
PART I:

Geometric Image Processing:
Regularization, Representation, and Locally Adaptive Derivatives.

R. Duits · E.J. Bekkers

Abstract We study multi-scale representations of images, so called scale space representations. Such
scale representations are typically obtained via PDE-evolutions, where we primarily focus on the case
where the PDE-evolution is a diffusion. We will consider linear and nonlinear (data-driven) diffusions
and set important connections to popular variational image regularization/denoising techniques. We also
address basic geometric image analysis techniques, that comes along with these scale space representations,
such as scale selection, well-posed Gaussian derivative operators, local analysis, localized basis expansions,
differential invariants and underlying locally adaptive frames of derivatives.

We distinguish between locally adaptive frames of the first kind and of the second kind. The locally
adaptive frames of the first kind are computed by eigenvector decomposition of the structure tensor of an
image, whereas locally adaptive frames of the second kind are computed by eigenvector decomposition of
the Hessian of an image. Such locally adaptive frames provide tools for geometric reasoning (diffusions,
enhancement, tracking, detection) that works as long as the local image-structure can be modeled by a
single oriented frame per position.

The problem is that, at complex structures in images (e.g. crossings or junctions), multiple (non-
orthogonal) orientations are present. Thereby the computation of differential frames of the 1st and 2nd
order is not well-defined at these locations. Therefore, in later sections of the lecture notes we generalize
the notion of gauge frames on images to gauge frames on data representations defined on the extended
space of positions and orientations.

Learning objectives:

– Understand Gaussian scale space representations and master solving linear diffusion systems.
– Understand the notion of Gaussian derivatives.
– Understand basic image regularization techniques and know how they relate.
– Understand practical B-spline expansions of images.
– Master geometric and algebraic treatment of vector fields on manifolds, and know how they relate.
– Understand the optimization problems and Euler-Lagrange formalisms underlying locally adaptive

frames, and know how to put them in a more general Lie group formalism.
– Understand possibilities and limitations of locally adaptive frames directly in the image domain.
– Understand the numerical methods for PDE’s (nonlinear diffusions and total variation flows).
– Know how to apply variants of nonlinear images diffusions via prepared Mathematica notebooks.
– Understand variational techniques (total variation flow) for image regularization/denoising.

NB:
Technical parts and exercises with extra material are indicated in blue and may be skipped: The black text
forms the core of the course and its exam. Regular exercises are indicated in red. The black text and the
red exercises nor do not rely on the blue text nor do they rely on the blue exercises.
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Introduction

In this first part of the course, we will be concerned with basic techniques on mathematical (PDE-based)
image processing. We will not presume pre-knowledge on image processing, but we will presume pre-
knowledge on PDE’s, analysis and linear algebra. We will explain the following, basic mathematical image
analysis techniques:

– Linear scale space representations,
with an emphasis on the Gaussian case in Section 1.

– Gaussian derivatives,
and well-posed differentiation in Gaussian scale spaces in Section 2.

– Scale selection
in Gaussian scale space representations in Section 3.

– Separable implementation
of Gaussian scale space representations/implementations in Section 4.

– Local analysis and basis expansions
of images in Section 5.

– Differential invariants and nonlinear geometric filtering
of images in Section 6.

– Locally adaptive frames
for data-driven derivatives in the image domain, as explained in detail in Section 7. To put this concept
gradually in a more general context, we include two intermezzos with
1. preliminaries on Lie groups,
2. tangent vectors and vector fields, where we explain both the geometric and the algebraic viewpoint,
which are both crucial for understanding the geometrical techniques later on in the lecture notes.

– Diffusion algorithms for image-enhancement
in Section 8, with a high emphasis on finite difference schemes, where we distinguish between:
1. Linear diffusion algorithms in Subsection 8.1.
2. Nonlinear diffusion with adaptive scalar diffusivity in Subsection 8.2.
3. Nonlinear diffusion steered by locally adaptive frames in Subsection 8.3.

– Variational Techniques for image-denoising in Section 9.

In this first part the geometric processing will only take place in the actual image domain. This image
domain is regarded as connected and compact subset of Rd (typically a rectangle if d = 2 or a cube if d = 3).
In all later parts of the course we shall extend the image domain from Rd to higher dimensional spaces (Lie
groups and Lie group quotients), via lifts (e.g. orientation scores, continuous wavelet transforms or Gabor
transforms). As such extensions require more advanced geometrical and PDE-techniques, we will sometimes
put the geometric processing in the actual image domain of this section, in a bit more formal context than
strictly required. This helps to identify the geometric tools underlying geometric image processing, and
provides a basis for better understanding of the more technical generalizations in later parts.

1 Gaussian Scale Space Representations

The Gaussian kernel Gs : Rd → R+ given by

Gs(x) = (4πs)−d/2e−
‖x‖2
4s , (1)

can be used to construct a Gaussian scale space representation of a square integrable image f : Rd → R:

u(x, s) = (Gs ∗ f)(x) :=

∫
Rd

Gs(x− y) f(y) dy. (2)

In general a greyscale image f assigns to (x, y) ∈ R2 a greyvalue f(x, y) ∈ R, whereas a scale space
representation assigns to each location (x, y) and scale s > 0 a greyvalue u(x, y, s). Here s > 0 is to be
considered at the scale at which the image f is observed. See Figure 1. Typically, one expresses the scale
of observation s = 1

2σ
2 in the standard deviation σ of a Gaussian kernel.



PART I: Geometric Image Processing: Regularization, Representation, and Locally Adaptive Derivatives. 3

extremum

saddle

singular point

Fig. 1 Top row; left: illustration of a scale space representation u(x, y, s) of a 2D image f(x, y), right: fixed scale layers
u(·, s) for increasing s > 0; left: two slices (small scale and large scale) in a scale space representation of a painting of
Salvador Dali. right: the critical paths of a simple image consisting of only a few blobs, structures vanish as s > 0 increases
extrema and saddles meet each other at singular points (where up to 2nd order differential structure allows for a reasonable
approximative image reconstruction [1–3]).

The above Gaussian scale space representation u(x, s) satisfies a familiar evolution equation involving
the heat-equation {

∂ u
∂ s (x, s) = ∆u (x, s), x ∈ Rd, s > 0,

u(x, 0) = f(x), x ∈ Rd, f ∈ L2(Rd),
(3)

with Laplacian ∆ = ∇·∇ which on Rd can be expressed as
(
∂
∂x1

)2
+ . . .+

(
∂
∂xd

)2
in Euclidean coordinates

x = (x1, . . . xd) ∈ Rd. Intuitively, function u(·, s) ∈ L2(Rd) for a fixed s > 0 represents the image observed
at scale s = 1

2σ
2. A paintings of Dali in Fig.1 reveals how important this choice of scale of observation can

be. At a fine scale we recognize a body, at a larger scale we recognize the portrait of Abraham Lincoln.

Let us recall that Fourier transform F : L2(Rd)→ L2(Rd) is given by

Ff(ω) =
1

(2π)
d
2

∫
Rd
f(x)e−iω·x dx, (4)

for almost every ω ∈ Rd. It is a unitary operator F−1 = F∗ and thereby

‖Ff‖2L2(Rd) = ‖f‖2L2(Rd) for all f ∈ L2(Rd),

(Ff,Fg)L2(Rd) = (f, g)L2(Rd), for all f, g ∈ L2(Rd),
(5)
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where the L2 inner-product given by

(f, g)L2(Rd) =

∫
Rd

f(x) g(x) dx.

Furthermore, one has the property that a convolution of two elements f, g ∈ L1(Rd)∩L2(Rd) in the spatial
domain correspond to a direct product of functions in the Fourier domain:

F(f ∗ g) = (2π)
d
2Ff Fg. (6)

Furthermore recall that for sufficiently smooth f ∈ L2(Rd) one has

F
((

∂

∂xk

)n
f

)
(ω) = (iωk)n (Ff)(ω) for all k = 1, . . . , d, (7)

where the label k for contravariant components of the vectors x = (x1, . . . , xd) ∈ Rd and contravariant
components of the vector1 ω = (ω1, . . . , ωd).

Finally, it can be shown (by technical computations and contour-integration in the complex plane) that

FGs(ω) = (2π)−
d
2 e−s‖ω‖

2

. (8)

The identities (5), (7), and (8) can be used without proof throughout this course.

Exercise 1 Derive the solution (2) to the heat evolution (3), using (5), (7), and (8).

Remark 1 (other linear scale space representations)
Gaussian scale space representations have been first proposed in image processing by Ijima [5,6]. From a list
of scale space axioms (translation-covariance, rotation-covariance, linearity, positivity preservation, semi-
group property, average grey-value invariance, scaling property) one can deduce so-called a parameterized
class of α-scale space representations. For an overview see [7]. Here α ∈ (0, 1] bridges the Gaussian scale
space representations α = 1 to the Poisson scale space representation α = 1

2 .
Poisson scale spaces are harmonic functions with respect to the joined scale space variable (x, s) and

they boil down to harmonic extension of the original image at s = 0 to the upper-space s ≥ 0, as you
need to show in Exercise 2a below. They have benefits for phase-based image processing as one can rely
on (Clifford)-analytic extensions [8–10]). Such α-scale space representations [11,7,12] are generated by a
fractional power −(−∆)α of the minus Laplacian (with 0 < α ≤ 1). They are well-known in probability
theory as they are forward Kolmogorov equations of α-stable Lévy processes [13].

If one imposes a strong causality constraint (the non-enhancement of local extrema) [14,15] or a (ques-
tionable) finite variance assumption [13], the allowable class of the linear scale spaces is reduced to the
Gaussian scale space representation.

Exercise 2 Consider the factorization

∆+ ∂2s = (−
√
−∆+ ∂s)(

√
−∆+ ∂s),

where the unbounded pseudo-differential operator −
√
−∆ is given by

−
√
−∆f = F−1(ω 7→ −‖ω‖Ff(ω)) for all f ∈ H1(Rd).

with H1(Rd) ⊂ L2(Rd) the first order Sobolev space.

a.) Show that the following systems (where we require u(·, s) ∈ L2(Rd) for all s ≥ 0) produce the same
solutions u(x, s): {

∂su(x, s) = −(
√
−∆u)(x, s) for all (x, s) ∈ Rd × R+,

u(x, 0) = f(x) for allmost every x ∈ Rd,
⇔{

∆x,su(x, s) := (∂2s +∆)u(x, s) = 0 for all (x, s) ∈ Rd × R+,

u(x, 0) = f(x) for allmost every x ∈ Rd.
1 We use inner products in our definition of the Fourier transform (4) which requires ω to be a vector. Sometimes it is

worthwhile [4] to consider ω rather as a co-vector (linear functional) but this is not required here as (Rd)∗ ≡ Rd.
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b.) Their solution u is given in explicit form by a convolution kernel u(·, s) = Hs ∗ f with kernel

Hs(x) =
2

σd

s

(s2 + ‖x‖2)
d+1
2

.

where σd−1 = 2 π
d
2 Γ
(
d
2

)
denotes the surface area of the d − 1-dimensional sphere embedded in Rd,

so σ1 = 2π and σ2 = 4π. You do not need to derive this for general d ∈ N. Note that from item a) it
follows that FHs(ω) = 1

(2π)
d
2
e−s‖ω‖.

