖ṅ‖2 if ẋ ∝ n
∞ else.

for all p = (x,n) ∈ M ≡ SE(2), ṗ = (ẋ, ṅ) ∈ Tp(M). We assume that p0 is chosen such15 that the mini-
mizer γ(·) = (x(·),n(·) = (cos θ(·), sin θ(·))) has a strictly forward spatial control i.e. n(·) = +‖ẋ‖−1ẋ(·).

By rotation and translation covariance of the curve optimization problem we will restrict ourselves to
the case p0 = 0 := (0, 0, 0).

a) Show that the minimizing geodesic solution [0, 1] 3 t 7→ γξmin(t) connecting 0 to p = (x, y, θ) for ξ > 0

relates to the minimizing geodesic solution [0, 1] 3 t 7→ γξ=1
min(t) connecting 0 and p = (ξx, ξy, θ) for

ξ = 1 as follows:

γξmin(t) = (xξmin(t), yξmin(t), θξmin(t)) and γξ=1
min(t) = (x1min(t), y1min(t), θ1min(t)),

with

(xξmin(·), yξmin(·), θξmin(·)) = (ξ−1x1min(·), ξ−1y1min(·), θ1min(·)).
(55)

and check for physical dimensions. Note that in this item a), in contrast to the subsequent items, it is
convenient to parameterize by rescaled sub-Riemannian arclength t = τ/dF0

((x, y, θ), (0, 0, 0)) ∈ [0, 1]
in order to precisely match the parameterizations in (55).

Therefore we will restrict ourselves to ξ = 1 and sub-Riemannian arclength parametrization τ 7→ γ(τ) in
the remainder of this exercise.

b) Show that (for ‘cuspfree’ geodesics16)

τ(s) =

s∫
0

√
κ2(s̃) + 1 ds̃ and τ ′(s) = λ−1

1 (τ(s)) (56)

where s > 0 denotes the spatial arc-length, and κ(·) denotes the curvature, of the spatially projected
geodesic x(·).

hint: Use the ODE system (52) and recall (49).

c) Use (56) to express the vertical part of the Hamiltonian system in s parametrization.

d) Plot the phase portrait of the orbits (λ3(s), λ2(s)) in the space |λ3| < 1.

Let the initial momentum p̂(0) = p̂0 :=
3∑
i=1

λi(0) ωi
∣∣
p(0)

be given such that H(p̂0) = 1
2 , and recall p0 = 0.

14 So we set constant relative costs: C1 = ξ > 0 and C2 = 1 in (2).
15 The allowable set R for p0 is fully characterized in [24, Thm.9] and part of it is depicted in Figure 8.
16 We write “cuspfree” geodesics, as the sub-Riemannian geodesics themselves do not exhibit cusps, their spatial projec-

tions do, recall Fig. 7. For those geodesics spatial arclength parametrization does not break down.
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e) Compute the total spatial length smax(p̂0) towards the (first) cusp.

hint: for ξ = 1 one has by the Hamiltonian (49) that λ1(τ) = 0⇔ λ3(τ) = 1

f) For which p̂0 do we get S-shaped curves and for which p̂0 do we get U -shaped curves?

hints: check out the sign of the signed curvature κ(s), use λ3(s) = κ(s)√
(κ(s))2+ξ2

for ξ = 1, and rely one

the first integral |λ2(s)|2 + |λ1(s)|2 = |λ2(0)|2 + |λ1(0)|2 = c2.

g) Show that Ad(g1g2) = Ad(g1) ◦Ad(g2) for all g1, g2 ∈ SE(2).

h) Show that CoAd(g1g2) = CoAd(g1) ◦ CoAd(g2) for all g1, g2 ∈ SE(2).

i) Show that for all g0 = (x0, y0, θ0) ∈ SE(2) one has:

CoAd(g0) p̂0 = (λ1(0) cos θ0 − λ2(0) sin θ0) ω1
∣∣
p0

+ (λ2(0) cos θ0 + λ1(0) sin θ0) ω2
∣∣
p0

+ (λ3(0)− y0(λ1(0) cos θ0 − λ2(0) sin θ0) + x0(λ1(0) sin θ0 + λ2(0) cos θ0)) ω3
∣∣
p0
,

and show that ω1
∣∣
p0

= dx|p0
, ω2

∣∣
p0

= dy|p0
, ω3

∣∣
p0

= dθ|p0
for p0 = (0, 0, 0).

j) Show that

{CoAd(g0) p̂0 | g0 ∈ SE(2)} = {p̂ =
3∑
i=1

λi ω
i
∣∣∣
p0

∈ T ∗p0
(SE(2)) | |λ1|2 + |λ2|2 = c2},

with co-adoint orbit radius c > 0.

k) Show that there exists h0 ∈ SE(2) such that

CoAd(h0)p̂0 = −c ω2
∣∣∣
p0

= −c dy|(0,0,0)

l) Now let us store the left-invariant covector components into a modified row vector

λ = (−λ2, λ1, λ3).

Show that the vertical part of the Hamiltonian equations can be expressed as

d
dτ λ(τ) = λ(τ)(m(γ(τ)))−1 d

dτm(γ(τ))⇒
d
dsλ(s) = λ(s)(m(γ(s)))−1 d

dsm(γ(s))
(57)

with SE(2) matrix-representation:

m(x, y, θ) =

 cos θ − sin θ x
sin θ cos θ y

0 0 1

 .

m) Show that (57) implies that

∀0≤s≤smax(λ(0)) : λ(s) (m(γ(s)))−1 = λ(0) (m(γ(0)))−1.

n) Compute h0 ∈ SE(2) s.t.
λ(0)(m(h0))−1 = (c, 0, 0)

with c =
√
|λ1(0)|2 + |λ2(0)|2 the co-adjoint orbit radius.

hint: Why is it the same answer as your answer at 16k)?

o) Compute γ̃(τ(s)) = EXPh0
(τ(s),−c dy|(0,0,0)) for s ≤ sMAX(−c dy|(0,0,0)).

p) Compute all solutions (x(s), y(s), θ(s)) = γ(τ(s)) = EXPp0(τ(s), p̂0) for s ≤ sMAX(p̂0).

hint: use (53).
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Exercise 17 Set the origin as initial point, i.e. p0 = 0. 1st Maxwell-points (relative to the origin) are
typically induced by reflectional symmetries (which provide new geodesics with the same length and same
boundary conditions. Such reflectional symmetries can be considered in the group SE(2) or in the phase-
portrait of orbits in momentum space, cf. [57].

a) Show that ε1(ντ ′ , cτ ′ , τ
′) = (ντ−τ ′ ,−cτ−τ ′ , τ − τ ′) is one reflectional symmetry of the mathematical

pendulum ODE in Exercise 15.
b) Provide all 8 reflectional symmetries εi, i = 1, . . . , 8, of the mathematical pendulum ODE in Exercise 15.

c) Provide the corresponding reflectional symmetries εi, i = 1, . . . , 8 in the group SE(2), such that

Expp0(εi(p̂0, τ)) = εiExpp0(p̂0, τ).

hint: ε1(x, y, θ) = (x cos θ+y sin θ, x sin θ−y cos θ, θ) and yields a reflection of a geodesic in the median
line between (x0, y0) and (xτ , yτ ).

d) Some 1st Maxwell-points can be continuously contracted to the origin, this is called the local part
MLOC of the 1st Maxwell-set. How do they appear in the sub-Riemannian spheres depicted in item A
of Figure 11?

e) Which reflectional symmetry is responsible for MLOC?

f) Some 1st Maxwell-points cannot be continuously contracted to the origin, this is called the global
part MGLOB of the 1st Maxwell-set and is contained within |θ| = π. How do they appear in the
sub-Riemannian spheres depicted in item A of Figure 11?

g) Which reflectional symmetries are responsible for MGLOB?

Exercise 18 In many applications (with d = 2) one cannot distinguish between directions on a sphere,
and one needs to identify antipodal points and consider R2 × P 1 instead of R2 × S1, with P 1 = S1/∼
with equivalence relation n1 ∼ n2 ⇔ n1 = ±n2. The effect of this identification on the 1st Maxwell set is
quite intruiging, cf. [10]. The intersectionMR of the first Maxwell setM =M1 ∪M2 ∪M3 with growing
sub-Riemannian spheres with radius R in SE(2) is depicted in Figure 10 (taken from [10]).
Now compare A and B in Figure 11.
Can you explain what the 2 main causes are for the highly different development of MR compared to the
normal sub-Riemannian case where antipodal points are not identified?

4 Controllability Properties: Proof of Theorem 1, and Maxwell-points in (M, dF+
0

)

(Global controllability) The two considered Reeds-Shepp models (or metric spaces) (M, dF0
) and

(M, dF+
0

) are globally controllable, in the sense that the distance maps dF0
and dF+

0
take finite values

on M ×M. This easily follows from the observation that any path x : [0, 1] → Rd, which time derivative
ẋ := dx

dt is Lipschitz and non-vanishing, can be lifted into a path γ : [0, 1] → M of finite length w.r.t. F0

and F+
0 , defined by γ(t) := (x(t), ẋ(t)/‖ẋ(t)‖) for all t ∈ [0, 1]. The fact that the infimum in (1) is actually

a minimum for F = F+
0 follows by Corollary 3 in App. A and (8), and the fact that the pseudo-distances

take finite values.

(Local controllability) In order to show that the model (M, dF+
0

) is not locally controllable, we need

the following lemma.

Lemma 2 Let n : [0, π] → Sd−1 be strictly 1-Lipschitz. Then
∫ π
0

n(0) · n(t) dt > 0. Let n : R → Sd−1 be
strictly 1-Lipschitz and 2π-periodic. Then all points n(t) lay in a common strict hemisphere. In particular
0 /∈ Hull{n(t) | t ∈ [0, 2π]}.

Proof. The Lipschitzness assumption implies n(0) · n(t) > cos(t) for all t ∈ (0, π] so
∫ π
0

n(0) · n(t) dt > 0.
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Fig. 10 Top: The 1st Maxwell set M in R2 o P 1 consists of 3 parts. Middle: the intersection MR of M with the SR-
spheres with growing radii R > 0 reveals itself by folds. (NB. ν denotes the multiplicity of the Maxwell-points, R and R̃
are critical radii in this respect, for details see [10]). Bottom: visualization of specific 1st Maxwell points where distinct
geodesics with equal length first meet.

Let n : R→ Sd−1 be strictly 1-Lipschitz and 2π-periodic. Set M :=
∫ 2π

0
n(t) dt. Then for any t0 ∈ [0, 2π]

one has by the two assumptions

n(t0) ·M =

π∫
0

n(t0) · n(t0 + t) dt+

π∫
0

n(t0) · n(t0 − t) dt > 0,

so for all t0, n(t0) ∈ {n ∈ Sd−1 | n ·M > 0}.

Now the statements (11) and (12) on the non-local controllability of (M, dF+
0

) are shown in two steps.

Step 1: we show in the case of a constant cost function C2 = δ one has lim sup
p′→p

dF+
0

(p,p′) ≤ 2πδ, for any

p ∈ M. Indeed, one can design an admissible curve in (M,F+
0 ) as the concatenation of an in-place rotation,

a straight line, and an in-place rotation. The length of the straight-line is O(‖p′ − p‖) and vanishes when
p′ → p, and the in-place rotations each have maximum cost πδ.
Step 2: we prove the lower bound lim

µ↓0
dF+

0
((x,n), (x− µn,n)) ≥ 2πδ, for any (x,n) ∈ M. This and the above

established upper bound implies the required result. As C1, C2 ≥ δ, we can restrict ourselves to the case of
uniform cost C1 = C2 = δ = 1 and just show equality (12), as the estimate (11) follows by scaling with δ.

Consider a Lipschitz regular path γ(t) = (x(t),n(t)), with ẋ ∝ n and ẋ·n ≥ 0, from (x,n) to (x−µn,n).
Then

0 = µn +

∫ 1

0

ẋ(t)dt = µn(0) +

∫ 1

0

‖ẋ(t)‖n(t)dt,
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so 0 ∈ Hull{n(t); 0 ≤ t ≤ 1}. Let m : [0, 1] → Sd−1 be a constant speed parametrization of n. Let
m̃ : R→ Sd−1 be defined by m̃(2πt) = m(t) for all t ∈ [0, 2π], and extended by 2π-periodicity. If m̃(·) were
strictly 1-Lipschitz then by Lemma 2 we would get 0 /∈ Hull{m̃(t) | t ∈ [0, 2π]} = Hull{n(t) | t ∈ [0, 1]}
and a contradiction. Hence there exists a t0 ∈ R such that ‖ ˙̃m(t0)‖ ≥ 1 and via the constant speed
parametrization assumption we get the required coercivity:

1 ≤ ‖ ˙̃m(t0)‖ =
1

2π

∫ 1

0

‖ṅ(t)‖dt⇒∫ 1

0

F+
0 (γ(t), γ̇(t)) dt ≥

∫ 1

0

C2(γ(t)) ‖ṅ(t)‖dt ≥ 2πδ.

To prove local controllability of the model (M, dF0
), we apply the logarithmic approximation for weighted

sub-coercive operators on Lie groups, cf. [72] applied to the Lie group SE(d) = Rd o SO(d), in which the
space of positions and orientations is placed via a Lie group quotient SE(d)/({0}×SO(d−1)). One obtains
a sharp estimate17, where the weights of allowable (horizontal) vector fields is 1, whereas the remaining
spatial vector fields orthogonal to n · ∇Rd get weight 2, as they follow by a single commutator of allowable
vector fields, see e.g. [28,27]. Relaxing all spatial weights to 2 and continuity of costs C1, C2, yields (13). �

Remark 12 In view of the above one might expect that the point (x−µn,n) is reached by a geodesic that
consists of a concatenation of 1. an in-place rotation by π, 2. a straight line, 3. an in-place rotation by
π. However, this is not the case as can be observed in the very lower left corner in Fig. 9, where the two
minimizing red curves show a very different behavior. This is explained by the next lemma.

Lemma 3 Let µ > 0, and C1 = C2 = δ. Let Rθ denote the (counter-clockwise) rotation matrix about the
origin by angle θ. The endpoint (x−µn,n) for each µ ≥ 0 is a Maxwell point w.r.t. (x,n), since there are
two minimizing geodesics in (M, dF+

0
) that are a concatenation

1. an in-place rotation from (x,n) to (x,R± π
2
n),

2. a full U-curve, see [57], departing from and ending in a cusp from (x,R± π
2
n) to (x− µn,R∓ π

2
n),

3. an in-place rotation from (x− µn,R∓ π
2
n) to

(x− µn,n).

We have the limit lim
µ↓0

dF+
0

((x,n), (x− µn,n)) = 2πδ.

Proof. See [38].

Remark 13 Consider the case d = 2, C1 = C2 = δ, and source point pS = (x,n) = e = (0, 0, θ = 0).
The end-points (x− µn,n) = (−µ, 0, 0), with µ > 0 sufficiently small, are 1st Maxwell-points in (M, dF+

0
)

where geodesically equidistant wavefronts departing from the source point collide for the first time, see
Fig. 11C. The distance mapping d+F0

(pS , ·) is not continuous, but the asymmetric distance spheres SR :=

{p ∈ M | d+F0
(pS ,p) = R} are connected and compact, and they collide at R = 2π in such a way that the

origin ps becomes an interior point in the asymmetric balls of radius R > 2π.

5 Cusps and Keypoints: Proof of Theorem 3

In this section we provide a proof of Theorem 3 on the occurrence of cusps and keypoints. For the uniform
cost case C1 = C2 = 1 for d = 2, our curve-optimization problem (1) (M, dF0

) in consideration, boils
down to a standard left-invariant curve optimization in the roto-translation group SE(2) = R2 o SO(2).
As we will apply tools from previous works [24,12,11,66], we will make use of the following notations for

17 For specific sharp estimates for d = 3, in the context of heat-kernels estimation, see [61, ch.5.1].
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Fig. 11 The development of spheres centered around e = (0, 0, 0) with increasing radius R. A: the normal SR spheres
on M given by {p ∈ M | dF0

(p, e) = R} where the folds reflect the 1st Maxwell sets [9,66]. B: the SR spheres with

identification of antipodal points given by
{
p ∈ M | min{ dF0 (p, e), dF0 (p + (0, 0, π), e) } = R

}
with additional folds (1st

Maxwell sets) due to π-symmetry. C: the asymmetric Finsler norm pseudo spheres given by {p ∈ M | dF+
0

(p, e) = R}
visualized from two perspectives with extra folds (1st Maxwell sets) at the back (−µ, 0, 0). The black dots indicate points
with two folds. In the case of B, this is a Maxwell-point with 4 geodesics merging. In the case of C, this is just the origin
itself reached from behind at R = 2π, recall Lemma 3. Although not depicted here, if the radius R > 2π the origin becomes
an interior point of the corresponding pseudo ball.

expansion18 of velocity and momentum in the left-invariant (co)-frame:
A1 := cos θ ∂x + sin θ ∂y,
A2 := − sin θ ∂x + cos θ ∂y,
A3 := ∂θ,
ω1 := cos θ dx+ sin θ dy,
ω2 := − sin θ dx+ cos θ dy,
ω3 := dθ,

γ̇(t) =
3∑
i=1

ui(t) Ai|γ(t) ∈ Tγ(t)(M),

p̂(t) =
3∑
i=1

p̂i(t) ω
i
∣∣
γ(t)
∈ T ∗γ(t)(M),

(58)

where the indexing of the left-invariant frame is different here, in order to stick to the ordering (x, y, θ)
applied in this article. Note that for the case ε = 0 admissible smooth curves γ in (M, dF0

) satisfy the
horizontality constraint γ̇(t) ∈ Span{A1|γ(t) , A3|γ(t)}.