Explicitly derive this convolution kernel yourself from the PDE-systems only for the special case d = 1.

c1.) Show that
Gt ∗Gs = Gt+s and Ht ∗Hs = Ht+s

for all t, s ≥ 0.
c2.) Show that ∫

Rd
Gs(x) dx = 1 and

∫
Rd
Hs(x) dx = 1.

hint: zero frequency in the Fourier domain.
What does this mean for the average grey-value of the Poisson and Gaussian scale space representation
as scale increases?

d.) Apply the Gauss divergence theorem to show that the flow-operator in a Gaussian scale space repre-
sentation is given by the gradient

(x, s) 7→ ∇u(x, s) = (∇Gs ∗ f)(x).

hint: ∆ = ∇ · ∇ = div ◦ grad.
e.) Apply the Gauss divergence theorem to show that the flow-operator in a Poisson scale space represen-

tation is given by minus the Riesz-transform

(x, s) 7→ Ru(x, s) = (RHs ∗ f)(x),

where R denotes the Riesz transform given by Rf = F−1(ω 7→ i ω‖ω|Ff(ω)).

hint: −
√
−∆ = ∇ ·R.

f.) Verify that the flow-kernels are given by

∇Gs(x) = − x
2s Gs(x),

RHs(x)     = −x
s Hs(x),

g.) Show that extrema cannot be enhanced in a Gaussian scale space representation. I.e. show that if
u(·, si) has an (isolated) maximum in x = xi then ∂su(xi, si) < 0 and u(·, si) has an (isolated) mini-
mum in x = xi then ∂su(xi, si) > 0.

hint: In a Gaussian scale space representation one has (∂su(x, s))(∆u(x, s)) ≥ 0 �every (x, s) ∈ Rd × R+ and

∆u(x, si) = trace{Hu(x, si)}, where Hu(x, si) denotes the (usual) Hessian matrix on Rd, see (10).

Exercise 3 As scale increases in a scale space representation we observe that structures can disappear.
See for example the critical paths in the lower right-corner of Fig. 1.

Such topological transitions can be mathematically classified by local Morse theory [16] which gives
equivalence classes (‘germs’) of unfoldings u(x, y, s) that satisfy the diffusion equation. Such germs can
be represented by local polynomials. In particular, generic topological transitions where bifurcations take
place in the critical paths in scale space, are represented2 by the polynomials u1 and u2 defined below:

u1(x1, . . . , xd, s) := x31 + 6x1s+Q(x2, . . . , xd, s), for s ≤ 0,

u2(x1, . . . , xd, s) := x31 − 6x1(x22 + s) +Q(x2, . . . , xd, s), for s ≥ 0

2 Two unfoldings are equivalent if they lie in the same orbit under actions of diffeomorphishms, see [16]. For a definition
of the ‘germs’ and the ‘one-sided stable germs’ u1, u2, and how they follow from the ‘cusp-catastrophe’ see [17, ch:3.3.1].
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AA

AB

Fig. 2 Critical paths with singular points in a scale space of an image with both a ‘creation’ and an ‘annihilation’.

with quadratic forms Q(x2, . . . , xd) =
d∑
k=2

εk(1
2 x

2
k + s), with εk ∈ {−1, 1} for all k = 2, . . . , d.

A study of the critical paths departing from the origin then helps to analyze a topological transition at a
location (x0, s0) ∈ Rd × R+ in a scale space representation.

Such critical paths s 7→ (x0, s0) + (xj(s), s) ∈ Rd × R, indexed by j ∈ N, are given by{
∇xuk(xj(s), s) = 0,
xj(0) = 0,

(9)

for k = 1, 2.

a.) Verify that u1 satisfies the diffusion equation.
b.) Set d = 2. Study what happens to the critical paths given by (9) for s < 0, s = 0 and s > 0 and classify

their nature (i.e. identify the extremal branch, the saddle branch and the singular point).
c.) Verify that u2 satisfies the diffusion equation.
d.) Set d = 2. Study what happens to the critical paths of u2 given by (9) when varying scale s and classify

their nature (i.e. identify the extremal branch, the saddle branch and the singular point).
e.) Set d = 2. Which of the two cases above corresponds to the annihilation events (where a saddle branch

meets a extremal branch) we observe at the orange points (x0, s0) ∈ R2 × R+ in Fig. 1?
f.) In Fig. 3 you see critical paths in a scale space representation of a specific image (containing a ‘dumb-

bell’) depicted in the ground plane s = 0. We see two singular points A and B (respectively a ‘creation’
and an ‘annihilation’). Which case belongs to u1 and which case corresponds to u2?

g.) Set d = 2 and let u be a scale space representation of image f . Motivate that at points (x0, s0) ∈ R2×R+

where a saddle branch meets a extremal branch one must have

∇u(x0, s0) = 0 and det (Hu(x0, s0)) = 0.

with Hu the (spatial) Hessian of u with matrix representation

Hu(x, y, s) =

(
∂2xu(x, y, s) ∂x∂yu(x, y, s)
∂x∂yu(x, y, s) ∂2yu(x, y, s)

)
. (10)

1.1 Gaussian Scale Space on the Bounded Domain

We typically model the space of images as L2(Rd). Now in practice such images are always given on a
compactly support domain (typically a rectangle or a cube) Ω ⊂ Rd. By extending such an image with 0
outside the domain Ω, i.e by setting

f(x) :=

{
the greyvalue at location x if x ∈ Ω,

0 else ,
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one considerably affects the regions near boundaries in a scale space representation when scale increases3.

Alternatively, one can consider the diffusion equation on a bounded domain with boundary conditions
(e.g. Neumann or Dirichlet boundary conditions). From the practical point of view this is still somewhat
artificial since as the shape of ∂Ω (which in principle has nothing to do with content in the image) still
affects4 the scale space representation.

Nevertheless, for scale spaces on the bounded domain the choice of Neumann boundary conditions is
reasonable, both in view of increase of entropy and in view of maintainance of the average grey-value.

Exercise 4 (scale space representation on a bounded domain)

Consider the following evolution system for a scale space representation on the rectangle
Ω := [0, d1]× [0, d2], with (d1, d2 > 0):



∂u
∂s (x, y, s) = ∆u(x, y, s) = ∂2u

∂x2 (x, y, s) + ∂2u
∂y2 (x, y, s),

for (x, y) ∈ [0, d1]× [0, d2], s ≥ 0 ,

∂u
∂x (0, y, s) = ∂u

∂x (d1, y, s) = 0 for y ∈ [0, d2],

∂u
∂y (x, 0, s) = ∂u

∂y (x, d2, s) = 0 for x ∈ [0, d1],

u(x, y, 0) = f(x, y) for x ∈ [0, d1], y ∈ [0, d2],

(11)

where f(x, y) ≥ 0 denotes the initial image at s = 0.

a.) Use the method of separation to explicitly express the unique solution of (11) in a Fourier series where
f ∈ L2(Ω) ∩ C2(Ω) satisfies the Neumann boundary conditions.

b.) Explicitly derive the unique solution of (11) in case the initial condition equals

f(x, y) = cos2
(
πx

d1

)
cos2

(
2πy

d2

)
,

c.) Show that for any initial image f ∈ L2(Ω) ∩ C2(Ω) satisfying the Neumann boundary conditions, the
average greyvalue on the rectangle [0, d1]× [0, d2] is preserved over scale, i.e.

1

d1d2

∫
Ω

u(x, s) dx =
1

d1d2

∫
Ω

f(x) dx for all s ≥ 0.

d.) Show that for any initial image f ∈ L2(Ω) ∩ C2(Ω) with 0 < f ≤ 1 satisfying the Neumann boundary
conditions, the entropy increases, i.e.

d

ds
E(s) ≥ 0

for E(s) = −
∫
Ω

u(x, s) log u(x, s) dx.

e.) Re-do the above exercises 4a–4c, when the Gaussian scale space generator ∆ in (11) is replaced by the
alpha-scale space generator −(−∆)α with α ∈ (0, 1].
hint: Separation constants relate to eigenvalues λmn of the generator and fractional powers can then
be taken of the eigenvalues ∆fmn = −λmnfmn ⇒ −(−∆)αfmn = −(−λmn)α fmn.

In the remainder of this section we again consider images as compactly supported elements in L2(Rd),
unless explicitly stated otherwise.

3 As ‘blackness’, i.e. the 0 value, is diffused into the image through the boundaries as s > 0 increases
4 See for example [17, Fig. 2.6]
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2 Gaussian Derivatives in Gaussian Scale Space

One of the key advantages of using a scale space representation is that for all f ∈ L2(Rd) and all s > 0
the function u(·, s) which maps x onto u(x, s) is infinitely differentiable, and one has put derivatives onto
the Gaussian convolution kernel:

∂

∂xk
(Gs ∗ f) =

(
∂

∂xk
Gs

)
∗ f

We will denote the Gaussian gradient is denoted by

∇sf := ∇Gs ∗ f. (12)

Gaussian partial derivatives w.t.r. Euclidean coordinates (x1, . . . , xd) in Rd at scale s > 0 will be denoted
briefly by ∂sxi where ∂sxif = ∂

∂xiGs ∗ f .

One of the key-advantages of Gaussian derivatives over normal derivatives is that they are continuous
operators on L2(Rd). Recall a standard result from functional analysis:

Lemma 1 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be a normed spaces. Let A : X → Y be linear. Then A is continuous

if and only if it is bounded (i.e. ‖A‖ = sup
f∈X,f 6=0

‖Af‖Y
‖f‖X <∞).

Exercise 5 Prove the above lemma.

Exercise 6 Let S be the Schwartz space of infinitely differentiable, rapidly decaying functions on R, i.e.

S = {f ∈ C∞(R) | ∀N∈N sup
|α|≤N

sup
x∈R

(1 + |x|2)N |(Dαf)(x)| <∞}

with Dα =
(
d
dx

)α
. We equip S with the L2(R)-norm. You may use that Fourier transform F

– is a unitary operator from L2(R)→ L2(R)
– maps S into S,
– satisfies FR(f ∗ g) =

√
2πFRf · FRg, where ∗ represents convolution.

a.) Let α = 1. Show that the mapping S 3 f 7→ Df ∈ S is unbounded on S,

(hint: x 7→ e−nx
2

∈ S for all n ∈ N.)

b.) Let s > 0, α ∈ N. Let Gs(x) denote the 1D Gaussian kernel (1) for d = 1 whose Fourier transform is
given by (8). Show that the operator Dα,s : L2(R)→ L2(R) given by

Dα,s(f) := (DαGs) ∗ f, f ∈ L2(R), (13)

is a bounded linear operator.
(hint: First show that D1,s is bounded and then the other cases α > 1 follow by Dα,s = (D1, s

α )α)

c.) Compute the operator norm of D1,s, i.e. compute

‖D1,s‖ = sup
f∈S,f 6=0

‖D1,sf‖L2(R)

‖f‖L2(R)

and prove your result.
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3 A General Scale Selection Principle

A well-established scale selection (i.e. selection of s > 0) by Tony Lindeberg [15] is to first express detectors
in dimensionless coordinates Xs = x/

√
s and Ys = y/

√
s and then optimize over scale s afterwards.