Proof of the statements regarding cusps:

– We can describe our curve optimization problem (1) using a Hamiltonian formalism, with Hamiltonian
H(p̂) = 1

2

(
p̂21 + p̂23

)
= 1

2 [57]. By Pontryagin’s Maximum Principle, geodesics adhere to the following
Hamilton equations: 

ṗ1 = u1 = p̂1,
ṗ2 = u2 = 0,
ṗ3 = u3 = p̂3,

,


dp̂1
dt = p̂2p̂3,
dp̂2
dt = −p̂1p̂3,
dp̂3
dt = −p̂1p̂2.

(59)

18 Note that we use upper-indices for the control’s (velocity components) as they are contra-variant.
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For fixed initial momentum p̂(0), this uniquely determines a SR geodesic. Moreover, SR geodesics are
contained within the (co-adjoint) orbits

(p̂1(t))2 + (p̂2(t))2 = (p̂1(0))2 + (p̂2(0))2. (60)

The parameter t in the system (59) is SR arc length, but by reparametrizing (possible as long as u1

does not change sign) to spatial arc length parameter s, with ds
dt = p̂1, we get a partially linear system.

Combining (59) and (60), we find orbits in the (hyperbolic) phase portrait induced by{
p̂′2(s) = −p̂3
p̂′3(s) = −p̂2

⇒

{
p̂2(s) = p̂2(0) cosh s− p̂3(0) sinh s

p̂3(s) = −p̂2(0) sinh s+ p̂3(0) cosh s.

Hence |p̂3(s)| = 1 always has a solution for some finite (possibly negative) s, except when p̂2(0) =
p̂3(0) = 0, in which case the solutions are straight lines. Preservation of the Hamiltonian then implies
p̂1(s) = u1(s) = ũ(s) = 0. We conclude that every SR geodesic (with unconstrained time t ∈ R) in
(M, dF0

) which is not a straight line admits a cusp.
– We now consider (M, dFε), ε > 0. To have a cusp, we need p̂1(t) = p̂2(t) = 0 for some t ∈ R. The

co-adjoint orbit condition (60) then implies that p̂1(t) = p̂2(t) = 0 for all t, corresponding to a vertical
geodesic that has purely angular momentum and no cusp. The same argument holds for (M, dF+

ε
).

In (M, dF+
0

) we have the condition that u1 ≥ 0, hence by definition it can never switch sign and all

geodesics are cuspless.

Proof of the statements regarding keypoints:

– For the cases (M, dFε) and (M, dF+
ε

) with ε > 0 we can use the same line of arguments as above. Also
here both spatial controls have to vanish, resulting in vertical geodesics. The spatial projection of such
curves is a single keypoint. For (M, dF0

) we rely on the result that SR geodesics are analytical, and
therefore if the control u1(t) = 0 for some open time interval (t0, t1), then u1(t) = 0 for all t ∈ R, again
corresponding to purely angular motion.

– Geodesics in (M, dF+
0

) can have key points only at the boundaries. Suppose a geodesic γ : [0, 1]→ M in

(M, dF+
0

) has an internal key point, with a corner of angle δ > 0, at internal time T1 ∈ (0, 1). Then one

can create a local short-cut with a straight-line segment connecting two sufficiently close points before
and after the corner with two in-place rotations whose angles add up to δ. With a suitable mollifier
this short-cut can be approximated by a curve in Γ . For details see similar arguments in [12].

Next we explain the cases A), B) and C), where we fix initial point γ(0) = e = (0, 0, 0).

A) Suppose that the endpoint p = (x, y, θ) ∈ R and x ≥ 0. Then p can already be reached by a geodesic
in (M, dF0

) and the positivity constraint (i.e. no reverse gear), which can only increase length, becomes
obsolete.

B) Now suppose the endpoint p = (x, y, θ) lays in the half-space x < 0. Then by the half-space property of
geodesics in (M, dF0

), cf.[24, Thm.7], the geodesic in (M, dF+
0

) must have a keypoint. By the preceding

keypoints can only be located at the boundaries. If it takes place at the endpoint only, then still the
constraint x < 0 is not satisfied, thereby it must take place at the origin.

C) In those cases the endpoint p lays outside the connected cone of reachable angles, which are by [24,
Thm.9] bounded (for those endpoints) by geodesics ending in a cusp (so not endpoints of geodesics
starting at a cusp). So for those points optimal geodesics will first move by an in-place rotation (along
a spherical geodesic) until it hits the cusp surface ∂R, after which it is traced back to the origin by a
regular geodesic with strictly positive spatial control inside the volume R.

6 Eikonal equations and backtracking: Proof of Prop. 1, Corr. 1 and Thm. 4

First we shall prove Proposition 1, regarding the duals Fε and F+
ε , and Corollary 1, providing explicit

expressions for the corresponding eikonal equations. To this end we need a basic lemma on computing dual
norms on Rn, where later we will set n = 2d− 1 = dim(M).



DRAFT VERSION. Part III: Tracking in Orientation Scores 33

Lemma 4 Let w ∈ Rn and let M ∈ Rn×n be symmetric, positive definite. Define the norm FM,w : Rn →
R+ by

FM,w(v) =
√

(Mv,v) + (w,v)2−.

Then its dual norm F ∗M,w : (Rn)∗ → R+ equals

F ∗M,w(v̂) =
√

(v̂, M̂ v̂) + (v̂, ŵ)2+, (61)

with M̂ = (M + w ⊗w)−1 and ŵ = M−1w√
1+(w,M−1w)

.

Proof. For n = 1 the result is readily verified, and for w = 0 the result is classical. We next turn to the
special case M = Id, and w = (w1,0Rn−1) is zero except maybe for its first coordinate w1. Thus for any
v = (v1,v2) ∈ Rn = R× Rn−1 one has the splitting

FM,w(v1,v2)2 =
(
|v1|2 + (w1v1)2−

)
+ ‖v2‖2

:=F1(v1)2 + F2(v2)2.
(62)

Using the compatibility of norm duality with such splittings, and the special cases n = 1 and w = 0
mentioned above, we obtain

(F ∗M,w(v̂1, v̂2))2 = (F ∗1 (v̂1))2 + (F ∗2 (v̂2))2

=
|v̂1|2 + (w1v̂1)2+

1 + |w1|2
+ ‖v̂2‖2,

which is exactly of the form (61). The general case for arbitrary w and symmetric positive definite M
follows from affine invariance. Indeed let A be an invertible n × n matrix, and let M ′ = ATMA and
w′ = ATw. Let F = FM,w and F ′ = FM ′,w′ , so that F ′(v) = F (Av) for all v ∈ Rn. Let F ∗, M̂ , ŵ, and

F ′∗, M̂ ′, ŵ′, be respectively the dual norms and the matrices defined by the explicit formulas above. Then
denoting B := (AT)−1 one has by the definition of dual norms that F ′∗(v̂) = F ∗(Bv̂) for all v̂ ∈ Rn, and
by the explicit formulas M̂ ′ = BTM̂B, w′ = BTw. Thus, F ∗ = F ∗M,w holds if and only if F ′∗ = F ∗M ′,w′ .
Since for any M,w, there exists a linear change of variables A such that M ′ = Id and w′ is zero except
maybe for its first coordinate, the proof is complete.

Now Proposition 1 follows from Lemma 4 by writing out the dual norm, using for each p ∈ M:

Mp = (C1(p))2(Dεn)−1 ⊕ (C2(p))2Id and

wp =

{
C1(p)

√
ε−2 − 1 (n,0), for F+

ε ,
0, for Fε,

(63)

with Dεn as in (28). Corollary 1 then follows by setting the momentum covector p̂ = dU(p) equal to the
derivative of the value function evaluated at p.

Now that we have derived the eikonal equations, we obtain the backtracking Theorem 4 by Proposition 4
in App. B, which shows us that level sets of solutions of the eikonal equations are geodesically equidistant
surfaces and that geodesics are found by an instrinsic gradient descent.

However, to obtain the explicit backtracking formulas we differentiate the Hamiltonian, rather than
the dual metric, which is equivalent thanks to (82) (in Remark 16 in App. B). We focus below on the
model F+

ε without reverse gear, since the other case is similar. Let p ∈ M, let F := F+
ε (p, ·), and let

p̂ = (x̂, n̂) ∈ T ∗p(M). Then differentiating w.r.t. n̂ we obtain

dn̂F
∗(x̂, n̂)2 = C2(p)−2 dn̂‖n̂‖2 = 2 C2(p)−2n̂,

where ‖ · ‖ is the Riemannian metric induced by the embedding Sd−1 ⊂ Rd. Differentiating w.r.t. x̂ we
obtain

dx̂F
∗(x̂, n̂)2 = C1(p)−2 dx̂(x̂ ·Dεnx̂− (1− ε2)(x̂ · n)2−)

= 2 C1(p)−2

{
Dεnx̂ if x̂ · n ≥ 0,

ε2 Id x̂ if x̂ · n ≤ 0.
(64)
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The announced result (32), which is equivalent to its more concise abstract form (29), follows by choosing
x̂ := ∇RdU(γ(t)) and n̂ := ∇Sd−1U(γ(t)) and a basic re-scaling [0, L] ∈ t 7→ t/L ∈ [0, 1]. �

Remark 14 The computation of the dual norms can be simplified by expressing velocity (entering the
Finsler metric) and momentum (entering the dual metric) in a (left-invariant) local, orthogonal, moving
frame of reference, attached to the point p = (x,n) ∈ M:

ṗ =

2d−1∑
i=1

ui Ai|p , p̂ =

2d−1∑
i=1

p̂i ω
i
∣∣∣
p

(65)

where a moving frame of reference is chosen such that
ud = ũ = n · ẋ,
d−1∑
i=1

(ui)2 = ‖ẋ‖2 − (n · ẋ)2,

d−1∑
i=1

(ud+i)2 = ‖ṅ‖2,

inducing a corresponding dual frame {ωi
∣∣
p
} via

〈ωi
∣∣∣
p
, Aj |p〉 = δij , for all i, j = 1, . . . , 2d− 1. (66)

W.r.t. the left-invariant frame the matrices Dεn, Mp as in (63) and M̂p all become diagonal matrices,
and the dual can be computed straightforwardly. Furthermore, in this formulation we can see from the
expression for the dual (F+

0 )∗, i.e. in the limit ε ↓ 0, that the positive spatial control ud constraint results
in a positive momentum p̂d constraint:

(F+
0 )∗(p, p̂) =

√√√√ (p̂d)2+
C21(p)

+
1

C22(p)

2d−1∑
i=d+1

(p̂i)2. (67)

Therefore the eikonal equation in the positive control model (M, dF+
0

) is simply given by√
‖∇Sd−1U(p)‖2
C22(p)

+
((n · ∇RdU(p))+)2

C21(p)
= 1 (68)

7 Discretization of the Eikonal PDEs

7.1 Causal operators and the fast marching algorithm

The fast marching algorithm is an efficient numerical method [74] for numerically solving the static first
order Hamilton-Jacobi-Bellman (or simply eikonal) PDE (5) which characterizes the distance map U
to a fixed source point pS. Fast marching is tightly connected with Dijkstra’s algorithm on graphs, an
in particular it shares the O(KN lnN) complexity, where N = #(X) is the cardinality of the discrete
domain X ⊂ M, X 3 pS, and K is the average number of neighbors for each point. Both fast marching and
Dijkstra’s algorithms can be regarded as specialized solvers of non-linear fixed point systems of equations
Λu = u, where the unknown u ∈ RX is a discrete map representing the front arrival times, which rely on the
a-priori assumption that the operator Λ : RX → RX is causal (and monotone, but this second assumption
is not discussed here). Causality informally means that the estimated front arrival time Λu(p) at a point
p ∈ X depends on the given arrival times u(q), q ∈ X, prior to Λu(p), but not on the simultaneous or
the future ones. Formally, one requires that for any u, v ∈ RX , t ∈ R:

If u<t = v<t then (Λu)≤t = (Λv)≤t,

where u<t(p) :=

{
u(p) if u(p) < t,

+∞ otherwise,

(69)

and v<t, (Λu)≤t and (Λv)≤t are defined similarly.
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A semi-Lagrangian scheme. We implemented two discretizations of the eikonal equation (5) which benefit
from the causality property. The first one is a semi-lagrangian scheme, inspired by Bellman’s optimality
principle which informally states that any sub-policy of an optimal policy is an optimal policy. Formally,
let F be a Finsler metric, and let U := dF (·,pS) be defined as the distance to a given source point pS.
Then for any p ∈ M and any neighborhood V of p not containing pS one has the property

U(p) := min
q∈∂V

dF (p,q) + U(q). (70)

In the spirit of [74,70] we discretize (70) by introducing for each interior p ∈ X \ {pS} a small polygonal
neighborhood V (p), which vertices belong to the discrete point set X. The nonlinear operator Λ is defined
as

Λu(p) := min
{q1,··· ,qn}

facet of ∂V (p)

min
ξ∈Ξ
F

(
p,

n∑
i=1

ξiqi − p

)
+

n∑
i=1

ξiu(qi), (71)

where Ξ = {ξ ∈ Rn+;
∑n
i=1 ξi = 1}. In other words, the boundary point q ∈ ∂V (p) in (70) is represented

in (71) by the barycentric sum q =
∑n
i=1 ξiqi, the distance dF (p,q) is approximated with the norm

F(p,q− p), and the value U(q) is approximated with the interpolation
∑n
i=1 ξiu(qi).

We refer to [70,76] for proofs of convergence, and for the following essential property: the operator
(71) obeys the causality property (69) iff the chosen stencil V (p) obeys the following generalized acuteness
property: for any q,q′ in a common facet of V (p), one has

〈dp̂F(p,q− p),q′ − p〉 ≥ 0.

For the construction of such stencils V (p), p ∈ X, we rely on the previous works [56,55] and on the following
observation: the metrics Fε and F+

ε associated to the Reeds-Shepp car models can be decomposed as

F(p, (ẋ, ṅ))2 = F1(p, ẋ)2 + F2(p, ṅ)2, (72)

which allows to build the stencils V (p) for F by combining, as discussed in [56, p. 9], some lower dimensional
stencils V1(p) and V2(p) built independently for for the spatial x ∈ Rd and spherical n ∈ Sd−1 variables.

We discretize S1 uniformly, with the standard choice of stencil. We discretize S2 by refining uni-
formly the faces of an icosahedron and projecting their vertices onto the sphere (as performed by the
Mathematica R© Geodesate function). The resulting triangulation only features acute interior angles, in the
classical Euclidean sense, and thus provides adequate stencils since in our applications F2(p, ṅ) = C2(p)‖ṅ‖
is proportional to the Euclidean norm, see Fig. 12. We typically use 60 discretization points for S1, and
from 200 to 2000 points for S2.

We discretize Rd using the cartesian grid hZd, where h > 0 is the discretization scale. The norm
Fε,1(p, ẋ) = C1(p)

√
ẋT (Dεn)−1ẋ, recall the notation in (72), induced by the approximate Reeds-Shepp

model Fε on the physical variables in Rd, is of Riemannian type and strongly anisotropic. In dimension
d ≤ 3, this is the adequate setting for the adaptive stencils of [56], built using discrete geometry tools known

as lattice basis reduction. The norm F+
ε,1(p, ẋ) = C1(p)

√
ẋT (Dεn)−1ẋ + (ε−2 − 1)(n,x)2− induced by F+

ε

on Rd is Finslerian (i.e. non-Riemannian) and strongly anisotropic. In dimension d = 2, this is the adequate
setting for the adaptive stencils of [55], built using an arithmetic object known as the Stern-Brocot tree.

Direct approximation of the Hamiltonian. A new approach, not semi-Lagrangian, had to be developed for
the model F+

ε in dimension d = 3 due to our failure to construct viable (i.e. with a reasonably small
number of reasonably small vertices) stencils obeying the generalized acuteness property in this case, see
Fig. 13. For manuscript size reasons, we only describe it informally, and postpone proofs of convergence
for future work.

Let n ∈ S2 and let ε > 0 be fixed. Then one can find non-negative weights and integral vectors
(ρi,wi) ∈ (R+ × Z3)6, such that for all v ∈ R3

∑
1≤i≤6

ρi(wi · v)2 = (n · v)2 + ε2‖n× v‖2. (73)
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Fig. 12 Left: Stencil used for the metric Fε on R2 × S1, ε = 0.1, obeying the generalized acuteness property required for
the Bellman type discretization (71). See also the control sets in Fig. 1. Center: likewise with F+

ε , ε = 0.1. Right: Coarse
discretization of S2 with 162 vertices, used in some experiments posed on R3 × S2. Some acute stencils (in the classical
Euclidean sense) shown in color.

Fig. 13 Left: Slice in R3 of the control sets (7) for Fε on R3×S2, ε = 0.2, for different orientations of n. Stencils obeying
the generalized acuteness property required for Bellman type discretizations (71). Right: Slice in R3 of the control sets for

F+
ε , ε = 0.2. Offsets used for the finite differences discretization (74), for four distinct orientations n.

A simple and efficient construction of (ρi,wi)
6
i=1, relying on the concept of obtuse superbase of a lattice,

is in [41] described and used to discretize anisotropic diffusion PDEs. One may furthermore assume that
(n,wi) ≥ 0 for all 1 ≤ i ≤ 6, up to replacing wi with its opposite. Then∑

1≤i≤6 ρi(wi · v)2+ ≈ (n · v)2+,

(n · ∇R3U(p))2+ ≈
1
h2

∑6
i=1 ρi(U(x,n)− U(x− hwi,n))2+,

(74)

up to respectively an O(ε2)‖v‖2 and O(ε2 +h) error. Following [63], we design a similar upwind discretiza-
tion of the angular part of the metric

‖∇S2U(p)‖2 ≈ (δθU(p))2 +
1

sin2 θ
(δϕU(p))2, (75)

where δθU(p), and likewise δϕU(p), is defined as

δθU(p) :=
1

h
max{0,U(x,n)− U(x,n(θ + h, ϕ)),

U(x,n)− U(x,n(θ − h, ϕ))}.

We denoted by n(θ, ϕ) := (sin θ cosϕ, sin θ sinϕ, cos θ) the parametrization of S2 by Euler angles (θ, ϕ) ∈
[0, π]× [0, 2π]. Combining (74) and (75), one obtains an approximation of F+∗

0 (p,dU(p))2, within O(ε2 +
r(ε)h) error for smooth U , denoted FεU(p). We denoted by r(ε) := max6

i=1 |wi| the norm of the largest
offset appearing in (73), since these clearly depend ε. Importantly, FεU(p) only depends on positive parts
of finite differences (U(p)− U(q))+, hence the system FεU(p) = 1 can be solved using the fast-marching
algorithm, as shown in [63]. The convergence analysis of this discretization, as the grid scale h and tolerance
ε tend to zero suitably, is postponed for future work.
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Fig. 14 Comparison of exact geodesics (black curves) and their numerical approximation (colored curves), with
ξ = 1/64 and ε = .1, for five different end conditions (a = ((0, 0, 60), (0, 0, 1)), b = ((6.4, 6.4, 60), (0, 0, 1)), c =

((−60, 0, 60), (−1, 0, 0)), d = ((0, 60, 60), 1/
√

6(−1, 2, 1)), e = ((60, 60, 10), (0, 0,−1)). The color indicates the error with
the exact sub-Riemmannian geodesics [28].

Note that this approach could also be applied in dimension d = 2, and to the symmetric model (M,Fε)
featuring a reverse gear. We present only a single assessment of the numerical performance of our method,
see Fig. 14. We compare numerically obtained shortest paths with exact SR geodesics for a small number of
end points, that correspond to various types of curves. For fair end conditions (a, b, c) the numerical curves
are close the exact curves. For very challenging end conditions inducing torsion (d) or extreme curvature
(e) the curves are further from the exact SR geodesics. An extensive evaluation of the performance of the
numerics is left for future work.

8 Applications

To show the potential of anisotropic fast marching for path-tracing in 2D and 3D (medical) images we
performed experiments on each of the datasets in Fig. 5:

– a 2D toy example using a map of Centre Pompidou,
– a 2D retinal image,
– two synthetic Diffusion-weighted Magnetic Resonance Imaging (dMRI) datasets, with different bundle

configurations.

We use the 2D datasets to point out the difference in results when using the metric Fε and F+
ε , and to

explain the role of the keypoints when using F+
ε , that occur instead of (possibly unwanted) cusps.

On the synthetic dMRI datasets we present the first application of our methods to this type of data.
We present how a cost function can be extracted from the data, and how this leads to correct tracking
of bundles, similar to the 2D case. The benefits of anisotropic metrics compared to isotropic metrics are
demonstrated by performing backtracking for various model parameter variations.

The experiments were performed using an anisotropic FM implementation written in C++, for d = 2
described in [56]. Implementation details for d = 3 will be described in future work. Mathematica 11.0
(Wolfram Research, Inc., Champaign, IL) was used for further data analysis, applying Wolfram LibraryLink
(Wolfram Research, Inc., Champaign, IL) to interface with the FM library.
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Fig. 15 Comparison between the shortest paths from end points (black) to one of the exits (green) in a model map of
Centre Pompidou, for cars with (left, blue lines) and without (right, red lines) reverse gear. The yellow arrows indicate the
orientation of the curve. The background colors show the distances at each position, minimized over the orientation. White
points left indicate the cusps, white points right indicate the (automatically placed) key points where in-place rotations
take place.

Fig. 16 Left: SR geodesics (in blue) in (M, dFε ) with given boundary conditions (both forward and backward). Right:
SR geodesics (in red) in (M, dF+

ε
) with the same boundary conditions. We recognize one end-condition case where on the

left we get a cusp, whereas on the right we have a key-point (with in-place rotation) precisely at the bifurcation.

8.1 Applications in 2D

8.1.1 Shortest Path to the Exit in Centre Pompidou

To illustrate the difference between the models with and without reverse gear and to show the role of the
keypoints for non-uniform cost, we use a map of Centre Pompidou as a 2D image, see Fig. 15. The walls
(in black) have infinite cost, everywhere else the cost is 1. We place end points (black dots) in various
places of the museum and look for the shortest path from those points to one of the two exits, regardless
of the end orientation. Since there are now two exits, say at p0 and p1, the distance U(p) of any point
p ∈ M to one of the exits is given by

UF (p) = min{dF (p0,p), dF (p1,p)}. (76)

We use a resolution of Nx ×Ny ×No = 706× 441× 60. The cost in this example is only dependent on
position, but constant in the orientation. Moreover, we use C1 = C2 and ε = 1/10.



DRAFT VERSION. Part III: Tracking in Orientation Scores 39

On the left of Fig. 15 we see optimal paths (in blue) obtained using the metric F = Fε. The fast
marching algorithm succesfully connects all end points to one of the exits. Some of the geodesics have
cusps, indicated with white points, resulting in backward motion on (a part of) the curve. The colors show
the distance UFε as above, at each position minimized over the orientations.

On the right, the optimal paths using the asymmetric metric F = F+
ε are shown in red. The curves

no longer exhibit cusps, but have in-place rotations (white dots) instead. These keypoints occur in this
example on corners of walls. (Due to the fact that ε is small but nonzero, there can still be small sideways
motion.) The shortest paths for this model are successions of sub-Riemannian geodesics and of in place
rotations, which can be regarded as reinitializations of the former: the orientation is adapted until an
orientation is found from which the path can continue in an optimal sub-Riemannian way. We stress that
the fast marching algorithm has no special treatment for keypoints, which are only detected in a post-
processing step. We observe that keypoints are automatically positioned at positions where it makes sense
to have an in-place rotation. Small differences in the distance maps between UFε left and UF+

ε
right can

be observed: the constrained model usually has a slightly higher cost right around corners.

8.1.2 Vessel Tracking in Retinal Images

Another application is vessel tracking in retinal images, for which the model with reverse gear and the
fast-marching algorithm have shown to be useful in [9,67]. Although the algorithm works fast and led
to successful vessel segmentation in many cases, in some cases, in particular bifurcations of vessels, cusps
occur. Fig. 16 shows one such example on the left. The image has resolution Nx×Ny×No = 121×114×64.
The cost is constructed as in [9]: the image is first lifted using cake wavelets [25], resulting in an image on
R2×S1. For the lifting and for the computation of the cost function from the lifted image, we rely on their
parameter settings. We use C1 = ξC2, with ξ = 0.02 (top) and ξ = 0.04, and ε = 0.1. The orientations of
the end conditions A, B and C (white arrows) are chosen tangent to the vessel, where we considered both
the forward and the backward case. The vessel with end condition C is particularly challenging, since it
comes across a bifurcation. For the tracking of this vessel, we indicated the orientation with yellow arrows.

The unconstrained model (M, dFε), corresponding to the blue tracks on the left half of Fig. 16, gives a
correct vessel tracking for the forward end conditions of A and B, for both values of ξ. This is obviously the
better choice than the backward cases. However, for end condition C, neither the forward or backward with
neither values of ξ gives a vessel tracking without cusps. On the other hand, if we use the constrained model
(M, dF+

ε
), we obtain an in-place rotation or keypoint in the neighborhood of the bifurcation. Typically a

higher value of ξ brings these points closer to the bifurcation. Taking the backward end conditions in
combination with this model, we see in some cases that end locations are first passed by the vessel tracking
algorithm, until it reaches a point where in-place rotation is cheaper, and then returns to the end position.

Exercise-Mathematica 3. Perform retinal vessel tracking using the notebook ”SE2 RetinaTracking.nb”
(downloadable at www.LieAnalysis.nl > Education > Lecture 5-Tracking > Retinal Vessel Tracking ).
Perform the tasks at the end of the notebook:

– Experiment with parameters (ξ: flexibility of the curve, λ: influence of the cost, p: contrast of the cost).
– Experiment with different geodesic models (“ReedsSheppForward2”, “ReedsShepp2”, “ReedsShepp2”-

projective).
– Run the experiment with different end conditions (try to find curves with cusps).

8.2 Application to Diffusion-Weighted MRI Data

DW-MRI is a magnetic resonance technique for non-invasive measurement of water diffusion in fibrous
tissues [58]. In the brain, diffusion is less constrained parallel to white matter fibers (or axons) than
perpendicular to them, allowing us to infer the paths of these fibers. The diffusion measurements are
distributions (y,n) 7→ U(y,n) within the manifold M for d = 3. From these measurements a fiber orienta-
tion distribution (FOD) can be created, yielding a probability of finding a fiber at a certain position and
orientation [75].

Backtracking is performed through forward Euler integration of the backtracking PDE involving the
intrinsic gradient, following Theorem 4 and Eq. (29) and Eq. (32). The spatial derivative was implemented
as a first-order Gaussian derivative. The angular derivatives are implemented by a first-order spherical
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Fig. 17 Comparison of the results of backtracking on a 2D plane in a synthetic dMRI dataset on M = R3 × S2. In case
A the default parameters for σ, ξ and ε are applied resulting in a global minimizing geodesic (left) and its corresponding
distance map (right). Case B reflects the influence of the data-term σ. Case C reflects the isotropic Riemannian case. Case
D reflects a high cost for moving spatially and results in curves that resemble a piecewise linear curve. The distance map
is illustrated using a glyph visualization in which the size of the glyph corresponds to exp(−dFε (ps,pe)/s)p where ps is
the seed location, pe is a location on a glyph, and s and p are chosen based on visualization clarity.

harmonic derivative. The latter has the key advantage that in a spherical harmonic basis exact analytic
computations can be done. Here, one must rely on two-fold recursions in [40, Lemma 2 & 4], so that the
poles due to a standard Euler angle parametrization of S2 do not appear in exact recursions of Legendre
polynomials!

If data-driven factors C1 and C2 come in a spherical sampling or if one wants to work in a spherical
sampling (e.g. higher order tesselation of the icosahedron) in a fast-marching method, than one can easily
perform the pseudo-inverse of the discrete inverse spherical harmonic transform, where one typically keeps
the number of spherical harmonics very close to the number of spherical sampling points, so that maxi-
mum accuracy order is maintained for computing angular derivatives in the intrinsic gradient descent of
Theorem 4.

8.2.1 Construction of the Cost Function

The synthetic dMRI data is created by generating/simulating a Fiber Orientation Density (FOD) of a
desired structure. There are sophisticated methods for this, e.g. [19,13], but evaluation on phantom data
constructed with these tools is left for future work. Here we use a basic but practical method on two
simple configurations of bundles in R3, the ones on the bottom row in Fig. 5. In each voxel inside a bundle,
we place a spherical δ-distribution, with the peak in the orientation of the bundle. We convolve each
δ-distribution with an FOD kernel that was extracted from real dMRI data and is related to the dMRI
signal measured in a voxel with just a single orientation of fibers. Spherical rotation of the FOD kernel is
done in the spherical harmonics domain by use of the Wigner D-matrix to prevent interpolation issues.
We compose from all distributions an FOD function W : M→ R+. This function evaluates to high values
in positions/orientations that are inside and aligned with the bundle structure.
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We use the FOD W to define the cost function 1
1+σ ≤ C ≤ 1 via

C(p) =
1

1 + σ
∣∣∣ W+(p)
‖W+‖∞

∣∣∣p
where σ ≥ 0, p ∈ N, with ‖ · ‖∞ the sup-norm and W+(p) = max{0,W (p)}. The cost function C induces
the following spatial and angular cost functions (C1, C2):

C1(p) = ξC(p), C2(p) = C(p).

The implementation of nonuniform cost is comparable to the application of vessel tracking in retinal images
in d = 2 by Bekkers et al. [9].

8.2.2 Influence of model parameters

The first synthetic dataset consists of a curved and a straight vessel, which cross at two locations as
shown in Fig. 17. The experiments using metric Fε demonstrate the effect of the model parameters on the
geodesic back-traced from the bottom-left to the seed location at the bottom-right of the curved vessel. A
distance map is computed for parameter configuration A (Fig. 17, right) in which suitable values are used
for the data-term σ, and the fast-marching parameters ξ and ε. Furthermore, fixed values are used for data
sharpening p = 3, spatial smoothing σs = 0.5, forward-Euler integration step size δt = 0.04, and a gridscale
of 1. By use of these parameters the global minimizing geodesic (Fig. 17.A, left) is shown to take the longer,
curved route. In parameter configuration B the data-term σ is lowered, which creates a geodesic that is
primarily steered by internal curve-dependent costs and is shown to take the shortcut route (Fig. 17.B).
Setting ε = 1 in configuration C leads to a Riemannian case where the geodesic resembles a piecewise
linear curve. In configuration D the relative cost of spatial movement relative to angular movement is high,
leading to geodesics with shortcuts.

We conclude that configuration A with a relatively strong data term, large bending stiffness (ξ−1 = 10),
and a nearly SR geometry (ε = 0.1) avoids unwanted shortcuts.

8.2.3 Positive control constraint

For the application of FM in dMRI data it is desirable that the resulting geodesic is not overly sensitive to
the boundary conditions, i.e. the placement and orientation of the geodesic tip. Furthermore, since neural
fibers do not form cusps, these are undesirable in the backtracking results. In Fig. 18 the backtracking
results are shown for the cases without reverse gear F+

ε (top) and the model with reverse gear Fε (bottom).
The distance map for F+

ε was computed by the iterative method implementing the forward Reeds-Shepp
car, while for Fε the FM method was used.

We conclude that without the positive control constraint, small changes in tip orientation cause large
variations in the traced geodesic in (M, dFε), whereas the traced geodesic in (M, dF+

ε
) is both more stable

and more reasonable.

8.2.4 Robustness to neighboring structures

A pitfall of methods that provide globally optimal curves using a dataterm is that dominant structures in
the data attract many of the curves, much like the highway usually has the preference for cars rather than
local roads. This phenomenon is to a certain extent unwanted in our applications, and we illustrate with
the following example that it can be circumvented using a sub-Riemannian instead of Riemannian metric.
We use the dataset as introduced in Fig. 5. It consists of one bundle that has torsion (green), that crosses
with another bundle (blue), and a third bundle (red) that is parallel with the first in one part. The cost
in these bundles is constructed in the same way as above, but now the cost in the red bundle is twice as
low as in the other bundles. A small part of the data is visualized on the left of Fig. 19. This data is used
to construct the cost function as explained above.

The resolution of the data is Nx×Ny×Nz×No = 32×32×32×162. Again we use C1 = ξC2 = C, with
ξ = 0.1. To have comparable parameters as in the previous experiment, despite increasing the amplitude in
one of the bundles by a factor 2, we choose to construct the cost using parameter p = 3, and σ = 3·2p = 24.
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Fig. 18 Backtracking of optimal geodesics of the model (M, dF+
ε

) without reverse gear (top) and the model with reverse

gear (M, dFε ) (bottom) using the model parameters of configuration A (σ = 3.0, ξ = 0.1 and ε = 0.1) for various end
conditions.