For example, the Gaussian Laplacian

∆sf := (∂
s
2
x )2f + (∂

s
2
y )2f = (∆Gs) ∗ f (14)

is a common “blob-detector”. Blobs in images f can be detected by a scale derivative in their scale space
representation u(x, s) via the Laplacian since ∆u(x, s) = ∂

∂su(x, s) = (∆Gs∗f)(x). Set F (Xs, Ys) = f(x, y)

for Xs = x/
√
s and Ys = y/

√
s. Then the scale selection procedure gives for (x, y) ∈ R2 fixed:

∂

∂s
(∆Xs,Ys f̃)(Xs, Ys) = 0⇔ ∂

∂s
(s∆s(x,y)f(x, y)) = 0 which gives s = sselect(x, y),

provided that the stationary point is a strict maximum, i.e. provided that ∂2

∂s2 (s∆sf(x, y)) < 0.
The next exercise shows an analytical example for the special case where the initial image is given by

f(x, y) = Gs0(x, y). It supports the simple, very general and widely applicable scale selection principle.

Exercise 7 Consider (analytic) 2D image that equals a Gaussian kernel with scale s0 > 0 centered around
the origin (x, y) = (0, 0) given by f(x, y) = Gs0(x, y), given by (1) for d = 2.

a.) Show that Gs1 ∗Gs2 = Gs1+s2 for all s1, s2 > 0.
b.) Compute

∂

∂s
(s∆x,yGs+s0(x0, y0)) ,

with the Laplacian ∆x,y =
(
∂
∂x

)2
+
(
∂
∂y

)2
expressed in the regular Euclidean coordinates (x, y) with

physical dimension: Length.
c.) Apply the scale selection procedure at position (x0, y0) ∈ R2 and observe that at (x0, y0) = (0, 0) one

has that the optimal scale s > 0 is indeed equal to s = s0.

In general the choice of scale s = 1
2σ

2 is done in such a way that σ > 0 is chosen such that width of
structures present in the images matches the width of the corresponding Gaussian derivatives.

Once a scale s = s(x0, y0) > 0 is selected for a position of interest (x0, y0) in the image, the corre-
sponding outcome value of the optimization gives a significance for the feature of interest. For example,
for edges one applies the scale selection procedure on the Gaussian gradient, and the resulting value
max
s>0

√
s‖∇sf(x0, y0)‖ gives an edge significance, see Figure 3.

4 Separability

A practical (though coordinate-dependent) property of a Gaussian kernel is its separability in Euclidean
coordinates:

G2D
s (x, y) = G1D

s (x) G1D
s (y),

where we label the Gaussians by ‘dD’ to stress that they are defined on Rd. It allows one to efficiently
compute a Gaussian derivative of order n1 at scale s1 in x-direction and a Gaussian derivative of order n2

by scale s2 in y-direction by two subsequent 1D convolutions instead of a 2D convolution:

(D
(n1,n2)
(s1,s2)

f)(x, y) = (D(n1,n2)G2D
(s1,s2)

∗ f)(x, y) =

=
∫
R

(∫
R
G

(n1)
s1 (x− x̃) f(x̃, ỹ) dx̃

)
G

(n2)
s2 (y − ỹ) dỹ,

(15)

where D(n1,n2) = (∂x)n1(∂y)n2 . The next exercise shows that this separability property is rather special.
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Fig. 3 Figure from an early paper [18] by Tony Lindeberg on the scale selection procedure he proposed. He showed how
the scale selection procedure for Gaussian derivatives can be used to extract the relevant edges in images. Left: original
image. Middle: all edges in scale space (obtained via a zero-crossings algorithm [18]). Right: the 100 most significant scale
space edges according to a significance measure that integrates max

s>0

√
s‖∇sf(·)‖ along each of the edge lines.

Exercise 8

a.) Show that a differentiable function f : R2 → R is isotropic if and only if

((x∂y − y∂x)f)(x, y) = 0 for all (x, y) ∈ R2.

hint: switch to polar coordinates.
b.) Show that a differentiable function G : R2 → R which is both isotropic and separable with

G(x, y) = G(x,0)G(0,y)
G(0,0) must be a scalar multiple of a Gaussian kernel.

Remark 2 In practice (15) is computed via a Riemann sum approximation with equidistant sampling on
the rectangular spatial image domain. When s1 = 1

2σ
2
1 , s2 = 1

2σ
2
2 > 0 are large (i.e. σi is more than a few

pixel sizes and proportional to a quarter of the image dimensions) then one may use (7) and sample in the
Fourier domain and apply an inverse Discrete Fourier Transform instead.

5 Local Analysis and Expansions: Gaussian Derivatives, Hermite Functions and B-splines

The Gaussian Derivatives are listed for several orders in Figure 4. There we observe that an n-th order
derivative of a Gaussian yields n zero crossings, this is due to the scaled n-th order Hermite polynomial
that appears in the derivatives as can be seen in the next exercise. The Hermite polynomial of order
n ∈ N ∪ {0} is given by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

= Hn(x) = n!

bn
2
c∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
.

The Hermite polynomials {Hn}∞n=0 are orthogonal w.r.t. a Gaussian weightfunction e−x
2

and the Hermite

basis

{
x 7→ ηn(x) := 1√√

π2nn!
Hn(x)e−

x2

2

}∞
n=0

is a complete orthonormal basis for L2(R). However, one

must be aware that the Gaussian derivatives given by {G(n)
s (x) := dn

dxnGs(x)} are not orthogonal w.r.t.
the L2(R)-norm. In fact their correlation equals:

rnm :=

∫
R
G

(n)
s (x)G

(m)
s (x)dx√∫

R
|G(n)
s (x)|2dx

√∫
R
|G(m)
s (x)|2dx

=


0 if n−m odd

(−1)
n−m

2 Γ(m+n+1
2 )√

Γ( 2n+1
2 )Γ( 2m+1

2 )
if n−m even

(16)
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Fig. 4 Equidistantly sampled Gaussian derivatives ∂i

∂xi
∂j

∂yj
g(x, y) = Gs(x, y) w.r.t. Cartesian coordinates (x, y) for scale

s = 1
2
σ2 with σ ≈ 3 pixels and with differential orders up to 0 ≤ i+ j ≤ 3.

with n ≥ m, and with Γ (z) the well-known Gamma-function. This makes the Gaussian derivatives (in
contrast to the Hermite functions) unsuited for expansions up to high order derivatives. See also Fig. 5.

Exercise 9 Let us consider the 2D Gaussian given by (1) for d = 2.

a.) Show that
H ′n(x) = −Hn+1(x) + 2xHn(x), for all n ∈ N, x ∈ R.

b.) Show that the Gaussian derivatives are given by

∂n

∂xn
∂m

∂ym
Gs(x, y) = (−1)n+m(

√
4s)−n−mHn

(
x√
4s

)
Hm

(
y√
4s

)
Gs(x, y),

for all s > 0 and all n,m = 0, 1, 2 . . . .

hint: first show the identity for s = 1
4 via an induction proof w.r.t. n,m, and then show the general

case s > 0 by a scaling argument.
c.) The Hermite functions form an orthonormal basis for L2(R) and thereby one has for all f ∈ L2(R2):

f =
∞∑
n=0

(ηn, f)L2(R) ηn. (17)

What changes to such an expansion when using the basis of Gaussian derivatives?
hint: ‘reciprocal basis’.

By definition a reciprocal basis5 (φi)Ni=1 of a (linearly independent, and not necessarily orthogonal) ba-
sis (φi)

N
i=1 for an N dimensional inner product space with inner product (·, ·) is given by (φi, φj) = δij

where δij is the usual Kronecker delta..

d.) Motivate both from (16) and Fig. 5 that the computation of the reciprocal basis of the Gaussian
derivatives up to high order n,m ≤ N (with N � 0) is relatively ill-posed.

5 So by definition they are the Riesz representatives of the dual basis. The dual basis does not depend on the choice of
inner product, whereas the reciprocal basis does.
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Fig. 5 Top: The Gaussian derivatives up to order 11 for σ = 1. Bottom: The Hermite functions up to order 11.

Intermezzo: Practical Expansions in a Simple Localized Basis: B-splines

Even though the Hermite functions allow for Fourier series expansions (17), they are oscillatory and not
nicely localized which can lead to Gibbs oscilations when series are truncated (in a hard manner).

Furthermore, images are typically given on a discrete grid rather than that they are given as continuous
functions in L2(Rd) and numeric approximations of Fourier expansions (e.g. by sampling the series, and/or
by approximating the L2-inner products) typically produces a mismatch (approximation errors) between
continuous invertible transforms in theory and corresponding discrete transforms that can be inverted
exactly on the grid.

Therefore in image analysis one often relies on a compactly supported B-spline basis (or a wavelet basis)
to interpolate, represent and express images. Furthermore, it makes sense in a scale space representation
to use less and scaled basis-functions to represent u(·, s) as s > 0 increases.

Let Bn denote the nth order B-spline given by the continuous convolution:

Bn(x) = (Bn−1 ∗B0)(x), B0(x) =

{
1 if −1

2 < x < 1
2

0 otherwise
. (18)

This gives rise to a function Bn which is in Cn−1(R) and consists of a ‘piecewise gluing’ of polynomials of
degree n on intervals of length 1, and which is supported on [−(n+ 1)/2, (n+ 1)/2]. The B-spline has the
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Fig. 6 Visualization of the cubic B-spline basis for n = 3.

following important properties:∫
R
Bn(x)dx = 1,

∑
k∈Z

Bn(x− k) = 1,

n+1with derivative: B′ (x) = Bn
(
x+ 1

2

)
−Bn

(
x− 1

2

)
for n ≥ 1,

and 2-scale relation: Bn
(
x
2j

)
=
∑
k∈Z

2−n
(
n+1
k

)
Bn
(

x
2j−1 − k

)
.