Fig. 19 Left: 3D configuration of bundles and a visualization of part of the synthetic dMRI data. Middle: backtracking
of geodesics in (M, dFε ) from several points inside the curves to end points of the bundle is successful when using ε = 0.1.
Right: when using ε = 1, the dominant red bundle can cause the paths from the green bundle to deviate from the correct
structure.

From various positions inside the green, blue and red bundle, the shortest paths to the end of the bundles
computed by the FM algorithm nicely follow the shape of the actual bundles, when we choose ε = .1
small, corresponding to an almost SR geodesic. This is precisely what prevents the geodesic in the green
bundle to drift into the (much cheaper) red bundle. We show on the right in Fig. 19 that choosing ε = 1,
corresponding to having an isotropic Riemannian metric, this unwanted behavior can easily occur.

We conclude that the SR geodesics in (M = R3 × S2, dFε) with ε � 1, are less attracted to parallel,
dominant structures than isotropic Riemannian geodesics.

Exercise-Mathematica 4. Perform geodesic tracking on synthetic diffusion MRI volumes using the
notebook ”SRGeodesics 3Dexample.nb”
(downloadable at www.LieAnalysis.nl > Education > Mathematica Exercises > Part III, where within the
zip file you can open
Part III Exercise 4 Bundle Tracking SE(3).nb ).
Try to reconstruct the 3 different bundles in the volume with different settings and tracking models.
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9 Conclusion and Discussion

We have extended the existing methodology for modelling and solving the problem of finding optimal
paths for a Reeds-Shepp car to 3D and to a case without reverse gear. We have shown that the use of the
constrained model leads to more meaningful shortest paths in some cases and that the extension to 3D
has opened up the possibility for tractography in dMRI data.

Instead of using a hard constraint on the curvature as in the original paper by Reeds and Shepp [62],
we used Riemannian/Finslerian metrics. We have introduced these metrics, F0 and F+

0 , for d = 2, 3, such
that they allow for curves that have a spatial displacement proportional to the orientation, with a positive
proportionality constant in the case of F+

0 .
We have captured theoretically some of the nature of the distance maps and geodesics following from

the new constrained model. We have shown in Thm. 1 that both models are globally controllable, but only
the unconstrained model is also locally controllable.

The sub-Riemannian and sub-Finslerian nature is difficult to capture numerically. To this end, we
introduced approximating metrics Fε and F+

ε , that do allow for numerical approaches. We have shown
in Thm. 2 that as ε → 0, the distance map converges pointwise and the geodesics converge uniformly,
implying that for sufficiently small ε we indeed have a reasonable approximation of the ε = 0 case.

We have analyzed cusps in (M, dF0
) and keypoints in (M, dF+

0
) which occur on the interface surface

∂M± given by (31). The analysis, for uniform costs, is summarized in Thm. 3. We have shown that cusps
are absent in (M, dFε) for ε > 0, that keypoints in (M, dF+

0
) occur only on the boundary, and we provided

analysis on how this happens. In Thm. 4 we have shown how optimal geodesics in (M, dFε) and (M, dF+
ε

)
can be obtained from the distance maps with an intrinsic gradient descent method.

To obtain solutions for the distance maps and optimal paths, we used a Fast-Marching method. By
formulating an equivalent problem to the minimization problem for optimal paths in the form of an
eikonal equation, the FM method can be used using specific discretization schemes. We briefly compared
the numerical solutions using Fε with ε � 1 with the exact sub-Riemannian geodesics in SE(2) with
uniform cost, which showed sufficient accuracy for not too extreme begin and end conditions.

To show the use of our method in image analysis, we have tested it on two 2D problems and two 3D
problems. All four experiments confirm that the combination of the eikonal PDE formulation, the Fast-
Marching method and the construction of the non-uniform cost from the images, results in geodesics that
follow the desired paths. From the experiment on an image of Centre Pompidou, with constant, finite cost
everywhere except for the walls, it followed that instead of having cusps when using the Fε metric, we get
keypoints (in-place rotations) when using F+

ε . These keypoints turn out to be located on logical places in
the image. On the 2D retinal image we showed that the metric F+

ε gives a new tool for tackling vessel
tracking through bifurcations. We see that keypoints appear close to the bifurcation, leading to paths that
more correctly follow the data.

The basic experiments on 3D show advantages of the model (M, dFε) with 0 < ε � 1 over the model
(M, dF1

) in the sense that the optimal geodesics better follow the curvilinear structure and deal with
crossings and nearby parallel bundles (even if torsion is present). Furthermore, we have shown the advantage
of model (M, dF+

ε
) with 0 < ε � 1, compared to (M, dFε) in terms of stability, with keypoints instead of

cusps.
The strong performance of the Reeds-Shepp car model in 2D vessel tracking and positive first results on

artificial dMRI data, encourages us to pursue a more quantitative assessment of the performance in both
3D vessel tracking problems and in actual dMRI data. Such 3D vessel tracking problems are encountered
in for example Magnetic Resonance Angiography. In future work we will elaborate on the implementation
and evaluation of the fast-marching and the iterative PDE implementation of [38, App. B]. Furthermore,
we aim to integrate locally adaptive frames [37] into the Finsler functions Fε, F+

ε , for a more adaptive
vessel/fiber tracking.
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A Well-posedness and convergence of the Reeds-Shepp models

We introduce in §A.1 some general elements of control theory, which are specialized in §A.2 to the Reeds-Shepp models
and their approximations.

A.1 Closedness of controllable paths

In this section, we introduce the notion of an admissible path γ with respect to some controls B. We state in Theorem 5
a closedness result, slightly generalizing the one from [14], from which we deduce in Corollaries 3 and 4 an existence and
a convergence result for a minimum time optimal control problem. The first ingredient of this approach is the notion of
Hausdorff distance on a metric space.

Definition 6 Given a metric space E, we let K(E) be the collection of non-empty compact subsets of E. The distance
function dA : E→ R+ and the Hausdorff distance H(A,B), where A,B ∈ K(E), are defined respectively by

dA(x) := inf
y∈A

d(x, y), H(A,B) := max{ sup
x∈B

dA(x), sup
x∈A

dB(x)}.

In the following, we fix a closed set X, contained in an Euclidean vector space E, or in a complete Riemannian manifold
M. In the applications considered in this paper, X is of the form X0 × Sd−1, where X0 ⊂ Rd is some image domain, see
Fig. 16, or the set of accessible points in a map (which excludes the walls), see Fig. 15. The embedding space can be
the vector space E = Rd × Rd, which is an acceptable but rather extrinsic point of view, or the Riemannian manifold
M = Rd × Sd−1, equipped with the metric Gε for some arbitrary but fixed ε > 0, see (26).

We equip the collection of all Lipschitz paths Γ := Lip([0, 1],X) with the topology of uniform convergence. We will
make use of Ascoli’s lemma [4,3], which states that any uniformly bounded and equicontinuous sequence of paths admits
a converging sub-sequence. In our case the paths are Lipschitz with a common Lipschitz constant.

Definition 7 Given a normed vector space V , we denote by C(V ) ⊂ K(V ) the collection of non-empty compact subsets
of V , which are convex and contained in the unit ball.

Remark 15 The restriction to convex subsets is essential. For a uniformly converging sequence of Lipschitz functions
γn : [0, 1]→ M with limit γ∗, with γ̇n(t) ∈ K for a.e. t ∈ [0, 1] and K a compact set, we can deduce that γ̇∗ ∈ Hull(K), for
a.e. t ∈ [0, 1]. The convexity then guarantees that γ̇∗ ∈ K = Hull(K).

Definition 8 A family of controls B on the set X is an element of the set B defined by

– If X ⊂ E an Euclidean vector space, then B := C0(X,C(E)).
– If X ⊂ M a Riemannian manifold, then B := {B ∈ C0(X,K(TM)) ∀p ∈ X, B(p) ∈ C(TpM)}.

In both cases, B is equipped with the topology of locally uniform convergence.

Definition 9 A path γ is TB-admissible, where γ ∈ Γ , T ∈ R+ and B ∈ B, iff for almost every t ∈ [0, 1]

γ̇(t) ∈ TB(γ(t)).

We denoted TB := {Tv v ∈ B}, where T ∈ R+ and B is a subset of a vector space. Note the potential conflict
of notation with the tangent space TM to the embedding manifold M, which should be clear from context. If a path γ
is TB-admissible for some controls B ∈ B, then it must be T -Lipschitz. The following result slightly extends, for our
convenience, Corollary A.5 in [14].

Theorem 5 The set {(γ, T,B) ∈ Γ × R+ ×B γ is TB-admissible} is closed.

Proof. Let (γn, Tn,Bn) be sequences of paths, times and controls converging to (γ∞, T∞,B∞), and such that γn is TnBn-
admissible for all n ≥ 0. Since the paths γn are converging as n → ∞, they lay in a common compact subset X′ of the
closed domain X, recall Remark 15. As a result, the restricted controls B′n := (Bn|X′ ) are uniformly converging as n→∞.
In the case where X ⊂ E a Euclidean space, applying Corollary A.5 in [14] to the sequence (γn, TnB′n) we obtain that γ∞
is T∞B∞-admissible as announced.

In the case where X ⊂ M a Riemannian manifold, an additional proof ingredient is required. Let M′ be an open
neighborhood of X′ with compact closure in M, and let I : M′ → E be an embedding (i.e. an injective immersion)
with bounded distortion of the manifold M′ into a Euclidean space E of sufficiently high dimension, which by Whitney’s
embedding theorem is known to exist. Define the set X′′ := I(X′), the paths γ′′n := I ◦ γn, and controls B′′n(I(p)) :=
dI(p,Bn(p)) for all p ∈ X′ and n ∈ N ∪ {∞}. Applying again Corollary A.5 in [14] we obtain that γ′′∞ is T∞B′′∞
admissible, hence that γ∞ is T∞B∞-admissible as announced.
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In line with the 3rd identity in (8), we rely on the following definition where we rescale the time interval to [0, 1].

Definition 10 For any B ∈ B, p,q ∈ X, we let

TB(p,q) := inf{T ≥ 0 | ∃γ ∈ Γ, γ(0) = p, γ(1) = q,

and γ is TB-admissible}.
(77)

Corollary 3 If B ∈ B, p,q ∈ X are such that TB(p,q) <∞, then the inf. (77) is attained.

Proof. Let T := TB(p,q), and for each 0 < ε ≤ 1 let γε be a (T + ε)B-admissible path from p to q, which is thus
(T + 1)-Lipschitz. By Arzela-Ascoli’s lemma [3,4] there exists a converging sequence of paths γεn → γ0 as n → ∞. The
limit path γ0 is TB-admissible by Theorem 5, and the result follows.

Corollary 4 For all ε ∈ [0, 1] let Bε ∈ B. Assume that Bε → B0 as ε→ 0, and that Bε(p) ⊃ B0(p) for all ε ≥ 0, p ∈ X.
Then

TBε (p,q)→ TB0 (p,q), as ε→ 0.

Let Tε := TBε (p,q) for each ε ≥ 0. Assume in addition that there exists a unique T0B0-admissible path γ0 from p to q,
and for each ε > 0 denote by γε an arbitrary path from p to q which is (ε+ Tε)Bε admissible. Then γε → γ0 as ε→ 0.

Proof. The inclusion Bε(p) ⊂ B0(p), ∀p ∈ M, implies the inequality Tε ≤ T0, for all ε ≥ 0. Denoting T∗ := lim supTε as
ε→ 0, we thus observe that T∗ ≤ T0. For the reverse inequality T∗ ≥ T0, we apply Arzela-Ascoli lemma to the family of
paths (γε)0<ε≤1 which are (T0 + 1)-Liptschitz by construction, and obtain a converging subsequence of paths γεn → γ∗.
Theorem 5 implies the admissibility of γ∗ with respect to the controls T∗B0. Thus T∗ ≥ T0 but since T∗ ≤ T0, we must
have T∗ = T0, and γ∗ = γ0 by the uniqueness assumption. The result follows.

More generally, if the infimum (77) is realized by a family (γi)i∈I of paths, then for any sequence εn → 0 one can find
a subsequence such that γεϕ(n)

→ γi as n→∞ for some i ∈ I.

A.2 Specialization to the Reeds-Shepp models

We begin this section by recalling, and slightly generalizing, the notion of Finsler function introduced in §2.2. We then
prove that the Reeds-Shepp metrics F0 and F+

0 are indeed Finsler functions in this sense.

Definition 11 A metric on a complete Riemannian manifold M is a map F : TM→ [0,+∞]. With respect to the second
variable, it must be 1-homogeneous, convex, and bounded below by δ‖ · ‖, where δ is a positive constant. In terms of
regularity, the sets BF (p) := {ṗ ∈ TpM | F(p, ṗ) ≤ 1} must be closed and depend continuously on p ∈ M with respect to
the Hausdorff distance on TM.

The next proposition is due to (8).

Proposition 2 With the notations of Definition 11, the sets p ∈ M 7→ BF (p) form a family of controls on (M, δ‖ · ‖).
In addition for all p,q ∈ M

dF (p,q) = TBF (p,q).

Proposition 3 The Reeds-Shepp metrics (Fε)0≤ε≤1 and (F+
ε )0≤ε≤1 are indeed metrics in the sense of Definition 11,

for any ε ∈ [0, 1]. The associated controls Bε := BFε , B+ε := BF+
ε

depend continuously on the parameter ε ∈ [0, 1], and

satisfy the inclusions Bε(p) ⊂ Bε′ (p) and B+ε (p) ⊂ B+
ε′ (p) for any p ∈ M and 0 ≤ ε ≤ ε′ ≤ 1.

Proposition 3 allows to apply the results of §A.1 to the Reeds-Shepp metrics. Theorem 2 then directly follows from
Corollary 4. The only remaining non-trivial claim in Proposition 3 is the continuity of the controls on M, recall Definitions
8, and their convergence Bε → B0 as ε→ 0, as required in Corollary 4. These two properties are implied by the continuity
on [0, 1]×M, that we next prove, of the following maps

[0, 1]×M 3 (ε,p)→ Bε(p) ∈ C(TpM),

[0, 1]×M 3 (ε,p)→ B+ε (p) ∈ C(TpM),
(78)

with C(TpM) defined in Definition 7 and equipped with the Hausdorff distance.

Lemma 5 Let B be a compact subset of a metric space E, and let ϕ ∈ C0(B,E). Then

H(B,ϕ(B)) ≤ sup
x∈B

d(x, ϕ(x)).

This basic lemma, stated without proof, is used in the next lemma to obtain an explicit estimate of the Hausdorff
distance between the controls sets of the Reeds-Shepp models.
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Lemma 6 Let n1,n2 ∈ Sd−1, let a1, a2, b1, b2 ≥ 1, and let ε1, ε2 ∈ [0, 1]. For each i ∈ {1, 2}, let Bi be the collection of
all (ẋ, ṅ) ∈ Rd × Rd obeying

ṅ · ni = 0,{
a2i ‖ṅ‖2 + b2i

(
|ẋ · ni|2 + ε−2

i ‖ẋ ∧ ni‖2
)
≤ 1, εi > 0

a2i ‖ṅ‖2 + b2i |ẋ · ni|2 ≤ 1 and ẋ ∧ ni = 0, εi = 0 .

Then H(B1, B2) ≤ |a−1
1 − a−1

2 |+ |b
−1
1 − b−1

2 |

+
√

2(1− n1 · n2) + |ε1 − ε2|.
(79)

The same estimate holds for the sets B+
i , i ∈ {1, 2}, defined by the inequalities

ṅ · ni = 0,
a2i ‖ṅ‖2 + b2i

(
(ẋ · ni)2+ + ε−2

i (‖ẋ ∧ ni‖2 + (ẋ · ni)2−)
)
≤ 1,

if εi > 0,

a2i ‖ṅ‖2 + b2i (ẋ · ni)2+ ≤ 1 and ẋ ∧ ni = 0, ẋ · ni ≥ 0,
if εi = 0.

Proof. It suffices to establish the announced estimate (79) when the tuples (ai, bi,ni, εi), i ∈ {1, 2}, differ by a single
element of the four, and then to use the sub-additivity of the Hausdorff distance. In each case we apply Lemma 5 to a
well chosen surjective map ϕ : B1 → B2 (resp ϕ+ : B+

1 → B+
2 ).

– Case a1 6= a2. Assume w.l.o.g. that a1 < ∞, and observe that for all (ẋ, ṅ) ∈ B1 one has a1‖ẋ‖ ≤ 1, hence

‖a1ẋ/a2 − ẋ‖ ≤ |a−1
1 − a−1

2 |. Choose ϕ(ẋ, ṅ) := (a1ẋ/a2, ṅ).

– Case b1 6= b2. As above, with ϕ(ẋ, ṅ) := (ẋ, b1ṅ/b2), yielding upper bound |b−1
1 − b−1

2 |.
– Case n1 6= n2. Let R be the rotation of Rd which maps n1 onto n2, in such a way that it maps the space orthogonal to

the plane Span(n1,n2) onto itself. A simple calculation yields ‖R − Id ‖ = 2 sin[ 1
2

cos−1(n1 · n2)] =
√

2(1− n1 · n2).

The result follows by choosing ϕ(ẋ, ṅ) := (Rẋ, Rṅ), so that ‖ϕ(ẋ, ṅ)− (ẋ, ṅ)‖ ≤ ‖R− Id ‖
√
‖ṅ‖2 + ‖ẋ‖2 ≤ ‖R− Id ‖

for all (ẋ, ṅ) ∈ B1 as announced.
– Case ε1 6= ε2. Assume w.l.o.g. that ε1 > 0, and consider the orthogonal projections

P1(ẋ) := (ẋ · n1)n1 P⊥1 (ẋ) := (Id− P1)(ẋ).

Note that P⊥1 (ẋ) ≤ ε1 if (ẋ, ṅ) ∈ B1, and that ‖ẋ‖ ≤ ε1 if (ẋ, ṅ) ∈ B+
1 and ẋ · n1 ≤ 0. The result follows by choosing

ϕ(ẋ, ṅ) :=

(
P1(ẋ) +

ε2

ε1
P⊥1 (ẋ), ṅ

)
,

ϕ+(ẋ, ṅ) :=

{
ϕ(ẋ, ṅ) if ẋ · n1 ≥ 0,

( ε2
ε1

ẋ, ṅ) otherwise.

Proof of Proposition 3. Since working with Hausdorff distances on the abstract tangent bundle TM is not very practical,
we make use of the canonical embedding I : Rd × Sd−1 → Rd × Rd of the manifold M into the Euclidean vector space
R2d given by (x,n) 7→ (x,n), which has bounded distortion. It suffices to prove the continuity of the image of the control

sets (ε,p)→ dI(p,BFε (p)) (resp. likewise with F+
ε ) by the tangent maps to this embedding, which follows by Lemma 6.

Indeed the lemma shows that

((ε1,p1)→ (ε2,p2)) =⇒ (H(BFε1 , BFε2 )→ 0),

and it includes the spherical constraint via the velocity constraint ṅ · ni = d
dt

(n(t) · n(t))|t=0 = 0 for a smooth curve
γ(t) = (x(t),n(t)) passing through γ(0) = (xi,ni).

B Backtracking of Geodesics in (M, dF)

This section is devoted to a generic ingredient in the proof of Theorem 4, regarding backtracking of Geodesics in the
(pseudo)-Metric Space (M, dF ) in general. Although, these results are standard in Finsler Geometry, we aim to provide a
concise overview.

Lemma 7 Let F be an asymmetric norm on a vector space E, and assume that F ∗ is differentiable at p̂ ∈ E∗. Then

F (dF ∗(p̂)) = 1, 〈p̂,dF ∗(p̂)〉 = F ∗(p̂).
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Proof. The 1st claim follows by differentiation of F ∗

F ∗(p̂) = sup
ṗ∈E\{0}

〈p̂, ṗ〉
F (ṗ)

= max
F (ṗ)=1

〈p̂, ṗ〉.

The 2nd claim is Euler’s formula for homogeneous functions.

Proposition 4 Let pS,pT ∈ M, let γ be a minimal geodesic from pS to pT w.r.t. a continuous metric F , and let
t ∈ [0, 1]. Assume that the distance map U from pS is differentiable at γ(t), and that the dual metric F∗ is differentiable
w.r.t. the second variable at (γ(t), dU(γ(t))). Then γ is differentiable at time t and with L := dF (pS,pT)

γ̇(t) = L dp̂F∗(γ(t), dU(γ(t))), γ(0) = pS , γ(1) = pT . (80)

Proof. The path γ has constant speed L, and t 7→ U(γ(t)) increases linearly from 0 to L on it. Let t ∈ [0, 1] be as in the
statement of the proposition, and let

Γ̇ (t) := lim
n→∞

(γ(t+ εn)− γ(t))/εn

for some sequence εn → 0. Then

F(γ(t), Γ̇ (t)) = L and 〈dU(γ(t)), Γ̇ (t)〉 = L.

For typographic simplicity let us denote p := γ(t), ṗ := Γ̇ (t), F = F(p, ·) and F ∗ := F∗(p, ·). By Lemma 7 and the
eikonal equation (5), the vector q̇ = dF ∗(dU(p)) obeys

F (q̇) = F (dF ∗(dU(p))) = 1,

〈dU(p), q̇〉 = 〈dU(p), dF ∗(dU(p))〉 = F ∗(dU(p)) = 1.

Note that the duality-bracket/norm inequality is saturated by 〈dU(p), q̇〉 = 1 = F ∗(dU(p))F (q̇), and that the assumed
differentiability of the dual norm F ∗ at the point p̂ = dU(p) implies the strict convexity of the primal norm F (up to
1-homogeneity) at the point dF ∗(p̂) = q̇. Hence q̇ is the unique solution to the system “F ∗(q̇) = 1 and 〈dU(p), q̇〉 = 1”,

and therefore Γ̇ = Lq̇. This implies the differentiability of γ at time t, and the announced equality (80).

Remark 16 (Lagrangians and Hamiltonians) Given an arbitrary metric F on M, its half-square L := 1
2
F2 : T (M) →

[0,+∞] is usually called the Lagrangian. The shortest path problem (1) can be reformulated in terms of the Lagrangian,
thanks to the Cauchy-Schwartz’s inequality which gives

dF (p,q)2 = inf{
∫ 1

0
F(γ(t), γ̇(t))2dt | γ ∈ Lip([0, 1],M)

, γ(0) = p, γ(1) = q}. (81)

A path γ is a minimizer of (81) iff it is simultaneously normalized and a minimizer of (1). The Hamiltonian H is the
Lengendre-Fenchel transform of its Lagrangian L w.r.t. the second variable, hence H = 1

2
(F∗)2 (for details see [6, ch.14.8])

The eikonal equation can thus be rephrased in terms of the Hamiltonian:

F∗(p, dU(p)) = 1 ⇔ H(p,dU(p)) =
1

2
.

The Hamiltonian can also be used to reformulate the backtracing ODE of geodesics, thanks to the following identity which
follows from the eikonal equation: for any p ∈ M

dp̂H(p, dU(p)) =F∗(p, dU(p)) dp̂F∗(p, dU(p))

=dp̂F∗(p, dU(p)).
(82)

In geometric control theory this Hamiltonian is often referred to the ‘fixed time Hamiltonian of the action functional’,
cf. [2,9,66], and is typically used [57] in the Pontryagin maximum principle [2] for (sub-)Riemannian geodesics.

C Characterization of Cusps: Proof of Lemma 1

Consider Lemma 1. The structure of this lemma is a ⇔ b ⇔ c. The implication a ⇒ b is trivial. The equivalence b ⇔ c
follows by Theorems 4, 2. The implication b⇒ a remains.

Suppose the d-th spatial control aligned with n(t0), recall (20), vanishes: ũ(t0) = 0. Now we show by contradiction

that in this case ˙̃u(t0) 6= 0. Suppose ũ(t0) = ˙̃u(t0) = 0.
Then by application of the PMP (Pontryagin Maximum Principle), similar to [9, App.A], [27]) and coerciv-

ity/invertibility of the SR-metric tensor G0|γ(t0), recall (26), constrained to the horizontal part of the tangent space

∆|γ(t) = {(p0 = (x0,n0), ṗ0 = (ẋ0, ṅ0)) ∈ T (M) | n0 ≡ ẋ0}, that the (analytic) spatial control variable ũ = C−2
1 λ̃

vanishes for all times (for d = 2 this is directly deduced from the pendulum phase portrait [57] in momentum space). This
leaves only purely angular momentum and motion, contradicting ẋ(·) 6= 0 in Lemma 1.
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Next we verify ũ(t0) = ˙̃u(t0) = 0⇒ ˙̃
λ(t0) = 0 = λ̃(t0). By the chain rule for differentiation (applied to the d-th spatial

momentum component λ̃(t) = 〈λ(t), (n(t),0)〉):

d
dt
λ̃(t)

∣∣∣
t=t0

= d
dt

(C1(γ(t)))−2ũ(t)
∣∣∣
t=t0

= d
dt

(C1(γ(t)))−2
∣∣∣
t=t0

ũ(t0) + d
dt

(C1(γ(t)))−2
∣∣∣
t=t0

˙̃u(t0) = 0.

We deduce from PMP’s Hamiltonian equations (cf. [27]) that

˙̃
λ(t0) = λ̃(t0) = 0⇒ λ̃(·) = 0⇒ ũ(·) = 0.

D Short 6= Straight: A Special Cartan Connection on SE(2) ≡ R2 o S1

D.1 Connections

With the left-invariant vector fields and covector fields defined, we can now define rotation and translation covariant
derivatives on images and orientation scores. If we would like to define second order differential operators (such as the
Hessian), we need to know how to take (directional) derivatives of such vector fields. The way this is done is prescribed
by a choice of connection ∇ and the induced covariant derivatives ∇X for each choice of tangent vector field X on a
smooth manifold M with tangent bundle T (M) given by

T (M) = {(p, ṗ) | p ∈M, ṗ ∈ Tp(M)}.

To indicate the directional derivative of a smooth vector field Y , along a smooth vector field X as defined via the connection
∇ we write ∇XY .

Given two smooth vector fields X and Y on a smooth Riemannian manifold (M,G) expressed in a basis ∂xi , i.e.,

X|m =

dim(M)∑
i=1

xi(m) ∂xi |m , and Y |m =

dim(M)∑
i=1

yi(m) ∂xi |m . (83)

Expressed in this basis connection takes the following form

∇XY :=

dim(M)∑
k=1

ẏk +

dim(M)∑
i,j=1

Γkijx
iyi

 ∂xk , (84)

with ẏk the directional derivative along direction vector X|m of the kth component of the vector Y |k given by

ẏk
∣∣∣
p

:= dyk
∣∣∣
p

(X|p),

and with the derivative of yk given by

〈dyk
∣∣∣
p
, ṗ〉 =

dim(M)∑
i=1

(∂xi |p y
k) ṗi.

for all p ∈ M and all tangents ṗ =
dim(M)∑
i=1

ṗi∂xi
∣∣
p
∈ Tp(M). In (84), the first term ẏk is thus the directional derivative

(along X) of the separate components of the vector field Y . The second term compensates for motion of the basis (serving

as a reference frame) {∂xi}
dim(M)
i=1 and is characterized by the Christoffel symbols Γkij . The Christoffel symbols are

determined by a connection and a choice of basis for the tangent bundle. They directly depend on the choice of basis, and
do not have a generic geometric basis independent meaning.

In the subsequent subsections we consider two types of connections: the Levi-Civita connection and the left Cartan
connection, of which we will see in Subsec. D.4 that the latter is of most interest to us.

Remark 17 In the above we introduced a connection on the tangent bundle T (M) via a basis on the tangent bundle. In
general a connection on a tangent bundle is defined without the use of a basis. See the exercise below.

Remark 18 Connections can be generalized to fiber bundles [46], where sections need not be (tangent) vector fields, and
where fibers need not be tangent spaces, or need not even be vector spaces! In this course we avoid such generalizations,
even though many imaging applications do require such generalizations [29–31].



DRAFT VERSION. Part III: Tracking in Orientation Scores 49

Exercise 19 Consider a smooth manifold M and its tangent bundle T (M). Consider the space of vector fields above M
and denote this by χ(M). Let X be such a tangent vector field on M . Then the covariant derivative ∇X a linear map
∇ : χ(M)→ χ(M), and a Koszul connection ∇ is defined must satisfy (regardless coordinate systems):

∇X(Y1 + Y2) = ∇XY1 +∇XY2,
∇X1+X2Y = ∇X1Y +∇X2Y,
∇X(fY ) = f∇XY +X(f)Y,
∇fXY = f ∇XY,

(85)

for all vector fields X,X1, X2, Y, Y1, Y2 ∈ χ(M), and all f ∈ C∞(M,R). Show that (85) indeed implies the standard form

(84) in a basis {∂xi}
dim(M)
i=1 .

D.2 The Levi-Civita Connection

Usually in Riemannian geometry people work with the Levi-Civita connection ∇LC , which is by definition the unique
torsion free metric compatible19 connection on the Riemannian manifold (M,G). The requirement that the connection
should be torsion free means that

T (X,Y ) = ∇XY −∇YX − [X,Y ] = 0,

which holds for ∇ = ∇LC .
Under these conditions the Levi-Civita connection is uniquely defined (fundamental theorem of Riemannian geometry),

and the Christoffel symbols are then given by

(ΓLC)kij =
1

2

dimM∑
m=1

gim
(
∂gmk

∂xl
+
∂gml

∂xk
−
∂gkl

∂xm

)
(86)

and with matrix [gij ] = [G(∂xi , ∂xj )] and [gij ] the corresponding inverse matrix.

Exercise 20 Let ∇ be a connection on a Riemannian manifold (M,G). Show that

T (X,Y ) = ∇XY −∇YX − [X,Y ] = 0,
∇XG(Y, Z) = G(∇XY, Z) + G(Y,∇XZ),

indeed leads to the unique Levi-Civita connection ∇ = ∇LC given by (86).

For the Levi-Civita connection we have that stationary curves of the Riemannian distance

dM (m0,m1) := min
γ ∈ Lip([0, 1],M)

γ(0) = m0
γ(1) = m1

∫ 1

0

√
G|γ(t) (γ̇(t), γ̇(t))dt, (87)

satisfy the following geodesic equations
∇LCγ̇ γ̇ = 0, (88)

see e.g. [46, Lemma 5.1.1]. Expressed in holonomic coordinates {xi}dim(M)
i=1 this gives

γ̈k +

dim(M)∑
i,j=1

(ΓLC)kij γ̇
iγ̇j = 0, with γ̇k = 〈dxk

∣∣∣
γ
, γ̇〉, γ̈k =

d

dτ
γ̇k, (89)

Exercise 21 Two assignments regarding the geodesic equation and the Levi-Civita connection:

a) Derive (89) from (88) and (84).
b) Verify the derivations of the geodesic equations in [46, Lemma 5.1.1], and indicate in which equalities metric compat-

ibility of ∇LC is used, and in which equalities the vanishing of torsion of ∇LC is used.

In general, curves γ for which ∇γ̇ γ̇ = 0 are called auto parallel curves with respect to the connection ∇. The auto

parallel curves with respect to the Levi-Civita connection ∇LC are the geodesics, which in the standard Euclidean case
are straight lines as we show in the next example.

Example 1 Consider the standard 2D Euclidean setting with M = R2, with the metric tensor components gij = δij , and
metric tensor dx1 ⊗ dx1 + dx2 ⊗ dx2, with duals {dx1,dx2} relative to the standard basis {∂x1 , ∂x2}. Since the metric
tensor components gij are constant over M , the Christoffel symbols (computed via (86)) are given by

Γkij = 0.

The geodesic equations (88), (89), then reduce to
γ̈k(τ) = 0,
γ̇k(τ) = ck.

The geodesics in the Riemannian manifold (M,dx1 ⊗ dx1 + dx2 ⊗ dx2) are thus straight lines.

19 Metric compatible means ∇XG(Y, Z) = G(∇XY, Z) + G(Y,∇XZ)
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In the 2D Euclidean case the straight curves and shortest curves (geodesics) coincide, and both are auto parallel curves
with respect to the Levi-Civita connection. In our sub-Riemannian geometry on SE(2) ≡ R2 o S1 this is not the case!
Here we deal with a curved and torqued geometry (with Γkij 6= 0 relative to the left-invariant basis) and the ”straight

curves” and shortest curves no longer coincide. As we will see in the next Subsection, the straight curves (the exponential
curves) are instead the auto parallel curves with respect to the Cartan connection ∇.

D.3 A Special Cartan Connection on SE(2)

In the remainder of this section we consider the special case where the Riemannian manifold equals M = M = (SE(2),Gε)
with Gε given by (26). Recall also (from Eq. (46)) that the left-invariant vector fields Ai and their duals ωi were given by

A1 = cos θ ∂x + sin θ ∂y , A2 = − sin θ ∂x + cos θ ∂y , A3 = ∂θ,
ω1 = cos θ dx+ sin θ dy, ω2 = − sin θ dx+ cos θ dy, ω3 = dθ.

The duals are defined by the property
〈ωi,Aj〉 = δij ,

where δij denotes the usual Kronecker delta, i.e. 1 if i = j and 0 otherwise.

Then the metric tensor Gε for d = 2 can be expressed as

Gε = ξ2ω1 ⊗ ω1 + ξ2ε−2ω2 ⊗ ω2 + ω3 ⊗ ω3 (90)

and we have

Gε|γ(τ) (γ̇(τ), γ̇(τ)) = +ξ2|ẋ(τ) cos θ(τ) + ẏ(τ) sin θ(τ)|2 +
ξ2

ε2
|−ẏ(τ) sin θ(τ) + ẋ(τ) cos θ(τ)|2 + |θ̇(τ)|2, (91)

with tangent γ̇(τ) = (ẋ(τ), ẏ(τ), θ̇(τ)) along curve t 7→ γ(τ) = (x(τ), y(τ), θ(τ)) in SE(2).