(19)

Then we define the B-spline basis as:

Bnk,l(x, y) = Bn
(
x

sk
− k

)
Bn

(
y

sl
− l
)
, for all (x, y) ∈ R2, (20)

for k = 1, . . . Nk and l = 1, . . . Nl, where sk > 0 and sl > 0 scale the B-splines and typically depend on
the number Nk and Nl of B-spline basis functions. See Figure 6 for an illustration of the shifted B-spline
basis in 1 dimension. Now let us enter the real world where images are given on a finite discrete grid.
Let the discrete image be given on an equidistant grid where f(xij) denotes the greyvalue at grid point
xij = (i∆x, j∆y) where stepsizes are ∆x = 1

Nx
, ∆y = 1

Ny
and where i = 1, . . . , Nx ∈ N, j = 1, . . . Ny ∈ N.

Then, in the case of strict interpolation one would aim for coefficients αkl such that:

f(xij) =

Nk∑
k=1

Nl∑
l=1

αklBnk,l(xij), (21)

in which case
Nk∑
k=1

Nl∑
l=1

αklBnk,l(·) provides a continuous and n−1-times differentiable interpolation function.

We store the greyvalues f(xij) in a single vector f ∈ RNxNy , and similarly we store the coefficients αkl in
a vector α ∈ RNkNl . Then we rewrite the linear equation (21) into vector form

f = Bα ,

with B the NxNy ×NkNl matrix with entries Bnk,l(xij) yielding NkNl linearly independent columns, and

thereby (verify this) matrix BTB is invertible, Now typically, for a sparse basis representation we have

Nk < Nx and Nl < Ny, (22)

so the columns do not span the entire space RNxNy . Now from linear algebra, we know that this means
that the corresponding linear map is injective but not surjective, and the inverse of the matrix B does not
exist. Therefore, we must relax our too strict demand (21). That is we write

f int(x, y) =

Nk∑
k=1

Nl∑
l=1

αklBnk,l(x, y), (23)
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and aim for the optimal coefficients as a solution

αopt = (BTB)−1BT f ,

to a least-square problem, which is the unique solution of

αopt := arg min
α∈RNkNl

‖Bα− f‖2 = (BTB)−1BT f . (24)

Remark 3 There exist more efficient algorithms for (smoothed) B-spline interpolation via Z-transforms
and cardinal splines [19], but this is beyond the scope of this course.

Now let us return to the non-discrete function space setting, likewise the rest of this section. Let V
denote the NkNl-dimensional span of compactly supported B-spline basis functions:

V := span{Bnk,l | k = 1, . . . , Nk, l = 1, . . . , Nl} ⊂ L2(R2). (25)

We define the expansion operator E : RNkNl → V by

(E(α))(x, y) =

Nk∑
k=1

Nl∑
l=1

αklBnk,l(x, y).

Then αopt = E(αopt) is the minimizer of the corresponding problem in V ⊂ L2(R2):

αopt = arg min
α∈V

Nx∑
i=1

Ny∑
j=1

|α(xij)− f(xij)|2

where α ∈ V means that there exists α ∈ RNkNl that are coefficients relative to the B-spline basis (20)
such that α = E(α).

Exercise 10 Prove that Eq. (24) indeed holds.

It is also common to include a regularization prior using a matrix R ≥ 0 (that can be computed
analytically [20, App.A]) such that∫

R2

‖∇α(x)‖2dx = αTRα for all α = E(α) ∈ V.

Then we can study the problem of smoothed regression where one enforces regularity and L2-boundedness
on the interpolating function:

αopt = arg min
α∈V


Nx∑
i=1

Ny∑
j=1

|α(xij)− f(xij)|2 + λ

∫
R2

‖∇α(x)‖2 dx + µ

∫
R2

|α(x)|2 dx,

 ,

with a given λ > 0 which can be set manually or which can be adjusted automatically. Then in the finite
discrete setting this boils down to

αopt = arg min
α∈RNkNl

{
‖Bα− f‖2 + λ αTRα+ µαTα

}
= (BTB + λR+ µI)−1BT f . (26)

Exercise 11 Prove that the matrix BTB + λR is invertible for all λ ≥ 0 and that Eq. (26) indeed holds.

Exercise-Mathematica 1. Consider the notebook “ Lecture1 BsplineExpansion.nb” that can be down-
loaded from ( http://www.lieanalysis.nl/education/) and apply this B-spline expansion to a photograph of
your own
(NB. Use the “Import” and “Resize” command in Mathematica if needed, press F1 for help index) while
increasing λ > 0 and use it to interpolate a value at a point in between grid-points.
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Remark 4 (automatic adjustment of the pair (λ, µ) via GCV).
In many applications, like in template matching and object recognition [21], parameter λ > 0 is set
automatically by Generalized Cross Validation 6. This means that λ > 0 can be set such that the average
error that arises by leaving one of the data-constraints out is minimized. More formally, set influence matrix
A = A(λ, µ) = B(BTB+λR+µI)−1BT that describes the effect of data-vector f on the data-term of the
minimized cost, which is given by ‖f− f̂‖2 = ‖(I−A)f‖2 with data-vector estimator f̂(λ, µ) := Bαopt = Af .
Let N denote the total amount of data-points (e.g. above we have N = NxNy). Then minimization of

GCV (λ, µ) =
1

N

‖(I −A(λ, µ))f‖2

1−N−1trace(A(λ, µ))
≈ CV (λ, µ) =

1

N

N∑
k=1

|fk − f̂k(λ, µ)|2

|1−Akk(λ, µ)|2 , (27)

yields the optimal pair (λ, µ) ∈ R+ × R+.

Remark 5 To represent a fixed scale layer (i.e. u(·, s) = (Gs ∗ f)(·) with s > 0 fixed) in a scale space
representation (Fig. 1) one typically needs much less basis functions Nk and Nl as details are lost (as
extrema and saddles ‘eat each other’ at ‘top-points’, recall Fig. 1). Furthermore the 2-scaling relation in
(19) helps to build an efficient multi-scale representation in a pyramid. It can even be used for approximate
image reconstructions from the up to 2nd order differential structure at top-points in scale space. This is
beyond the scope of the course, but details can be found in [3, ch:4, ch:2].

6 The words “Cross Validation” in GVC refers to the leave one out principle: how well can the model correct for the
missing constraint. “General” refers to the rotation invariant estimator N−1trace(A) used in the approximation (27).



16 R. Duits, E.J. Bekkers

6 Differential Invariants and Nonlinear Geometric Filtering of Images

When applying a combination of Gaussian derivatives of an image f : R2 → R (possibly combined with
non-linear co-domain transformations) one can design all kinds of filtering operators f 7→ Φ(f). It is
important to check whether such an operator commutes with rotations and translations. I.e. applying
some rotation and translation to an input image should correspond to applying the same rotation and
translation to the output image. Now let us formalize this mathematically.

Let the rotation and translation operator be given by

(U(x0,θ)f)(x) = f(R−1
θ (x− x0)), x ∈ R2, (x0, θ) ∈ R2 × [0, 2π) (28)

with translation vector x0 ∈ R2 and counter-clockwise rotation7 Rθ ∈ SO(2) about angle θ, whose matrix
representation (w.r.t. standard basis) is given by

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
. (29)

Let Φ : L2(R2) → L2(R2) be an operator. Then such an operator commutes with roto-translations if and
only if

Φ ◦ Ug = Ug ◦ Φ ,

for all roto-translations g = (x0, θ) with translation vector x0 ∈ Rd and rotation angle θ ∈ [0, 2π).

Exercise-Mathematica 2. Consider the notebook “Lecture1 Gaugederivatives.nb” that can be downloaded
from ( http://www.lieanalysis.nl/education/).

Load a digital photograph of yourself into Mathematica and turn it into grayscale-valued function f :
R2 → R with compact support. (NB. Use the “Import” and “Resize” command in Mathematica if needed,
press F1 for help index)
Let Rθ denote the counter-clockwise rotation in the plane about angle θ given by (29).

a.) Apply the following operators Φf consisting of Gaussian derivatives acting on f :

Φ1f := ∂sxf,

Φ2f := ∂syf,

Φ3f := (∂sxf)2 + (∂syf)2 = (∂swf)2,

Φ4f :=

((
R π

2

∇sf
‖∇sf‖

)T
H(Gs ∗ f) R π

2

∇sf
‖∇sf‖

)
(∂swf)2,

where ∂sv and ∂sw is a locally adaptive frame8 (as visualized in the left of Fig. 7) with ∂sw along the
Gaussian gradient (at scale s > 0) and ∂sv orthogonal to it, such that

∂swf = ∇sf · ∇
sf

‖∇sf‖ = ‖∇sf‖ and ∂svf = ∇sf ·R π
2

∇sf
‖∇sf‖ ,

for various values of s = 1
2σ

2, e.g. σ = 1, 2, 5 pixel-widths.

b.) Repeat exercise 1a but then using a 90-degree rotated version of f as input.
c.) Which of the operators Φ1, Φ2, Φ3 commute with U(x,θ) for all x ∈ R2 and all θ ∈ [0, 2π)?

d.) Motivate your answers at 3c. with a proof or with a counter-example.

7 Remember: the Special Orthogonal group SO(d) on Rd is given by SO(d) = {R ∈ GL(Rd) | RT = R−1 and det(R) =
1} where GL(Rd) denotes the group of all invertible linear mappings from Rd onto Rd.

8 Such locally adaptive frames are also called “gauge frames” as they are locally gauged to the image. For further details
and explanations see www.vanosta.be/scalespace.htm#gauge
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In the next exercise we derive generators from the roto-translation operator acting on the space of
images. We also take the reverse route of deriving the roto-translation operators from the generators. It is
to be considered as a computational example prior to theory that will follow later in this course.

Exercise 12 (computations with the roto-translation operator acting on images)

a.) Show that the generator w.r.t. translations by x0 = (x0, y0) ∈ R2 equals

lim
t↓0

(U(tx0,ty0,0)f)(x, y)− f(x, y)

t
= −((x0 ∂x + y0 ∂y)f)(x, y)

for all differentiable f : R2 → R, with x = (x, y) ∈ R2.
b.) Show that for analytic functions f : R2 → R one has for all t ≥ 0 that

(U(t,0,0)f)(x, y) = f(x− t, y)

= (e−t (∂x)f)(x, y) :=
∞∑
k=0

(−t)k ((∂x)
k f)(x,y)

k!

c.) Show that the generator w.r.t. rotations equals

lim
t↓0

(U(0,0,t)f)(x, y)− f(x, y)

t
= ((y∂x − x∂y)f)(x, y)

for all differentiable f : R2 → R.
d.) Show that for analytic functions f : R2 → R one has for all t ≥ 0 that

(U(0,0,t)f)(x, y) = f(x cos t+ y sin t,−x sin t+ y cos t)

= (et (y∂x−x∂y)f)(x, y) :=
∞∑
k=0

tk ((y∂x−x∂y)k f)(x,y)
k! for all (x, y) ∈ R2.

hints: Either apply a Taylor series w.r.t. t and use the chain-law,
or rely on the general principle:

U(0,0,t)f =
(
U(0,0, t

n
)

)n
f =

(
I + t

n

(
lim
h↓0

(U(0,0,h)f−f
h

)
+O( 1

n2 )

)n
and lim

n→∞
(1 + x

n )n = ex.

e.) Show that when constraining operator U(x0,y0,θ0) to analytic functions f one may write

(U(x0,y0,θ)f)(x, y) = (e−(x0∂x+y0∂y) ◦ eθ(y∂x−x∂y)f)(x, y).

for all (x, y) ∈ R2 and all (x0, y0, θ0) ∈ R2 × [0, 2π).
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Fig. 7 Left: Locally adaptive frames (also known as gauge frames) in the image domain computed as the eigenvectors of
the Hessian matrix (31) of the image at each location x ∈ R2. The corresponding normalized eigenvectors v1(x) and v2(x)
are plotted in red and yellow. Right: Such gauge frames can be used for adaptive anisotropic diffusion [22] and geometric
reasoning [23]. In the right figure we visualized the eigensystem of the Hessian matrix by yellow ellipsoids whose principal
axes are given by v1(x) and v2(x) and whose anisotropy is determines by the eigenvalues λ1(x), λ2(x). At many locations
the locally adaptive frames in the image domain make sense. However, at complex structures (blobs/crossings) the gauge
frames are ill-defined causing fluctuations.