Exercise 22 Verify by a few computations that (46) for d = 2 indeed simplifies to (119) and (91).

Recall that our left-invariant vector fields Ai on SE(2) were obtained from the basis {∂x|e , ∂y |e , ∂θ|e} in Te(SE(2))

by the push-forward (Lg)∗ of the left-multiplication Lg . Conversely, we can use the so-called Maurer-Cartan form (L−1
g )∗

to map all Tg(SE(2)) back to Te(SE(2)). This allows us to ‘connect’ all tangent spaces in a principle fiber bundle
structure [71]. When using the adjoint representation for the associated vector bundle [36, App.B] one obtains a special
Cartan connection on the tangent bundle.

Here we avoid these technicalities and just provide the resulting Cartan connection ∇ on the tangent bundle
T (M) (and provide some intuitive explanations):

∇γ̇Y :=
3∑
k=1

(
ẏk + dωk

∣∣∣
γ(τ)

(γ̇(τ), Y )

)
Ak, (92)

with dωk
∣∣
γ(τ)

(γ̇(τ), Y ) ∈ R, and with

ẏk(τ) :=
d

dτ
yk(τ) :=

d

dτ
ωk
∣∣∣
γ(τ)

(Y |γ(τ)),

which produces a vector field ∇γ̇Y that indicates the covariant derivative of vector field Y along the flow-field of γ.

Remark 19 When expressing the derivative in the moving dual frame one must keep in mind that the moving dual frame
is not an exact frame. An exact differential k-form is a differential form that is the exterior derivative of another differential
(k − 1)-form. In the R2 case the co-vectors dxi (recall Example 1) are exact 1-forms, and therefore satisfy

ddxi = 0.

In SE(2) this is not the case for the local dual frame {ωi}3i=1 defined in (66) due to the structural formulas of Cartan:

dωk =

3∑
i,j=1

1

2
ckij(ω

i ∧ ωj) =
∑

i,j∈{1,2,3},i<j
ckij(ω

i ∧ ωj), (93)

where ckij denote the structure constants of the Lie algebra of SE(2), recall (54).

Exercise 23 Regarding the structure constants and Cartan structural formula on SE(2):

a) Show that the only non-zero structure constants are c213 = −c231 = −1.
b) Express each of the covectors dω1, dω2 in terms of dx, dy.
c) Show that ω1 6= d(x cos θ + y sin θ).
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d) Show that dω3 = 0.
e) Verify (103) for k = 1, 2, 3.

The intuition is that this covariant derivative (92) takes into account that, when taking the covariant derivative of

vector field Y =
∑3
k=1 y

kAk, one differentiates its components

yk(τ) := ωk
∣∣∣
γ(τ)

(Y |γ(τ)),

and simultaneously accounts for the movement of the (dual) left-invariant frame (recall Cartan’s structural formula (103)).
Expressed in components of the left-invariant frame and coframe this becomes:

∇γ̇Y :=

3∑
k=1

ẏk +

3∑
i,j=1

ckij γ̇
iyj

Ak. (94)

So now the Christoffels in (86) are again the structure constants Γkij = ckij . Since ckij = −ckji we have that
3∑

i,j=1
ckij γ̇

iyj = 0

and see that the auto parallel curves are the exponential curves:

∇γ̇ γ̇ = 0 ⇔
{
γ̈k(τ) = 0,
γ̇k(τ) = ck.

.

By duality (cf. the exercise below), connection ∇ on the tangent bundle induces T (M) also a connection ∇∗ on the
cotangent bundle T ∗(M):

∇∗γ̇λ =

3∑
i=1

λ̇i +

3∑
j,k=1

ckijλkγ̇
j

ωi, (95)

with a sign change before the Christoffels, and with λ̇i(τ) = d
dτ
〈λ|γ(τ) , Ai|γ(τ)〉 and λ = λi ω

i
∣∣
p

. Here we recall that the

cotangent bundle is given by
T ∗(M) = {(p, p̂) | p ∈ M, p̂ ∈ T ∗p(M)},

with T ∗p(M) the topological dual space to Tp(M), and that λ is a cotangent field (i.e. a section in the cotangent bundle).

Exercise 24 Verify that the formula (95), follows by ckij = −ckji, (92), and

0 =
d

dτ
δij =

d

dτ
〈ωi
∣∣
γ(τ)

, Aj |γ(τ)〉 = 〈∇∗γ(τ)ω
i
∣∣∣
γ(τ)

, Aj |γ(τ)〉+ 〈ωi
∣∣
γ(τ)

, ∇γ(τ)Aj
∣∣
γ(τ)
〉

where brackets denote functional evaluation (not inner-products).

For the sub-Riemannian case (ε ↓ 0) one has metric tensor

G0 = ξ2 ω1 ⊗ ω1 + ω3 ⊗ ω3, (96)

and a direct hard constraint
ṗ ∈ ∆|p := span{A1|p , A3|p}, (97)

on the tangent bundle (but not on the co-tangent bundle) and one has to rely on a partial connection ∇ instead:

∇γ̇Y :=
∑

k∈{1,3}

(
ẏk +

∑
i,j∈{1,3}

ckij γ̇
iyj

)
Ak,

∇∗γ̇λ :=
3∑
i=1

(
λ̇i +

∑
j∈{1,3}

3∑
k=1

ckijλkγ̇
j

)
ωi.

(98)

D.4 Why Do We Use the special Cartan Connection (for Image Processing)?

Now that we introduced the special Cartan connection by (94), let us see why it is a useful connection for our purposes.
Here we list its nice properties:

– ‘Straight curves’, i.e. solutions to ∇γ̇ γ̇ = 0, are the exponential curves. Left-invariant PDE’s on SE(2) and wavefront
propagation can be expressed in covariant derivatives and left-invariant flow; transport takes place along these curves.

– ‘Shortest curves’, have instead parallel momentum ∇∗γ̇λ = 0. This can be observed by the nested sub-Riemannian

spheres, where we note that covectors may be geometrically represented by local parallel planes, see for example
Fig. 20.

– When considering second order best exponential curve fits for determining locally adaptive frames [37], which can
be employed for both vessel enhancement and vessel curvature measurements, curve fitting boils down to eigenvector
analysis of Hessians induced by this very connection [37, App.4].
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Fig. 20 A: Geodesically equidistant surfaces Sεt = {g ∈ SE(2)|dε(0, g) = t} and geodesic (in green) for the sub-
Riemannian case: ε = 0 and C = 1. B: Geodesically equidistant surfaces Sεt and geodesic for the isotropic Rieman-
nian case: ε = 1 and C = 1. Now the geodesics are straight lines. C: A set of horizontal exponential curves for which
γ̇(τ) = c1 A1|γ(τ) + c3 A3|γ(τ) ∈ ∆, with constant tangent vector components c1 and c3.

– It correctly accounts for the motion of the moving frame of reference when taking derivatives of vector fields and
covector fields.

Further details on this special choice can be found in Appendix E where we consider a parameterized class of Cartan
connections ∇[ν] and where the case above corresponds to ν = 1.



DRAFT VERSION. Part III: Tracking in Orientation Scores 53

There is a fundamental relation between a special Cartan connection, and ‘straight’ and ‘shortest’ curves in the metric
space (M, dFε ) with:

dFε (p1,p2) = inf

{
1∫
0

Gε(γ̇(t), γ̇(t)) dt | γ ∈ Lip([0, 1],M), γ(0) = p, γ(1) = q

}
.

In summary, we have the following equivalences

Theorem 6 In a Riemannian manifold (SE(2), T (SE(2)),Gε), with the tangent bundle T (SE(2)) and metric tensor Gε
defined in (119), the metric dFε defined in (125), and the Cartan connection defined in (92), we have the following
relations for ”straight” curves:

γ is a ∇-straight curve⇔ γ is an exponential
curve

⇔ ∇γ̇ γ̇ = 0 ⇔ γ has ∇-auto parallel
velocity

,

and the following for ”shortest” curves:

γε is a shortest curve ⇔ γε is a minimizing
curve in dε

⇔
{
∇∗γ̇ελε = 0

γ̇ε = Gε−1λε
⇔ γε has ∇∗-parallel

momentum
.

In a sub-Riemannian manifold (SE(2),∆,G0) with tangent bundle ∆ defined in (121), the sub-Riemannian metric tensor
G0 defined in (122), and the partial Cartan connection defined in (98) we have the following relations for ”straight”
curves

γ is a ∇-straight curve⇔
γ is a horizontal
exponential curve

⇔ ∇γ̇ γ̇ = 0 ⇔ γ has ∇-auto parallel
velocity

,

and the following for ”shortest” curves

γ0 is a shortest curve ⇔ γ0 is a minimizing
curve in d0

⇔
{
∇∗γ̇0λ0 = 0

γ̇0 = G0−1P∗∆λ0
⇔ γ0 has ∇∗-parallel

momentum
,

in which P∗∆(λ1ω1 + λ2ω2 + λ3ω3) = λ1ω1 + λ3ω3.

Remark 20 Although beyond the scope of this course, the above considerations generalize to the case d > 2 and to the
Lie group quotient

Rd o Sd−1 := SE(d)/({0} × SO(d− 1)),

considered in detail in [28,27]. Moreover, they generalize to a wide class of Lie groups (non-commutative and 2-step
nilpotent) and sub-Riemannian manifolds within, as explained in the next section

Remark 21 A generalization of the above theorem to a wide class of Lie groups is explained in Theorem 7 (that strongly
builds on Theorem 8) in Appendix E.

E Cartan-connections ∇[ν] on Lie Groups

This section is quite technical. Therefore we first provide a brief paragraph of what is coming:

Applications of geometric flows to multi-orientation image processing require the choice of an (affine) connection
on the Lie group G of roto-translations. Typical choices of such connections are called the (−), (0) and (+) connection. As
the constructions of these connections in standard references is quite involved, we provide an overview. We show that these
connections are members of a larger, one-parameter class of connections, and we motivate that the (+) connection is most

suited for our image-analysis applications. The class ∇[ν], with ν ∈ R, is given by ∇[ν]
X Y = ν [X,Y ] for all left-invariant

vector fields X,Y on G. Their auto-parallel curves are the exponential curves. Their torsion is T [X,Y ] = (2ν − 1)[X,Y ],
and the (−), (0), and (+) connections arise for ν = 0, 1

2
, 1.

We propose the case ν = 1, as then Hamiltonian flows on T ∗(G) for Riemannian distance minimizers on G (induced by

left-invariant metric tensor field G) reduce to ∇[1]
γ̇ λ = 0 and γ̇ = G|−1

γ λ, where γ̇ is velocity and λ is momentum. So now

‘shortest curves’ have parallel momentum, whereas ‘straight curves’ have auto-parallel velocity. We extend this idea also
to sub-Riemannian geometry via a partial connection.

Remark 22 The connection underlies PDE-flows for crossing-preserving geodesic wavefront propagation and denoising in
multi-orientation image processing, where in our applications [?] we use

1. the ‘shortest curves’ for tracking in multi-orientation image representations,
2. the ‘straight curve fits’ for locally adaptive frames in PDEs for crossing-preserving image denoising and enhancement.
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E.1 A Parameterized Class of Cartan Connections and their Duals

Let G be a Lie group of dimension n. Let L2(G) denote the space of square integrable functions on G endowed with
the left-invariant Haar measure. Let Te(G) be the tangent space at unity element e. Let G be a Lie group such that the
exponential map exp : Te(G)→ G is surjective. Then Te(G) is a Lie Algebra with Lie-Bracket

[A,B] = − d
dt

∣∣∣
t=0

(γ−B(
√
t) γ−A(

√
t) γB(

√
t) γA(

√
t)) ∈ Te(G),

= − 1
2

d2

dt2

∣∣∣
t=0

(γ−B(t) γ−A(t) γB(t) γA(t)),
(99)

where t 7→ γX(t) = etX is a differentiable curve in G with γX(0) = e and (γX)′(0) = X for X = A,B. For details on Lie
brackets see [?].
Let the right-regular representation R : G→ BL(L2(G)) be given by RgV (h) = V (hg). Then dR is given by

(dR(A))V (g) = lim
t↓0

(RetA − I)V (g)

t
, for V ∈ D(dR(A))

and the domain D(dR(A)) of this unbounded operator R(A) is the subset of L2(G) for which the above limit exists in
L2-sense.

Let Lg : G → G denote the left-multiplication given by Lgh = gh. Let us choose a basis {A1, . . . , An} in Te(G) and
let us define the corresponding vector fields

Ai|g = (Lg)∗Ai, for i = 1, . . . , n.

Let us define the corresponding dual basis (‘left-invariant co-frame’) in T ∗g (G) by〈
ωi
∣∣
g
, Aj |g

〉
= δij (100)

with δij denoting the usual Kronecker delta. Then one has Ai = dR(Ai) and the structure constants ckij of the Lie algebra

relate via

[Ai, Aj ] =

n∑
k=1

cki,jAk ⇔ [Ai,Aj ] = Ai ◦ Aj −Aj ◦ Ai =

n∑
k=1

cki,jAk. (101)

If one imposes a left-invariant metric tensor field g 7→ Gg(·, ·) : Tg(G)×Tg(G)→ R to form a Riemannian manifold (M,G)
then there exists a unique constant matrix [gij ] ∈ Rn×n such that

Gg =

n∑
i,j=1

gij ω
i
∣∣
g
⊗ ωj

∣∣
g
.

for all g ∈ G. We restrict ourselves to the diagonal case

gij = ξi δij (102)

with ξi > 0 for i = 1, . . . , n and the Kronecker δij . As a result for all g ∈ G the mapping (Lg−1 )∗ : Tg(G) → Te(G)
is unitary. The mapping is known as the Cartan-Maurer form and ‘connects’ tangent spaces in a left-invariant way. See
Fig. 21 where the Maurer-Cartan form is illustrated for the group SE(2) of roto-translations in the plane with group
product (50). The associated ‘Cartan − connection’ [47] is given by:

∇− :=
n∑

i,k=1

ωi ⊗
(
Ai ◦ ωk(·)

)
Ak, inducing covariant derivative:

∇−XY :=
n∑

i,k=1
ωi(X)

(
Ai(ωk(Y ))

)
Ak.

More precisely, for two arbitrary vector fields X =
∑n
i=1 x

iAi and Y =
∑n
j=1 y

jAj , possibly non-left-invariant, (i.e. xi

and yj need not be constant) one has

∇−XY =
n∑
k=1

(
n∑
i=1

xiAiyk
)
Ak.

This connection ∇− has vanishing Christoffel symbols Γkij = 0 relative to the left-invariant frame (and co-frame) of

reference, since

Γkij =
〈
ωk,∇AiAj

〉
. (103)

This has big limitations and is not always the right choice for a connection on a Lie group G. Therefore, we consider a
more general class of connections on the Lie group G, the so-called Lie-Cartan connections, as we define next. Then in
particular we consider a 1-parameter class of Cartan connections. We will call these connections ‘Lie-Cartan connections’
as they are directly induced by the Lie-bracket.
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Fig. 21 The Maurer-Cartan form (in red) ‘connects’ tangent space Tg(G) to Te(G) in a left-invariant way. It underlies
the Lie-Cartan connection with ν = 0 as can be seen in Lemma 8. Right we depict the Lie group case SE(2) = R2 o S1

and left we show spatial projections x(t) of the curves γ(t) = (x(t), θ(t)) ∈ SE(2).

Definition 12 Per [34, section 5.2], [33], a Cartan (or canonical) connection on a Lie group is a vector bundle connection
with the following additional properties:

1. left invariance:
X,Y are left invariant vector fields⇒ ∇XY is a left invariant vector field, (104)

2. for any a ∈ Te(G) the exponential curve and auto-parallel curve coincide:

∇γ̇(t)γ̇(t) = 0 where γ(t) = γ(0) exp(ta). (105)

We now look at a specific set of Cartan connections that relate to the Lie bracket.

Definition 13 (Lie-Cartan Connection) Consider a Lie group with Lie brackets [·, ·] and structure constants ckij ∈ R
s.t. [Ai,Aj ] =

∑
k c
k
ijAk. Then the Lie-Cartan connection indexed with ν ∈ R equals:

∇[ν] :=

n∑
i,k=1

ωi ⊗
(
Ai ◦ ωk(·)

)
Ak +

n∑
i,j,k=1

ωi ⊗ ωj ν ckij Ak (106)

Remark 23 Left-invariant vector field X can be written as X =
d∑
i=1

xiAi with constant coefficients xi ∈ R. As a result we

have that for left-invariant vector fields X, Y the first term vanishes in (106) and we have that ∇[ν]
X Y = ν[X,Y ].

Remark 24 The Christoffel symbols Γkij (103) relative to the left-invariant moving frame of reference equal Γkij = ν ckij
and vanish iff ν = 0 and indeed one has for the classical ‘minus’ Cartan connection ∇− = ∇[0]. It is common [34,47,33,
?] to index the Cartan connections in terms of their Torsion T∇[ν] given by

T∇[ν] (X,Y ) := ∇[ν]
X Y −∇[ν]

Y X − [X,Y ] = (2ν − 1)[X,Y ],

for left-invariant vector fields X,Y , but we prefer to index the Lie-Cartan Connections ∇[ν] with the parameter ν arising
in the commutator rather than with the parameter 2ν − 1 in the torsion of the connection:

∇[ν] = ∇2ν−1 and thus ∇[0] = ∇−, ∇[1] = ∇+.

Remark 25 Lie-Cartan connections ∇[ν] are clearly connections on a vector bundle (satisfying the standard 4 requirements
for Koszul connections).
Furthermore, they are indeed Cartan connections (Def. 12). The first item follows by Remark 23. The second item follows
by anti-symmetry of the Christoffel symbols relative to the left-invariant frame of vector fields. We will show this later in
(133).

Lemma 8 For arbitrary smooth vector fields X,Y on G we have

(∇[0]
γ̇ Y )(g) = lim

t→0

(
Lg(γ(t))−1

)
∗
Y (γ(t))− Y (g)

t
. (107)
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For left-invariant vector fields X,Y on G, we have

ν = 0 : ∇[0]Y = 0 ,

ν ∈ R : (∇[ν]
γ̇ Y )(g) = lim

t→0

(Ãd(γ(νt))Y )(g)−Y (g)
t

i.e.

∇[ν]
X Y = ν[X,Y ] ,

(108)

with γ(t) is an integral curve of left-invariant vector field X with γ(0) = g ∈ G, and

Ãd(q) = (Lg)∗ ◦Ad(q) ◦ (Lg−1 )∗, (109)

with Ad(g) = (Lg ◦Rg−1 )∗ : Te(G)→ Te(G), where (·)∗ denotes the push-forward, so that (Ad)∗ = ad with ad(Xe)(Ye) =

[Xe, Ye], and the transferred adjoint representation given by Ãd(g) = (Lg ◦Rg−1 )∗ : Tg(G)→ Tg(G) that satisfies

(Ãd)∗(Xg)(Yg) = [Xg , Yg ] for all g ∈ G. (110)

Proof. The proof follows by direct computations as we show next.
Let X and Y be vector fields on G and γ the integral curve of X with γ(0) = g. We write X =

∑n
i=1 x

iAi and

Y =
∑n
j=1 y

jAj . By the definition of ∇[0] we have that

(
∇[0]
γ̇ Y

)
(g) =

n∑
i,k=1

xi Ai|g (yk) Ak|g =

n∑
k=1

X|g (yk) Ak|g

=

n∑
k=1

(
lim
t→0

yk(γ(t))− yk(g)

t

)
Ak|g

= lim
t→0

∑n
k=1 y

k(γ(t)) Ak|g −
∑n
k=1 y

k(g) Ak|g
t

= lim
t→0

∑n
k=1 y

k(γ(t))
(
Lgγ(t)−1

)
∗
Ak|γ(t) − Y (g)

t

= lim
t→0

(
Lgγ(t)−1

)
∗
Y (γ(t))− Y (g)

t
.

This proves (107).

Now let X,Y be left-invariant. Note that ∇[0]Y = 0 because
(
Lg(γ(t))−1∗

)
Y (γ(t)) = Y (g) in (107) regardless of γ.

Then the alternative formula (108) for general Lie-Cartan Connection∇[ν] follows, as the structure constants ckij ∈ R satisfy∑
k c
k
ijAk = [Ai,Aj ] and the Lie bracket is bilinear for left-invariant vector fields, and we find ∇[ν]

X Y = ∇[0]
X Y +ν[X,Y ] =

ν[X,Y ]

For our reformulation in (108) we used (110):(Ãd)∗(Xg)(Yg) = [Xg , Yg ] that we show next. By the derivation in [46,
Lemma.5.4.2] one has (Ad)∗(Xe)(Ye) = [Xe, Ye]. Now the Cartan-Maurer form is a Lie algebra isomorphism, and we get
(110):

Ãd∗(Xg)(Yg) = Ãd∗((Lg)∗Xe)((Lg)∗Ye)
(109)

= (Lg)∗Ad∗(Xe, Ye)
= [(Lg)∗Xe, (Lg)∗Ye] = [Xg , Yg ].

Lemma 9 (Properties of the Lie-Cartan connections)
Let X, Y , Z be left-invariant vector fields.
The torsion tensor gives

T∇[ν] (X,Y ) = (2ν − 1)[X,Y ]. (111)

The curvature tensor gives
R∇[ν] (X,Y )Z = ν(1− ν)[Z, [X,Y ]]. (112)

Relative to the left-invariant frame on G we have the following components:

T ijk = (2ν − 1)cijk and Rlk,ij = ν(1− ν)
n∑
q=1

clkqc
q
ij .

The Lie-Cartan connections satisfy the following identity:

(∇[ν]G)(X,Y, Z) = −ν (G([X,Y ], Z) + G([X,Z], Y )) . (113)

Proof. Let X,Y, Z be left-invariant vector fields. For all computations, we use the characterisation of Lie-Cartan connec-
tions (108) from Lemma 8.
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Torsion of ∇[ν]: We have

T∇[ν] (X,Y ) = ∇[ν]
X Y −∇[ν]

Y X − [X,Y ]

= ν[X,Y ]− ν[Y,X]− [X,Y ] = (2ν − 1)[X,Y ].

Curvature of ∇[ν]: By the Jacobi identity for Lie brackets we have

R∇[ν] (X,Y )Z = ∇[ν]
X ∇

[ν]
Y Z −∇[ν]

Y ∇
[ν]
X Z −∇[ν]

[X,Y ]
Z

= ν2 ([X, [Y, Z]]− [Y, [X,Z]])− ν [[X,Y ], Z]

= ν2 [[X,Y ], Z]− ν [[X,Y ], Z] = ν(ν − 1)[[X,Y ], Z]

Metric compatibility of ∇[ν]: We have

∇[ν]G(X,Y, Z) = X(G(Y, Z))− G
(
Y,∇[ν]

X Z
)
− G

(
∇[ν]
X Y, Z

)
= X(G(Y, Z))− ν G(Y, [X,Z])− ν G([X,Y ], Z)

= −ν (G(Y, [X,Z]) + G([X,Y ], Z)) ,

where we note that X(G(Y, Z)) = 0 because G is also left invariant.

Remark 26 (from left-invariant vector fields to general vector fields)
The formulas above in Lemma 9 only hold for left-invariant vector fields. For example, the general formula for the torsion
is

T∇[ν] = (2ν − 1)

n∑
i,j,k=1

ωi ⊗ ωj ckij Ak. (114)

so only for left-invariant vector fields we have T∇[ν] (X,Y ) = (2ν − 1)[X,Y ]. It is not a coincidence that vanishing torsion

for arbitrary non-commuting vector fields gives ν = 1
2

, whereas the same conclusion can be drawn from left-invariant
non-commuting vector fields. In general, the torsion T∇ and curvature R∇ of a connection, and the covariant derivative
∇G of the metric tensor fields, are tensor fields, so e.g.

T∇[ν] (f1X1 + f2X2, g1Y1 + g2Y2) =

f1g1T∇[ν] (X1, Y1) + f2g1T∇[ν] (X2, Y1) + f1g2T∇[ν] (X1, Y2) + f2g2T∇[ν] (X2, Y2)
(115)

for all fi, gi ∈ C∞(G) and all vector fields Xi, Yi on G, i = 1, 2.

Corollary 5 Let G be a non-commutative Lie group and assume G is not 2-step nilpotent. The Lie-Cartan connection
∇[ν] is

1. torsion free iff ν = 1
2

,

2. curvature free iff ν ∈ {0, 1}
3. metric compatible w.r.t. left-invariant metric G if ν = 0.

Proof. By Remark 26 we may as well restrict our Lie-Cartan connection ∇[ν] to left-invariant vector fields, since T∇, R∇
and ∇G are all tensor fields. Therefore they have C∞- linearity (such as in (115)) in all of their entries. This C∞ linearity
allows us to turn arbitrary vector fields into left-invariant vector fields by linear combinations.

The first item now follows by (111) and G being non-commutative (i.e. there exist left-invariant vector fields X,Y
s.t. [X,Y ] 6= 0 as 2ν − 1 = 0 ⇔ ν = 1

2
. Note that it also follows by (114). The second item follows by (112) and by the

assumptions on G there exist (left-invariant) X,Y, Z s.t. [Z, [X,Y ]] 6= 0, and thereby ν(1 − ν) ⇔ ν ∈ {0, 1}. The third
item follows by (113) as for metric compatibility the covariant derivative of the metric tensor should vanish.

The above properties explain why the choices ν ∈ {0, 1
2
, 1} are the most common choices for Cartan connections.

Our application (recall Fig. 2) will require torsion and metric-incompatibility of connections on G. Metric incompatibility
allows us to distinguish between ‘straight curves’ (auto-parallel curves with parallel velocity) and ‘shortest curves’ (distance
minimizing geodesics with parallel momentum), as we will see in Theorem 7.

Remark 27 For Lie group SE(2), recall its product (50), the only metric compatible Lie-Cartan connection is the case

with ν = 0, since (113) becomes ∇[ν]G(X,Y, Z) = −1ν if we take X = cos θ∂x + sin θ∂y , Y = − sin θ∂x + cos θ∂y , Z = ∂θ.
This corresponds to X = A1, Y = A2 and Z = A3 in Figure 21.
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E.1.1 Expressing the Lie-Cartan connection (and its Dual) in Left-invariant Coordinates

Next we express the Lie-Cartan connection explicitly in left-invariant coordinates. That is, the covariant derivative of a
field Y =

∑n
k=1 y

kAk, along a smooth vector field X =
∑n
i=1 x

iAi is given by (for details see Remark 28 below)

∇[ν]
X Y =

n∑
k=1

ẏk +
n∑

i,j=1

νckijx
iyj

 Ak. (116)

where we use common short notation [46, (3.1.6)] ẏk(t) = d
dt
yk(γ(t)) which equals ẏk(t) = (Xyk)(γ(t)) and xi = γ̇i(t)

where xi
∣∣
γ(t)

:= γi(t) = 〈ωi
∣∣
γ(t)

, γ̇(t)〉 along all flow-lines γ of smooth vector field X. A ‘flowline’ is a smooth curve γ

satisfying γ̇(t) = Xγ(t)). With slight abuse of notation we write

∇[ν]
γ̇ Y =

n∑
k=1

ẏk +

n∑
i,j=1

ν ckij γ̇
iyj

 Ak. (117)

The corresponding dual connection on the co-tangent bundle is given by

∇[ν],∗
γ̇ λ =

n∑
i=1

λ̇i +

n∑
k,j=1

ν ckijλkγ̇
j

ωi, (118)

where λ =
n∑
i=1

λi ω
i ∈ T ∗(G). Note that 〈∇[ν],∗

X λ, Y 〉 = X〈λ, Y 〉 − 〈λ,∇[ν]
X Y 〉 and from this formula we see how (118)

follows from (117). The fact that both formulas involve a plus sign for the summation reflects that the Christoffel symbols
[46] of the connection and dual connection (in the left-invariant frame) are each others inverse:

0 = ν(ckji + ckij) = 〈∇[ν],∗
Ai ωk,Aj〉+ 〈ωk,∇[ν]

AiAj〉.

Remark 28 Next we explain how (116) follows by the coordinate free formulation (106):

∇[ν]
X (Y ) := ∇[ν](X,Y ) =

n∑
i,j,k=1

( (
ωi ⊗

(
Ai ◦ ωk(·)

))
(X,Y ) + (ωi ⊗ ωj)(X,Y ) νckij

)
Ak

=
n∑

i,k=1
xi (Aiyk)Ak +

n∑
i,j,k=1

νckijx
iyj Ak,

with X|γ =
n∑
i=1

xi Ai|γ(·) = γ̇ =
n∑
i=1

γ̇i Ai|γ(·) and Y =
n∑
k=1

ykAk, and

ẏk(t) = d
dt
yk(γ(t)) =

n∑
i=1

xi (Aiyk)(γ(t)) = X(yk)(γ(t)) via the chain-law.

E.1.2 (Partial) Lie-Cartan connections for (Sub)-Riemannian Geometry

The Lie-Cartan connections introduced will be in support of understanding Riemannian geometry when the Lie group is
considered as a Riemannian manifold (G,G) with a left-invariant Riemannian metric tensor field given by

G =
n∑

i,j=1

gij ω
i ⊗ ωj , (119)

with gij constant relative to the left-invariant co-frame ωi given by (100) s.t. matrix [gij ] ∈ Rn×n is symmetric positive
definite. Recall we restricted ourselves to the diagonal case (102). The linear map associated to metric tensor field G is
written as

G̃(X) = G(X, ·) (120)

In many applications (robotics [17,64], image analysis [9], cortical vision [68,60]) it is useful to rely on sub-Riemannian
geometry [65] where certain direction in the tangent bundle are forbidden as they go with infinite cost. This means that
tangents of connecting curves are prescribed to be in a sub-bundle ∆ (also known as ‘distribution’) of the tangent bundle
T (G), i.e.

γ̇(t) ∈ ∆γ(t) ⊂ Tγ(t)(G) for all t ∈ Dom(γ) ⊂ R.
Typically for a controllable system, ∆ and its commutators should fill the full tangent space, in view of Hörmander’s
theorem. Here we will constrain ourselves to the case that the Lie-algebra is 2-bracket generating ∆+ [∆,∆] = T (G), as
this will be the case for our image analysis application later on.

Remark 29 For instance, let us consider the car in Fig. 2 that needs to move in Lie group SE(2). As the car can proceed
forward (by giving gas) and change its orientation (by turning the wheel), it cannot move sidewards. Optimal paths for

the car boil down to sub-Riemannian geodesic problems in which the partial Cartan connection ∇[1]
will turn out to play

a major role, as we will show in the next subsection.
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Now let us assume that we label the Lie algebra in such a way that

∆ = Span{Ai}i∈I (121)

for some index set I ⊂ {1, . . . , n}. Let us now consider partial Cartan connections on G that will play a major role on
sub-Riemannian problems on sub-Riemannian manifolds (G,∆,G0) with

G0 =
∑
i,j∈I

gij ω
i ⊗ ωj , (122)

as we will see later. Again restrict ourselves to the diagonal case gij = ξiδij .

Definition 14 (Partial Lie-Cartan Connection)

Consider a Lie group with Lie brackets [·, ·] and structure constants ckij ∈ R so that [Ai,Aj ] =
n∑
k=1

ckijAk. Consider the

distribution given by (121). Then the partial Lie-Cartan connection with parameter ν ∈ R (defined only on vector fields
that map into the distribution) is given by:

∇[ν]
:=

∑
i,k∈I

ωi ⊗
(
Ai ◦ ωk(·)

)
Ak +

∑
i,j,k∈I

ωi ⊗ ωj νckij Ak, (123)

So from this definition we deduce that

∇[ν]
γ̇ Y =

∑
i,j,k∈I

(
ẏk + νckij γ̇

iyj
)
Ak ,

∇[ν],∗
X λ =

n∑
i=1

(
λ̇i + ν

n∑
k=1

∑
j∈I

ckijλkγ̇
j

)
ωi,

(124)

where we highlighted the difference with the full Lie-Cartan connection in red, compare to Def 13, (117), (118). Again X,Y

are vector fields and λ a dual vector field and γ is an integral curve of X, and ẏk(t) := d
dt
yk(γ(t)), λ̇k(t) := d

dt
λk(γ(t)).

E.2 The Special Case of Interest ν = 1 and Hamiltonian Flows for the Riemannian Geodesic Problem on
G

Let C : G → R+ be an a priori smooth cost (or mobility) for moving through Lie group G that is bounded from below.
For the moment it can be considered as constant, but later on in the application sections it will play an important role.