7 Locally Adaptive Frames in the Image Domain

7.1 Locally Adaptive Frames from Symmetric Matrix Fields

Recall from linear algebra that a symmetric linear operator A : V → V on a dimensional vector space
V with finite dimension n ∈ N admits a complete orthonormal basis α := {vi}ni=1 of eigenvectors with
corresponding eigenvalues {λi}ni=1, and w.r.t. this basis the corresponding matrix representation takes a
diagonal form Aα = S ◦Λ ◦ ST with S the matrix consisting of eigenvector columns S = (v1 | · · · | vn),
and diagonal matrix Λ = diag{λ1, . . . , λn}.

Similarly, one can compute for each fixed position x ∈ Rd in the domain of an image f : Rd → R a
symmetric matrix field that encodes geometric structure. Based on the local Taylor series expansion of the
Gaussian filtered image

(Gs ∗ f)(y) = (Gs ∗ f)(x) + (∇Gs ∗ f)(x) · (y − x) +
1

2
(y − x)T H(Gs ∗ f)(x) (y − x) +O( ‖x− y‖3 ).

Two typical examples for the choice of the symmetric matrix field arise. That is

– the structure matrix Ss,ρf(x) (encoding 1st order differential structure and edges).
– the Hessian matrix Hsf(x) (encoding 2nd order differential structure and lines).

See Figure 7. The structure matrix at x ∈ Rd is defined by

(Ss,ρ(f))(x) := (Gρ ∗ ∇sf (∇sf)T )(x), (30)

with s = 1
2σ

2
s , and ρ = 1

2σ
2
ρ the scale of regularization typically yielding a non-degenerate and positive

definite matrix. Here s > 0 is often referred to as an internal regularization parameter, whereas ρ > 0 is
referred to an external regularization parameter. Henceforth we use short notation Ss,ρ := Ss,ρ(f).

The Hessian matrix includes only one scale parameter and is defined by

(Hs(f))(x) =
[
∂xj∂xi(Gs ∗ f)(x)

]
. (31)

From now on we use short notation Hs := Hs(f).
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Such locally adaptive frames produce detectors commuting with roto-translation, for many examples
with nice practical illustrations see the highly recommended “Front End Vision” book by Bart ter Haar
Romeny [23].

In the subsequent subsections we will show that diagonalization of the structure matrix corresponds to
a notion of 1st order exponential curve fits, whereas diagonalization of the Hessian matrix corresponds to
a notion of 2nd order exponential curve fits in the Lie group (R2,+). At first sight, you may wonder about
the formalities and notation, but later it becomes relevant when generalizing the procedure to another
Lie group, namely the Lie group of roto-translations. For now let us introduce some preliminaries and
definitions on Lie groups in general, that we will need in the remaining sections of this course.

Intermezzo: Preliminaries on Lie Groups

Definition 1 (Lie Group) A Lie group G is a differentiable manifold equipped with a group product such
that the group operations are compatible with the differentiable structure on the manifold.

Example 1 The translation group (Rd,+) with group product

x1x2 := x1 + x2

for all x1,x2 ∈ Rd.

Example 2 The group of invertible matrices

GL(d,R) = {M ∈ Rd×d |M is invertible },

equipped with the usual (operator/matrix) product M1 ◦M2.
The special orthogonal matrix group

SO(d) = {R ∈ GL(d,R) | RT = R−1 and det(R) = 1}.

again with the usual (operator/matrix) product R1 ◦R2.

Example 3 Consider the Lie group of rotations and translations of vectors in Rd. The so-called “roto-
translation group”. Such roto-translations are done as follows

v 7→ R(v) + x for all v ∈ Rd,x ∈ Rd, R ∈ SO(d) (32)

Now if we concatenate two of such roto-translations it is again a roto-translation, where we recognize a
semi-direct group product: Indeed computation of

v 7→ R1(R2(v) + x2) + x1 = (R1R2)v + (x1 +R1x2),

reveals group product

(x1, R1)(x2, R2) = (x1 +R1x2, R1R2) (33)

on the manifold of roto-translations itself (rather than the space Rd on which it acts via (32)). It is semi-
direct as the rotation part affects the spatial part, and therefore we write G = SE(d) = Rd o SO(d)
instead9 of Rd × SO(d).

Definition 2 The unity element of the Lie group is the unique element e ∈ G such that the product eg
equals g for all g ∈ G.

Definition 3 The tangent space at the unity element Te(G) is the vector space of all tangent vectors of
curves passing through the unity element e of the Lie group.

9 On a direct product structure one would have (x1, R1)(x2, R2) = (x1 + x2, R1R2) on Rd × SO(d).
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Definition 4 (Exp Curves)
The exponential of X ∈ Te(G) is given by

γ(1) = exp(X) = etX
∣∣∣
t=1

,

where t 7→ γ(t) = exp(tX) is the unique one-parameter subgroup of G whose tangent vector at the identity
is equal to X, i.e. γ′(0) = X and γ(t+ s) = γ(t)γ(s) for all s, t ∈ R.

Definition 5 A Lie algebra g is a vector space over a field F equipped with a binary operation (the
so-called Lie-bracket) [·, ·] : g× g→ g such that

∀α,β∈F∀X,Y ∈g : [αX + βY, Z] = α[X,Z] + β[Y,Z]
∀α,β∈F∀X,Y ∈g : [Z,αX + βY ] = α[Z,X] + β[Z, Y ]
∀X∈g : [X,X] = 0,
∀X,Y,Z∈g : [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

Remark 6 A consequence is a fundamental property of the Lie bracket in general:

[X,Y ] = −[Y,X]

for all X,Y ∈ g, since by the first 3 requirements one has: 0 = [X + Y,X + Y ] = 0 + 0 + [X,Y ] + [Y,X].

Within this course we always consider the field F = R. We often consider a special case where the
vector space is the tangent space Te(G) at the unity element e of the Lie group G.

Lemma 2 The space Te(G) is a Lie algebra with Lie-bracket10

[A,B] = − d
dt

∣∣
t=0

(γ−B(
√
t) γ−A(

√
t) γB(

√
t) γA(

√
t)) ∈ Te(G),

= −1
2
d2

dt2

∣∣∣
t=0

(γ−B(t) γ−A(t) γB(t) γA(t)),
(34)

where t 7→ γX(t) = etX is a differentiable curve in G with γX(0) = e and (γX)′(0) = X for X = A,B.
In case G is a matrix group the elements in Te(G) are matrices and then one simply has

[A,B] = AB −BA

This result (which is to be remembered!) is a bit involved to verify and we refer to standard textbooks
[24] on Lie Algebras and Lie groups for the details.

Remark 7 Let G be a commutative Lie group (i.e. G is a Lie group such that g1 g2 = g2 g1 for all
g1, g2 ∈ G). Then for any pair A,B in the corresponding Lie algebra, A,B ∈ Te(G) one has [A,B] = 0.
Verify this!

Example 4 Let G be the rigid body motion group, G = SE(2) equipped with group group product (33).
When we identify SO(2) with [0, 2π) ≡ R/(2πZ) the group product may be written as

(x1, y1, θ1)(x2, y2, θ2) = (x1 + x2 cos θ1 − y2 sin θ1, y1 + x2 sin θ1 + y2 cos θ1, θ1 + θ2Mod2π).

Let A = (1, 0, 0) ≡ ∂x|e and B = (0, 0, 1) ≡ ∂θ|e with e = (0, 0, 0). Then

[A,B] = C := −(0, 1, 0) ≡ − ∂y|e (35)

Indeed in order to compute (34) (in particular the second expression), we first compute

γ−B(t) γ−A(t) γB(t) γA(t) = e−tB e−tA etB etA = (0, 0,−t) (−t, 0, 0) (0, 0, t) (t, 0, 0)

then we apply a Taylor series in t and collect the O(t2) term to get the result (35). Verify this!

10 The formulas in (34) only contains group products of matrix exponentials. If one considers concatenated flows oper-
ators of the type ΦAt (g) := g exp(tA), which is commonly done (for geometric interpretation), then the 2nd formula in

(34) becomes [A,B] = + 1
2

d2

dt2
ΦB−t ◦ ΦA−t ◦ ΦBt ◦ ΦAt (e)

∣∣∣
t=0

(so no minus sign then). Note that [A,B] = −[−B,−A] and

1
2

d2

dt2
ΦB−t ◦ ΦA−t ◦ ΦBt ◦ ΦAt (g)

∣∣∣
t=0

= 1
2

d2

dt2
g exp(tA) exp(tB) exp(−tA) exp(−tB)

∣∣∣
t=0

.
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Remark 8 In case G is a matrix group the elements A,B ∈ Te(G) are matrices and then one simply has

[A,B] = AB −BA

Remark 9 For matrix groups G the exponential map corresponds to the common matrix exponent map

exp(tA) = etA =
∞∑
k=0

tk Ak

k!
,

with satisfies exp((t+ s)A) = exp(tA)exp(sA). This holds for example for the the Lie group GL(3,R) and
in particular for the matrix subgroup SO(3) = {R ∈ GL(3,R) | RT = R−1 and det(R) = 1}, where

Te(SO(3)) = so(3) = {X ∈ R3×3 | XT = −X}. (36)

Exercise 13 (matrix group exponentials)

a.) Show that

(etX)−1 = e−tX

for all X ∈ R3×3 and all t ≥ 0.
b.) Show that

(etX)T = etX
T

for all X ∈ R3×3 and all t ≥ 0.
c.) Show that (36) holds.
d.) Let X ∈ R2×2 be given by

X =

(
0 −1
1 0

)
Compute etX . What does the operator x 7→ etXx do geometrically?

e.) Let X ∈ R3×3 be given by

X =

 0 −1 0
1 0 0
0 0 0


Compute etX . What does the operator x 7→ etXx do geometrically?

f.) Let X ∈ R3×3 be given by

X =

 0 0 0
1 0 0
0 0 0


Compute etX . What does the operator x 7→ etXx do geometrically?

Remark 10 The notion of exp curves in the Lie group Rd is very simple: it leads to straight-lines (verify
this!). Indeed we find for the Lie algebra basis given by Ai = ∂xi |0 that

expe=(0,0,0)

(
t
d∑
i=1

ciAi

)
= (0, 0, 0) + t (c1, c2, c3).

Due to the commutative structure of the Lie group (Rd,+) the concept of a straight curve coincides with
the concept of a shortest curve. This will no longer be the case for the Lie group SE(d) of roto-translations
on Rd as we will see in later sections of the course-notes.
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7.2 Exponential Curve Fits in Rd

In this section we reformulate the classical construction of a locally adaptive frame to image f at location
x ∈ Rd, in a group-theoretical way.

This reformulation seems technical at first sight, but it will help to understand the formulation of
exponential curve fits in the higher dimensional Lie group SE(d), that we will explain later on.

7.3 Exponential Curve Fits in Rd of the 1st Order

The structure matrix appears in solving the following optimization problem where for all x ∈ Rd we aim
to find optimal tangent vector

c∗(x) = arg min
c ∈ Rd,
‖c‖ = 1

∫
Rd
Gρ(x−x′)|∇sf(x′) · c|2dx′

= arg min
c ∈ Rd,
‖c‖ = 1

cT

(∫
Rd
Gρ(x−x′)(∇sf(x′))T∇sf(x′) dx′

)
c,

= arg min
c ∈ Rd,
‖c‖ = 1

cTSs,ρ(x)c.

(37)

In this optimization problem we find the tangent c∗(x) which minimizes a (Gaussian) weighted average
of the squared directional derivative |∇sf(x′) · c|2 in the neighborhood of x. The second identity in (37),
which directly follows from the definition of the structure matrix, allows us to solve optimization problem
(37) via the Euler-Lagrange equation11

∇c

(
cTSs,ρ(x)c

)
= λ∇c(‖c‖2 − 1)⇔ Ss,ρ(x) c = λc, (38)

where ∇c represents the gradient w.r.t. c ∈ Rd, and where the minimizer is found as the eigenvector
c = c∗(x) with the smallest eigenvalue λ = λ1(x) of the positive definite structure tensor Ss,ρ(x) at each
location x ∈ Rd in the image domain.

Now let us put Eq. (37) in group-theoretical form by reformulating it as an exponential curve fitting
problem. This is helpful in our subsequent generalizations to SE(d). On Rd exponential curves are straight
lines:

γcx(t) = x + expRd(tc) = x + tc, (39)

and on T (Rd) we impose the standard flat metric tensor G(c,d) =
∑d
i=1 c

idi. In (37) we replace the
directional derivative by a time derivative (at t = 0) when moving over an exponential curve:

c∗(x) = arg min
c∈Rd,‖c‖=1

∫
Rd
Gρ(x− x′)

∣∣ d
dt (Gs ∗ f)(γcx′,x(t))

∣∣
t=0

∣∣2 dx′, (40)

where

t 7→ γcx′,x(t) = γcx(t)− x + x′ = γcx′(t). (41)

Because in (37) we average over directional derivatives in the neighborhood of x we now average the
time derivatives over a family of neighboring exponential curves γcx′,x(t), which are defined to start at

neighboring positions x′ but having the same spatial velocity as γcx(t). In Rd the distinction between
γcx′,x(t) and γcx′(t) is not important but it is important in the SE(d)-case (which you can study in [25]).

Definition 6 Let c∗(x) ∈ Tx(Rd) be the minimizer in (40). We say γx(t) = x + expRd(tc∗(x)) is the
first-order exponential curve fit to image data f : Rd → R at location x.

11 Recall that in Euler-Lagrange equations the gradient of the functional to be minimized is linearly dependent on the
gradient of the functional describing the boundary condition.
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7.4 Exponential Curve Fits in Rd of the 2nd Order

For second-order exponential curve fits we need the Hessian matrix defined by

(Hs(f))(x) =
[
∂xj∂xi(Gs ∗ f)(x)

]
, (42)

with Gs the Gaussian kernel given in Eq. (1). From now on we use short notation Hs := Hs(f). When
using the Hessian matrix for curve fitting we aim to solve

c∗(x) = arg min
c ∈ Rd, ‖c‖ = 1

|cTHs(x)c|. (43)

In this optimization problem we find the tangent c∗(x) which minimizes the second-order directional
derivative of (Gaussian) regularized data Gs ∗ f . When all Hessian eigenvalues have the same sign we can
solve the optimization problem (43) via the Euler-Lagrange equation

Hs(x) c∗(x) = λ1c
∗(x), (44)

and its minimizer is found as the eigenvector c∗(x) with the smallest eigenvalue λ1.
Now, we can again put Eq. (43) in group-theoretical form by reformulating it as an exponential curve

fitting problem. This is helpful in our subsequent generalizations to SE(d). We again rely on exponential
curves as defined in (39). In (43) we replace the second order directional derivative by a second order time
derivative (at t = 0) when moving over an exponential curve:

c∗(x) = arg min
c∈Rd,‖c‖=1

∣∣∣ d2

dt2 (Gs ∗ f)(γcx(t))
∣∣∣
t=0

∣∣∣ . (45)

Remark 11 In general the eigenvalues of Hessian matrix Hs do not have the same sign. In this case we still
take c∗(g) as the eigenvector with smallest absolute eigenvalue (representing minimal absolute principal
curvature, as will see in Exercise 19) below, though this no longer solves (43).

Definition 7 Let c∗(x) ∈ Tx(Rd) be the minimizer in (45). We say γx(t) = x + expRd(tc∗(x)) is the
second-order exponential curve fit to image data f : Rd → R at location x.

Remark 12 In order to connect optimization problem (45) with the first order optimization (40) we note
that (45) can also be written as an optimization over a family of curves γcx′,x defined in (41):

c∗(x) = arg min
c ∈ Rd,
‖c‖ = 1

∣∣∣∣∣ ∫RdGs(x− x′) d2

dt2 (f)(γcx′,x(t))
∣∣∣
t=0

dx′,

∣∣∣∣∣ (46)

because of linearity of the second-order time derivative.

Exercise 14 (Exp curve fits of the second order)

a. Verify (44), and show that the solution of (43) is indeed given by the eigenvector of the Hessian with
the smallest eigenvalue.

b. Verify equality (46).
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Fig. 8 Transition maps ϕαβ = ϕβ ◦ ϕ−1
α

∣∣∣
ϕα(Uα∩Uβ)

between 2 charts in an atlas

Intermezzo: Tangent Vectors and Vector Fields (The Geometric and the Algebraic Viewpoint)

Let M be an n-dimensional smooth manifold with differentiable charts ϕα : Uα → Rn, with (Uα)α∈I some
overlapping open sets covering M for some index set I.

Let γ1, γ2 ∈ C1(R,M) be two differentiable curves on M , with γi(0) = p, i = 1, 2, then we define the
following equivalence relation

γ1 ∼ γ2 ⇔
d

dt
(ϕ ◦ γ1)

∣∣∣∣
t=0

=
d

dt
(ϕ ◦ γ2)

∣∣∣∣
t=0

(47)

for every chart ϕ = ϕα in the differentiable atlas (meaning that all transition maps, see Fig. 8, between
charts are differentiable).

The geometric viewpoint:

The geometric definition of a tangent vector γ′(0) is the equivalence class of differentiable curves in M
passing trough γ(0) = p such that (47) holds representing γ′(0) for all charts (in the atlas). It can be
shown12 that it can be identified with all corresponding tangent vectors in all charts. In a chart a tangent
vector can be represented as an element of Rn. This gives us, for a given chart say ϕ, the following
geometric description of the tangent vector:

Xp = γ′(0) :=
d

dt
(ϕ ◦ γ)

∣∣∣∣
t=0

= lim
h↓0

ϕ(γ(h))− ϕ(γ(0))

h
, (48)

for some curve γ from its equivalence class passing through γ(0) = p ∈ M , and where ϕ : Uα → Rn is
some chart s.t. p ∈ Uα.

Now as it is usually clear from the context which charts is used, and since one can always use transition
maps (cf. Fig.8) to switch in a differentiable manner from one chart to the other we very often omit the
charts ϕ in the notation of tangent vectors. Nevertheless, it is important to realize that (48) is actually a
chart dependent representation of the tangent vector.

12 see e.g. Wikipedia: (Tangent space - Definition via tangent curves). However, if one wants to insist in a chart-free
definition of a tangent vector, the upcoming algebraic definition of a tangent vector is preferable.
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Remark 13 Note that we cannot directly take difference quotients directly in the manifold M , as in many
manifolds (in contrast to Rn) we cannot add or subtract elements. For this we need charts as done in (48).

The space of all tangent vectors at point p ∈ M is a tangent space and it is commonly denoted by
Tp(M). The dual space is then given by T ∗p (M) = {p̂ : Tp(M)→ R | p̂ is continous and linear}. We denote
the tangent bundle by T (M) and write

T (M) = { (p, ṗ) | p ∈M, ṗ ∈ Tp(M) },

where we write ṗ := Xp to recall that the tangent vector is obtained by differentiating a(n equivalence
class) of curve(s). A vector field X on M is a section13 in the tangent bundle and it can be seen as a
mapping p 7→ Xp where Xp ∈ Tp(M) for all p. Typically we consider differentiable vector fields (resp.
smooth vector fields) where the mapping p 7→ Xp is differentiable (resp. smooth).

From the geometric viewpoint towards the algebraic viewpoint:

Now let γ ∈ C1(R,M) be a differentiable curve containing a point γ(t0) = p ∈M , then the tangent vector
γ̇(t0) at some t0 ∈ R gives rise to a differentiable operator

γ̇(t0)f :
def
=

d

dt
(f ◦ γ)(t0) = 〈df(γ(t0)), γ̇(t0)〉 = 〈df(p), ṗ〉 ∈ R (49)

that takes a directional derivative of a locally defines smooth function f : Ωp → R in the direction
ṗ = γ̇(t0) ∈ Tp(M). Here we stress that the first equality is the actual definition. Then regarding the
second identity in (49) we use the common bracket notation for point evaluation:

〈p̂, ṗ〉 = p̂(ṗ),

and is not to be mistaken for an inner product. So formally speaking df(γ(t0)) is an element from the dual
space T ∗p (M). The third equality in (49) just follows by time evaluation γ(t0) = p and γ̇(t0) = ṗ.

This identity, that is fundamental for tangent vectors, brings us to an alternative algebraic definition
of tangent vectors that we will explain right after the following exercise and remark.

Example 5 Take M = R2, t0 = 0 take γ(t) = (x, y) + t(cosx, y). Then

γ̇(0) = (cosx, y) as tangent to the curve γ,

which we can identify with

γ̇(0) = cosx
∂

∂x
+ y∂y as local differential operator .