Then the Riemannian metric tensor field G induces a Riemannian metric on G:

dG(g0, g1) := min
γ ∈ Lip([0, 1], G)

γ(0) = g0,
γ(1) = g1,

∫ 1

0
C(γ(t))

√
G|γ(t) (γ̇(t), γ̇(t)) dt. (125)

for all g0, g1 ∈ G. The sub-Riemannian metric tensor field G0 induces a sub-Riemannian metric on G by dG0 : G×G→ R+

on G:

dG0 (g0, g1) := min
γ ∈ Lip([0, 1], G)
γ(0) = g0 ∈ G,
γ(1) = g1 ∈ G,

∀t∈[0,1] : γ̇(t) ∈ ∆|γ(t)

∫ 1

0
C(γ(t))

√
G0|γ(t) (γ̇(t), γ̇(t)) dt. (126)

The next theorem motivates the choice ν = 1 for the Lie-Cartan connection ∇[1], that is underlying the Hamiltonian flow
associated to (125). Recall from geometric control theory [65,32] that the Pontryagin Maximum Principle describes the
Hamiltonian flow. It allows us to simultaneously analyze all lifted geodesics (γ(·), λ(·)) in the co-tangent bundle T ∗(G),
where λ(·) denotes the momentum along the geodesic.
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Theorem 7 In a Riemannian manifold (G,T (G),G), with the tangent bundle T (G) and metric tensor field G defined in

(119) and the induced metric dG defined in (125), and the Lie-Cartan connection ∇[ν] for ν = 1 defined in (106), we
have the following relations for ”straight” curves:

γ is a ∇[1]-straight curve ⇔ γ is an exponential curve

⇔ ∇[1]
γ̇ γ̇ = 0 ⇔ γ has ∇[1]-auto parallel velocity ,

(127)

and the following for ”shortest” curves (minimizers in (125)), recall also (120):

γ is a shortest curve ⇔ γ is a minimizing curve in dG

⇒
{
∇[1],∗
γ̇ λ = 0

γ̇ = G̃−1λ
⇔ γ has ∇[1],∗-parallel momentum .

(128)

In a sub-Riemannian (SR) manifold (SE(2),∆,G0) with sub-bundle ∆ defined in (123), the sub-Riemannian metric tensor
G0 (122) and distance (126), and partial Cartan connection (123), we have the following relations for ”straight” curves:

γ is a ∇[1]
-straight curve ⇔ γ is a horizontal exponential curve

⇔ ∇[1]
γ̇ γ̇ = 0 ⇔ γ has ∇[1]

-auto parallel velocity ,
(129)

and the following for ”shortest” curves (minimizers in (126)):

γ0 is a shortest curve ⇔ γ0 is a minimizing curve in dG0

⇒
{
∇[1],∗
γ̇0

λ = 0

γ̇0 = G̃−1
0 P∗∆λ

⇔ γ0 has ∇[1],∗
-parallel momentum ,

(130)

in which P∗∆ is the projection

P∗∆

(
n∑
i=1

λiω
i

)
=
∑
i∈I

λiω
i.

For the reverse in (128) and (130); for a minimizing curve between g1 = γ(0) and g2 = γ(t) one must have
0 ≤ t ≤ tcut = min{tconj(λ(0)), tMax,1(λ(0)}, cf. [65,?] for details.
They are found by steepest descent:

γ(t) = γ(0) +

∫ t

0
gradGW (γ(s)) ds, (131)

on distance maps W (g) = dG(g, e) that are viscosity solutions of eikonal PDE:{
‖gradGW (g)‖ =

√
G|g (gradGW (g), gradGW (g)) = 1,

W (e) = 0,
(132)

with (metric-intrinsic) gradient gradGW (g) = G̃−1dW (g), as this only gives global minimizing curves, even in the SR
setting G → G0.

Proof. First we address the ‘shortest curves’ part of the theorem. The items (128) and (130) follow by the Pontryagin
Maximum Principle [65] and Theorem 8 in the subsequent subsection. Theorem 8 proves the actual fundamental relation

between the (partial) Lie-Cartan connection ∇[1] to the Hamiltonian flow, for the (sub)-Riemannian setting. Here we
stress that PMP provides only local optimality of geodesics.

The geodesics are found by the exponential map that integrates the Hamiltonian flow (λ(0), t) 7→ (γ(t), λ(t)) = eth(λ0).
Optimality of t 7→ γ(t), requires t to be less than the cut-time. Such a cut-time is the minimum of the conjugate time

tconj(λ(0)) ∈ R ∪ {∞} where local optimality is lost, and the first Maxwell time tMax,1, where two equidistant geodesics
meet for the first time and where global optimality is lost. Now t ≤ tcut(λ(0)) is guaranteed by steepest descent (131)
on the distance maps W which are obtained as viscosity solutions [35,?] to the eikonal PDE. This is well-known for the
Riemannian case [49,35], but also applies to the sub-Riemannian20 case [50,9] and holds even in more general Finsler
geometrical settings [26].

Secondly, regarding the ‘straight curves’ (127) one has (by (117)) and anti-symmetry of the structure constants (101)
that:

∇[1]
γ̇ γ̇ = 0 ⇔ ∀k∈{1,...,n} : γ̈k −

n∑
i,j=1

ckij γ̇
iγ̇j = γ̈k = 0

⇔ ∀k∈{1,...,n} : 〈ωk
∣∣
γ
, γ̇〉 =: γ̇k = ck = constant

⇔ γ(t) = γ(0) e
t
n∑
k=1

ckAk
,

(133)

with γ̈k(t) = d
dt
γ̇k(t). Note that the first, third and fourth statement in (127) are just tautological, so that (133) proves

the remaining second equivalence. The SR-case (129) follows similarly by (124) taking into account the restriction to (121)
via projection P ∗∆ which means we constrain the summations to index set I and set γ̇i = 0 if i /∈ I.

20 For an intuitive illustration that in the viscosity solutions of the PDEs non-optimal wavefronts are cut (at the 1st
Maxwell set) in the sub-Riemannian setting see [9, Fig.3].
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E.2.1 Hamiltonian Flow of the left-invariant (sub)Riemannian Geodesic Problem on Lie group G

The family of all geodesics γ(t) augmented to v(t) = (γ(t), λ(t)) with their momentum representation λ(t) =∑n
i=1 λi(t) ω

i
∣∣
γ(t)

along the geodesic are flow lines of a so-called ‘Hamiltonian flow’ on the cotangent bundle T ∗(G).

Controlling the Hamiltonian flow means controlling the complete family of all geodesics (minimal distance curves) to-
gether. Next we explain the concept of Hamiltonian flows, and derive the canonical Hamiltonian equations associated to
the left-invariant Riemannian and sub-Riemannian problem of interest.

To a Hamiltonian function h
T ∗(G) 3 (g, λ) 7→ h(g, λ) ∈ R+

one associates a Hamiltonian vector field
−→
h (or ‘Hamiltonian lift’) in the co-tangent bundle. It is determined via the

fundamental symplectic form that is given by

σ =

n∑
i=1

ωi ∧ d̄λi,

where d̄λi is defined by 〈d̄λi, ∂λj 〉 = δij , by means of

∀V=(ġ,λ̇)∈Tg(G)×T (T∗g (G)) : σ(
−→
h (g, λ), V ) = 〈dh(g, λ), V 〉. (134)

Remark 30 (background on Hamiltonian lifts)
A direct consequence of (134) is that along the flowlines of the Hamiltonian flow the Hamiltonian is preserved (take

Y =
−→
h ) and

d

dt
h(v(t)) = σ(

−→
h (v(t)),

−→
h (v(t))) = 0, with v(t) = (γ(t), λ(t)),

Furthermore the lifting of a Hamiltionian h to its Hamiltonian lift
−→
h is a Lie algebra isomorphism [65]:

−−−−−→
{h1, h2} = [

−→
h 1,
−→
h 2] (135)

where {·, ·} denote Poisson brackets and [·, ·] denotes the usual Lie bracket of vector fields. In the left-invariant (co)-frames
Poisson brackets are expressed as

{g, f} =

n∑
i=1

(Aif)
∂g

∂λi
−

∂f

∂λi
(Aig), (136)

but this may also be expressed in canonical coordinates [65, eq.11.21].

Remark 31 (simple example of Hamiltonian lifts on T ∗(R)

We set σ = dx∧dλ. We set
−→
h = h1∂x+h2∂λ. Then from (134) one can deduce the following standard canonical equations:

−→
h = ∂h

∂λ
∂x − ∂h

∂x
∂λ+⇒ ẋ∂x + λ̇∂λ = v̇ =

−→
h (v)

⇔
{
ẋ = ∂h

∂λ
(horizontal part) ,

λ̇ = − ∂h
∂x

(vertical part) .

Generalizing the above example, the next theorem provides the Hamiltonian flows for the left-invariant Riemannian
and sub-Riemannian problem on G.
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Theorem 8 The Hamiltonian on Riemannian manifold (G,G), with left-invariant metric tensor field G given by (119),
equals

h =
1

2

n∑
i=1

λiλi =
1

2

n∑
i,j=1

gijλiλj (137)

and the corresponding Hamiltonian flow (generated by the Hamiltonian vector field
−→
h ) can be written as (recall the

definition of linear map G̃ (120))

v̇ =
−→
h (v)⇔

{
G̃−1λ = γ̇ (horizontal part)

∇[1],∗
γ̇ λ = 0 (vertical part)

⇔


γ̇i = ui = λi :=

n∑
j=1

gijλj (horizontal part)

λ̇i = {h, λi} = −
n∑

j,k=1
ckijλku

j (vertical part)

(138)

with velocity controls ui := γ̇i = 〈ωi
∣∣
γ(·) , γ̇〉 and v(t) = (γ(t), λ(t)) a curve in the co-tangent bundle T ∗(G) where the

geodesic γ(t) ∈ G and the momentum along the geodesic λ(t) ∈ T ∗
γ(t)

(G), and with {·, ·} denoting Poisson brackets, recall

(136).

The Hamiltonian on sub-Riemannian manifold (G,∆ = span{Aj}j∈I ,G0) equals

h =
1

2

∑
i∈I

λiλi =
1

2

∑
i,j∈I

gijλjλi (139)

and the Hamiltonian flow can be written as

v̇ =
−→
h (v)⇔

{
G̃−1
0 P∆∗λ = γ̇ (horizontal part)

∇[1],∗
γ̇ λ = 0 (vertical part)

⇔


γ̇i = ui = λi for i ∈ I and uj = 0 if j /∈ I (horizontal part)

λ̇i = {h, λi} = −
n∑
k=1

∑
j∈I

ckijλku
j (vertical part)

(140)

where P∆∗ denotes the projection onto the dual ∆∗ of ∆, as given in Theorem 7.

Proof. The results (138) and (140) follow from standard application of the Pontryagin Maximum Principle (PMP [65]) to
respectively the Riemannian and sub-Riemannian geodesic problem. First of all we note that regarding the Hamiltonian in
the Riemannian case (137) we have that it is computed by applying the Fenchel transform on the integrand of the action
functional (i.e. squared Lagrangian)

h(g, λ) = sup
γ̇∈Tg(G)

{〈λ, γ̇〉 − L2(g, γ̇)} with λ =
n∑
i=1

λi ω
i
∣∣
g
∈ T ∗g (G),

hence we get the Hamiltonian h : T ∗(G)→ R+ given by

h = max
(v1,...,vn)

{
n∑
i=1

λiv
i − 1

2

n∑
i,j=1

vivjgij

}
= 1

2

n∑
i,j=1

λigijλ
j = 1

2

n∑
i=1

λiλi,

(141)

with λi =
n∑
j=1

gijλj . The Hamiltonian in the SR-case (139) comes with the constraint γ̇ ∈ ∆ (i.e. γ̇i = 0 if i /∈ I) and then

with a similar type of reasoning above (but then with vi = 0 if i /∈ I) we get h = 1
2

∑
i∈I

λiλi with λi =
∑
j∈I

gijλj , and we

find the ‘extremal controls’ [65]: vimax = ui = λi.
Note that (138) and (140) are of the form a⇔ b⇔ c. We first comment on a⇔ c and then show b⇔ c.

a ⇔ c follows by direct computation as we show next. By computing We have the following relation in Poisson
brackets:

[Ai,Aj ] =
n∑
k=1

ckijAk ⇔ {λi, λj} = Aiλj −Ajλi =

n∑
k=1

ckijλk,

as the ‘conjugate momentum mapping’ gives rise to a Lie-algebra morphism, see [65, p.164]. Thereby (via (136), (141))
we find (with Liouville’s theorem and ckij = −ckji):

γ̈i = u̇i = {h, ui} = λ̇i ⇒ ui = λi,

λ̇i = {h, λi} =
∑
j∈J

2
2
{λj , λi}λj = −

n∑
k=1

∑
j∈J

ckijλku
j , (142)
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which hold for i = 1, . . . , n in the Riemannian case and for i ∈ I in the sub-Riemannian case. In the above expression one
must set J = {1, . . . , n} in the Riemannian case, and J = I in the sub-Riemannian case.

b ⇔ c follows by (142), and the expression (118) for the Lie-Cartan connection (with ν = 1), respectively expres-
sion (124) for the partial Lie-Cartan connection (again with ν = 1) expressed in left-invariant coordinates.
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F Table of Notations

Symbol Explanation Reference

Rd, x Position space with vectors x = (x1, . . . , xd)T . Sect. 1.0.1, Sect. 1.1, . . .

Sd−1,n Angular space, Sd−1 = {n ∈ Rd | ||n|| = 1}. Sect. 1.0.1, Sect. 1.1, . . .

a Reference axis. For d = 2, a = (1, 0)T , for d = 3,
a = (0, 0, 1)T .

Eq. (10), Remark 3

M, p Manifold M = Rd × Sd−1, with p = (x,n) ∈ M Sect. 1.0.1 . . .
T (M), T ∗(M), Tp(M) Tangent bundle T (M) = {(p, ṗ) | p ∈ M, ṗ ∈ Tp(M)},

and cotangent bundle T ∗(M), with tangent space
Tp(M).

Sect. 1.0.1, Sect. 2.5, Sect. 1.1, . . .

Γ , γ Space Γ = Lip([0, 1],M) of admissible curves, with
t 7→ γ(t) = (x(t),n(t)).

Eq. (1), . . .

F , F∗, F0, F+
0 , Fε, F+

ε ,

(Fε)∗, (F+
ε )∗

Finsler function F defined on M, its dual F∗ :
T ∗(M)→ R the models with and without reverse gear

F0, F+
0 , their approximations Fε, F+

ε and their duals.

Sect. 1.0.1, Eqs. (2), (3), (5), (6), (17),
(18), Prop. 1, . . .

dF , U Distance function dF (p,q) for p,q ∈ M, and U(p) =
dF (pS ,p) for a fixed source pS ∈ M

Eqs. (1), (4), . . .

ε Anisotropy parameter in the metric, ε = 0 corresponds
to the sub-Riemannian manifold case.

Eqs. (17), (18), Fig. 6, . . .

∝ We write ẋ ∝ n when ẋ = λn for some λ ∈ R Eqs. (2), (3), Sect. 2.3, Thm. 1,
C1, C2, ξ External cost Ci : M → R+, analytic and strictly

bounded from below, and ξ > 0 to balance the cost
of spatial motion relative to angular motion, when we
choose C1 = ξC2

Sect. 1.1, . . .

B, BF Set of controls B, and the set of admissible controls
BF (p) = {ṗ ∈ Tp(M)|F(p, ṗ) ≤ 1)}

Fig. 1, Eq. (7), Appendix A

a Reference axis. For d = 2, a = (1, 0)T , for d = 3,
a = (0, 0, 1)T .

Eq. (10), Remark 3

(·)−, (·)+ (·)− = min(·, 0), (·)+ = max(·, 0) Eqs. (16), . . .
R, R̄, R̄c Subset R ∈ M of end-points that are reached by cusp-

less geodesics, the closure R̄ and its complement R̄c
Def. 4, Remark 3, Thm. 3, Sect. 5.

Ai, ωi Left-invariant frame Ai and the dual frame ωi. Sect. 5, Eqs. (65), (66), Remark 14.
ui, p̂i, ũ Controls (velocity components) ui, momentum com-

ponents p̂i and the special spatial ũ
Def. 2, (58), . . .

Gp,ε, G̃p,ε Metric tensors Gp,ε, G̃p,ε : Tp(M)× Tp(M)→ R+ Eq. (26), (27)

∇, G−1
p,εd, G̃−1

p,εd Standard gradient ∇ = (∇Rd ,∇Sd−1 ), the intrinsic

gradient G−1
p,εd of the manifold (M+, dFε ) and G̃−1

p,εd
the intrinsic gradient of (M−, dF+

ε
)

Cor. 1, Thm. 4, Remark 32,

FM,w, F ∗
M̂,ŵ

Norm FM,w : Rn → R+ and dual norm F ∗
M̂,ŵ

:

(Rn)∗ → R+

Lemma 4

X, X Discrete subset X of Rd, and image support X ⊂ M. Sect. 7, Appendix A
Dεn Symmetric positive definite matrix Dεn = n ⊗ n +

ε2(Id−n⊗ n)
Eq. (28), (29), . . .

M+, M−, ∂M± M+ = {p ∈ M | 〈dU+(p),n〉 > 0}, M− = {p ∈
M | 〈dU+(p),n〉 < 0} and their boundary

Cor. 1, Thm. 4

Nx, Ny , Nz , No Resolution in spatial/angular coordinates Sect. 8
σ, p Parameters σ > 0, p ∈ N of the cost function C Sect. 8

Table 1 Symbols used throughout the paper, their brief explanation and references to where they appear, or where they
are defined/first appear. The dots in the Reference column indicate that they are used frequently.
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