Indeed a quick computation gives us

γ̇(0)f =
d

dt
f(x+ t cosx, y + ty)

∣∣∣∣
t=0

= cosx
∂f

∂x
(x, y) + y

∂f

∂y
(x, y)

for all locally defined, real-valued and smooth functions f .

Exercise 15 Consider the manifold M = Rn and denote its elements p = x = (x1, . . . , xn). Consider the
vector field x 7→ v(x) ∈ Tp(Rn) where v(x) = γ′(0) where γ is the smooth curve in Rn given by

γ(t) = x + t(v1(x), . . . , vn(x)).

with differentiable vi : C1(Rn,R) for i = 1, . . . , n.

a.) Give a general expression (in terms of components vi and partial derivatives ∂xi) for the differential
operator γ′(0) = v(x) at fixed location x ∈M , which arises by applying (49).

13 i.e. π ◦X = idM with π : T (M)→M the projection on the base manifold π(p, ṗ) = p.
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b.) Explain that there is an important difference between vector fields and vector functions on Rn.
In particular, explain the difference between vector function ṽ : Rn → Rn given by ṽ(x) = (v1(x), . . . , vn(x))
and the vector field v.

Remark 14 (Derivatives of real-valued functions on manifolds and Riemannian gradients)
Throughout this lecture notes we reserve the straight brackets 〈â, b〉 to indicate function evaluation â(b).
In some cases the manifold M is equipped with a so-called Riemannian metric tensor that assigns to each
p ∈M an inner product defined on Tp(M):

(ṗ1, ṗ2) 7→ Gp(ṗ1, ṗ2) with ṗ1, ṗ2 ∈ Tp(M).

This is a useful tool to define Riemannian distances on M :

dM (p, g) = inf
γ ∈ Lip((0, 1),M),
γ(0) = p, γ(1) = q

∫ 1

0

√
Gγ(t)(γ̇(t), γ̇(t)) dt

as we will see later (where
√
Gγ(t)(γ̇(t), γ̇(t)) = ‖γ̇(t)‖ the length of each velocity vector). In such a case

one may apply the Riesz representation theorem which uniquely relates the derivative at p ∈ M fixed (a
linear functional) ṗ 7→ 〈df(p), ṗ〉 to the gradient at p ∈ M fixed, by the well-known Riesz representation
theorem

〈df(p), ṗ〉 = Gp(∇f(p), ṗ). (50)

Now as the bilinear form Gp : Tp(M)× Tp(M)→ R can be identified with the linear map given by
Tp(M) 3 ṗ 7→ Gp(ṗ, ·) ∈ T ∗p (M) one commonly denotes

∇f(p) = G−1
p df(p) ∈ Tp(M).

However, we stress that (49) holds in the general setting of differentiable manifolds and does not need an
inner product structure nor does it need a gradient.

The algebraic viewpoint:

One can consider tangent vectors Xp as differential operators (or ‘derivations’) acting on locally defined
smooth real-valued functions f on the smooth manifold. In this algebraic setting a tangent vector Xp is
by definition a linear operator satisfying

Xp(fg) = f(p)Xp(g) + g(p)Xp(f),
Xp(αf + βg) = αXp(f) + βXp(g),

(51)

for all α, β ∈ R and for all f, g : Ωp → R locally defined real-valued smooth functions, defined on an open
set Ωp with (internal point) p ∈ Ωp.

Note that the 2 rules above imply that if a function f : M → R is locally constant (or ‘locally flat’)
then Xpf = 0 for every tangent vector Xp (verify this). Note that if f is locally flat then it does not
vary locally, and the derivative df(p) = 0. In view of (49) this is equivalent to stating Xpf = 0 for all
Xp ∈ Tp(M).

Now we are going to express everything in the coordinate system {xi}ni=1 associated to a local chart
(diffeomorphism) ϕ : Ωp → Rn around p, i.e. ϕ(p) = (x1(p), . . . , xn(p))T . Then we define

(∂xi)p : C1(Ωp)→ R by (∂xi)p f =
∂

∂xi
(f ◦ ϕ−1)

∣∣∣∣
ϕ(p)

.

Now the function

ψ(·) := f(·)−
n∑
i=1

(∂xi)p (f)xi(·)
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is locally flat at p, since by linearity and (51), one has

dψ(p) = 0 ⇔ df(p) = d

(
n∑
i=1

(∂xi)p (f) xi(·)
)

(p)

⇔ df(p) =
n∑
i=1

(∂xi)p (f) dxi(p),
(52)

where the final statement is the chain rule for differentiation of f on the manifold M . W.r.t. second
equivalence above we stress that for p fixed (∂xi)p (f) is a constant element in R. As a result (via (49)) for
every Xp tangent vector at p one has Xpψ = 0⇔

Xp(f) =
n∑
i=1

Xp(xi) (∂xi)p (f). (53)

So in other words the tangent space Tp(M) is an n dimensional vector space for which {(∂xi)p}
n
i=1 is a

basis, and the coefficients of a tangent vector Xp ∈ Tp(M) is found by applying the vector fields to each
of the coordinate functions.

Example 6 Consider the 2-sphere M = S2 = {n = (n1, n2, n3) ∈ R3 | ‖n‖ = 1}. Note that the 2-sphere
needs more14 than one chart for a complete atlas. Now let us take a point on the sphere p = n 6= (0, 0,±1).
Introduce the local Euler angle charts ϕ(n) = (β(n), γ(n))T where

x1(p) = β(n) = arccos(n3) ∈ (0, π2 ),
x2(p) = γ(n) = arg(n1 + i n2) ∈ [0, 2π),

so that we have a local parametrization around p:

p = n = n(β, γ) = ϕ−1(β, γ) = (cos γ sinβ , sin γ sinβ , cosβ)T .

Let us consider the vector field on S2 \ {0, 0,±1}:

X = n1∂n2 − n2∂n1

i.e. the field that maps p = (n1, n2, n3) onto Xp = n1(p) ∂n2 |p − n
2(p) ∂n1 |p ∈ Tp(S2). Then we see that

Xp(x1) = 0 and Xp(x2) = 1 and by (53) it follows that

Xp = 0 · (∂β)p + 1 · (∂γ)p for all p ∈ S2 \ {0, 0,±1} and X = ∂γ .

From the algebraic viewpoint towards the geometric viewpoint:

When a smooth vector field p 7→ Xp is given one can obtain integral curves γ(t) passing through p ∈ M
via {

γ̇(t) = Xγ(t), t ∈ I ⊂ R
γ(0) = p.

(54)

where I is some open interval containing 0. In fact the above system boils down to integrating an ODE
on Rn. To this end we recall the notation for a chart ϕ(p) = (x1(p), . . . , xn(p)) ∈ Rn for a locally defined
diffeomorphism ϕ. Indeed if we apply both the left-hand side and right-hand side of the ODE in (54) to
each of the coordinate functions we get an ODE on Rn :{

γ̇(t)(xi) = Xγ(t)(x
i) for all i = 1, . . . , n

xi(γ(0)) = xi(p) for all i = 1, . . . , n
⇔
{

d
dt (x

i ◦ γ)(t) = Xγ(t)(x
i) for all i = 1, . . . , n

xi(γ(0)) = xi(p) for all i = 1, . . . , n.

This ODE typically has a unique solution (recall from ODE-theory the mild conditions of Picard’s theorem
where the right-hand side is required to be Lipschitz continuous w.r.t. variable (ϕ ◦ γ)(·) : R→ Rn).

In the next exercise we start off by taking the algebraic view point and then we take a tour towards
the geometrical view point.

14 Due to Brouwer’s fixed point theorem (and Hairy Ball Theorem, cf. Wikipedia), every tangent field on the sphere S2

vanishes at some point on the sphere.
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Exercise 16 Consider the disk M = {x ∈ R2 | 0 < ‖x‖ < 2}. Consider the chart p = ϕ−1(r, φ) =
(r cosφ, r sinφ), i.e. ϕ(x, y) = (

√
x2 + y2, arg(x + i y)).

a.) Express the vector field p 7→ Xp given by

X =
1√

x2 + y2
(x∂y − y∂x) + x∂x + y∂y

into the basis {∂r, ∂φ} := {p 7→ (∂r)p , p 7→ (∂φ)p}.
b.) Compute the flow-line through p0 := (1

2

√
2, 12
√

2).
In other words, find the curve γ(t) = (r(t) cosφ(t), r(t) sinφ(t)) ∈M such that{

γ̇(t) = Xγ(t), for t < tmax.
γ(0) = p0.

c.) Determine the maximum value of tmax > 0, such that γ(t) ∈ M for all t < tmax, and determine the
point γ(tmax) where the flow-line hits ∂M . What happens for t→ −∞?

Pushforward and Vector Fields

The geometric and algebraic viewpoint on tangent vectors is visually summarized in Fig. 9.
In this subsection we will explain a technique to ‘pushforward’ a tangent vector on a manifold M to a

tangent vector at a different point on another manifold M ′. In the particular case where this other manifold
is again the same manifold (i.e. M ′ = M), this ‘pushforward’ technique can even be used to generate an
entire vector field from a single tangent vector. The latter is particular useful in case the manifold M is a
Lie group G. In that case one can construct a basis for the Lie algebra L(G) of left-invariant vector fields
on G from a basis in the tangent space Te(G) at the unity element e of the group G.

Next we formalize these statements mathematically, where we consider both the geometric and the
algebraic viewpoint on tangent vectors. For a preview of what is coming see Fig. 9, Fig. 10 and Fig. 11.

Consider a differentiable, bijective mapping Φ : M → M ′. Note that M ′ = Φ(M). Then such a map-
ping can be used to transfer a differentiable curve γ on M passing through p to a differentiable curve γnew
on M ′ passing through Φ(p) in the following way:

γnew : R→M ′ given by γnew(t) := (Φ ◦ γ)(t) = Φ(γ(t)). (55)

It can also be used to transfer a smooth realvalued function f : Ωp → R locally defined on an open set Ωp
around p to a smooth realvalued function fnew : Φ(Ωp)→ R locally defined on an open set around Φ(p):

fnew : Φ(Ωp)→ R given by fnew = f ◦ Φ−1. (56)

Now (55) allows us to pushforward tangent vectors geometrically:

(Φ∗Xp) := γ′new(0) = (DΦ)(p) γ′(0) = DΦ(p)Xp. (57)

This defines pushforward operator

Φ∗ : Tp(M)→ TΦ(p)(Φ(M)).

that boils down to an application of the total derivative DΦ(p) as can be seen in (57).
Similarly (56) allows us to pushforward tangent vectors algebraically:

((Xnew)Φ(p))(g) = (Φ∗Xp)g = Xp(g ◦ Φ),

for all smooth locally defined smooth functions g : Φ(Ωp)→ R. Indeed if we set g = fnew then we see that
((Xnew)Φ(p))(fnew) = Xp(f) (verify this!).

See Fig. 10, where the concept of pushforward is visualized both geometrically (in green) and alge-
braically (in blue)
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Now let us consider the case where the manifold equals a Lie group M = G of dimension n, recall
Definition 1.

Then we consider the mapping
Lgh = gh

that applies a left-multiplication with a fixed element g ∈ G. Then for each g ∈ G fixed operator Lg : G→ G
is a differentiable bijection, and one has g = Lge. Thereby Φ∗ = (Lg)∗ maps any element A ∈ Te(G) to an
element (Lg)∗A ∈ Tg(G). Let us choose a basis for {Ai}ni=1 for Te(G) then we obtain the corresponding
vector fields

G 3 g 7→ Ai|g := (Lg)∗Ai = (Lg)∗ Ai|e ,

where we note that Ai = Ai|e for all i = 1, . . . , n. There is a fundamental property that make these vector
fields rather special and it is the main reason why we will use them frequently in the remainder of the
lecture notes.

Ai|gh = (Lg)∗ Ai|h ⇔ Ai|gh U = (Lg)∗ Ai|h U = Ai|h (U ◦ Lg) ∈ R (58)

for all h, g ∈ G and all U : G → R smooth. As such it gives (see the exercise below) an important local
moving frame of differential operators in the Lie group that commutes with left-actions (roto-translations
of functions on the group).

Now let U : G → R be globally defined on G and assume it is smooth, i.e. U ∈ C∞(G,R). Then we
define the smooth function AiU : G→ R by

AiU(g) = Ai|g (U) ∈ R. (59)

The linear operator that maps U → AiU is denoted by Ai, and it is a globally defined vector field. In the
next exercise you will show that it is a left-invariant vector field. This means that it satisfies (61).

The left-invariant vector fields again form a Lie algebra where the commutator is the usual Lie-bracket
of vector fields. It turns out that

[Ai,Aj ] = Ai ◦ Aj −Aj ◦ Ai =
n∑
k=1

ckijAk and [Ai, Aj ] =
n∑
k=1

ckijAk,

where ckij ∈ R are the so-called structure constants of the Lie algebra. In short (Lg)∗ : Th(G)→ Tgh(G) is
a Lie-algebra isomorphism for all h ∈ G. In particular for h = e. Left-invariant vector fields in the special
cases G = R2 and G = SE(2) (the group of roto-translations in the plane) are shown in Fig. 11.
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Exercise 17 (left-invariant vector fields: a frame of left-invariant derivative operators)

Define Lg : L2(G)→ L2(G) by LgU(h) = U(g−1h).

a.) Show that Lg ◦ Lh = Lgh for all g, h ∈ G.
b.) Show that LgU = U ◦ Lg−1 for all U ∈ L2(G) and all g ∈ G and L−1

g = Lg−1 for all g ∈ G.
c.) Show that Lg ◦ Lh = Lgh for all g, h ∈ G.
d.) Use Eq. (58) to show that

Ai|gh (LgU) = Ai|h U for all g, h ∈ G.

for all U ∈ C1(G,R) and all g ∈ G.
e.) Show that the left-invariant vector fields provide a moving frame of differential operators in the Lie

group that commutes with roto-translations acting from the left. I.e. show that:

[(Ai ◦ Lg)(U)](h) = [(Lg ◦ Ai)(U)](h), for all g, h ∈ G, and all U ∈ C∞(G,R). (60)

hint: Apply L−1
g from the left to the above equality.

f.) Recall (59). Verify that (60) can be rewritten as

Ai ◦ Lg = Lg ◦ Ai for all g ∈ G. (61)

Example 7 Let us consider an example to illustrate how the abstract notions above apply to a specific
case of interest, and to show the corresponding explicit computations. Consider to this end G = SE(2) =
R2 o SO(2) ≡ R2 o S1 with the group product given in (33) which under the identification SO(2) ≡ S1

becomes (verify this!)

(x, y, θ)(x′, y′, θ′) = (x+ x′ cos θ − y′ sin θ, y − x′ sin θ + y′ cos θ, θ + θ′Mod2π).

Then we compute for all g = (x, y, θ) and all U ∈ C1(SE(2),R):

(Lg)∗ ∂x|e=(0,0,0) U = ∂x|e=(0,0,0) (U ◦ Lg)

= lim
t↓0

U((x,y,θ)(t,0,0))−U(x,y,θ)
t

= lim
t↓0

U(x+t cos θ,y+t sin θ,θ,θ)−U(x,y,θ)
t

= cos θ ∂xU(x, y, θ) + sin θ ∂yU(x, y, θ),

so –on the level of vector fields– we have (Lg)∗∂x = cos θ ∂x + sin θ ∂y for all g = (x, y, θ) ∈ G = SE(2).

Exercise 18 Consider G = SE(2).

a.) Set A1 = cos θ∂x + sin θ∂y.
Verify the computation of the other left-invariant vector fields (depicted in Fig. 11))

A2|g U = ((Lg)∗ ∂y|e=(0,0,0) U) = − sin θ ∂xU(x, y, θ) + cos θ ∂yU(x, y, θ)

A3|g U = ((Lg)∗ ∂θ|e=(0,0,0) U) = (∂θU)(x, y, θ)

for all g = (x, y, θ) ∈ SE(2).
b.) Prove that every left-invariant vector field A on SE(2) is of the form

A = c1A1 + c2A2 + c3A3,

with c1, c2, c3 constant.
c.) Compute γ(t) = g exp

(
t
∑n
i=1 c

iAi
)

with Ai = Ai|e. Do this by computation of the characteristics of
the PDE

∂W

∂t
(g, t) =

3∑
i=1

ci Ai|gW (g, t), with g ∈ SE(2), t ∈ R.

d. Verify your result by c.) by computation of the corresponding matrix exponent.

hint: (x, y, θ)↔

 cos θ − sin θ x
sin θ cos θ y

0 0 1

.
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manifold

chart
curve

locally defined, real-valued
differentiable function

tangent vector

locally defined, real-valued
differentiable function

curve

Geometric viewpoint: Algebraic viewpoint:

Fig. 9 Illustration of the geometric viewpoint (in green) and the algebraic viewpoint on a tangent vector on a manifold.

Push forward of tangent vector

locally defined, real-valued
differentiable function

curve

locally defined, real-valued
differentiable function

New curve

Geometric viewpoint: Algebraic viewpoint:

Fig. 10 Tangent vectors can be transferred via the pushforward operator.

Example: Push forward of left multiplication on Lie group

Fig. 11 Application of a pushforward operator in case the manifold M is a Lie group G of dimension n: The construction
of the Lie-algebra L(G) = span{Ai}ni=1 of left-invariant vector fields from elements of Te(G) = span{Ai = Ai|e}ni=1.

Illustrated for G = R2 and G = SE(2).

Exercise 19 (Differential Geometry on the Graph of an Image and the Hessian and Structure Tensor)

Let f : R2 → R be analytic. Consider the surface

Γf := {(x, y, f(x, y)) | (x, y) ∈ R2} ⊂ R3,
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which is the graph of function f . Define X : R2 → Γf by

X(x, y) = (x, y, f(x, y))T =: p ∈ Γf
Suppose x0 := (x0, y0) ∈ R2 is a point such that ∇f(x0, y0) = (0, 0)T . A second order Taylor expansion
gives

f(x) = f(x0) + 0 +
1

2
(x− x0)THf(x0)(x− x0) +O(‖x− x0‖3).

a.) What does the Hessian Hf(x0) tell us about the local shape of the isolines around x0?
b.) Show that x0 is a strict local minimum if Hf(x0).

Next we relate the structure tensor and Hessian of f to the 1st resp. 2nd fundamental form on surface Γf .

c1.) Compute the 1st fundamental form on the surface Γf :

Gp =
2∑

i,j=1

gij(p) dxi
∣∣∣
p
⊗ dxj

∣∣∣
p
.

with duals given by
〈dxi, ∂xj 〉 = δij

and with
gij(p) = ∂xiX(x, y) · ∂xjX(x, y), for all p = X(x, y) ∈ Γf .

c2.) What is the relation of this form to the structure matrix field p 7→ ∇f(p)(∇f(p))T or rather to the
structure tensor field p 7→ ∇f(p)⊗∇f(p) of f?

d1.) Compute the 2nd fundamental form on this surface Γf and the Christoffel symbols Γ ikj(p) given by

Hp =
2∑

i,j=1

hij(p) dxi
∣∣
p
⊗ dxj

∣∣
p
,

∂xi∂xjX(x, y) =
2∑
k=1

Γ kij(p) ∂xkX(x, y) + hij(X(x, y)) Np, for all p = X(x, y) ∈ Γf ,
(62)

with normal vector

N(X(x, y)) =
∂xX(x, y)× ∂yX(x, y)

‖∂xX(x, y)× ∂yX(x, y)‖ .

d2.) What is the relation of this form to the Hessian tensor field p 7→ HF (p)?

Let the C2 curve K ⊂ Γf be given by s 7→ x(s), with

ẋ(s) =
2∑
i=1

ẋi(s) ∂xiX|x(s) ,

where s is assumed to be spatial arc-length parameter (i.e. ‖ẋ(s)‖ = 1), for some continuously differentiable
functions ẋi(·).

e1.) Show that the geodesic curvature (by definition obtained by projecting the curvature vector Ẍ(s)
orthogonally to tangent space TX(x(s))(Γf )) equals

‖PTp(Γf )Ẍ(s)‖ =

√√√√√ 2∑
i,j=1

gij(p)

ẍi(s) +

2∑
l,k=1

Γ ilk(p) ẋl(s)ẋk(s)

(ẍj(s) +

2∑
p,q=1

Γ jpq(p) ẋp(s)ẋq(s)

)
(63)

with p = X(x(s)) ∈ K.
e2.) Provide the equations for the geodesics on Γf .

f.) Show that the principal curvature (by definition obtained by projecting the curvature vector Ẍ(s) to
the span of NX(x(s))):

‖P〈Np〉Ẍ(s)‖ =

∣∣∣∣∣∣
2∑

j,k=1

ẋj(s)ẋk(s)hjk(p)

∣∣∣∣∣∣ with p = X(x(s)) ∈ K. (64)

g.) Use your results of items f. and d. to obtain a geometric interpretation of the eigensystem of the Hessian
Hf(x, y).
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8 Diffusion Algorithms on Images

8.1 Linear Diffusion Algorithms

The linear diffusion equation (3) can be numerically solved by convolution. Such a convolution can be either
implemented in the spatial domain via direct (equidistant) sampling of a Riemann sum approximation of
the convolution integral, or by a sampling in the Discrete Fourier Transform (DFT) domain (where again
finite periodic convolutions related to a direct product in the DFT domain). For s > 0 small, the spatial
Gaussian kernel is relatively narrow and if it is truncated close to the center, truncation errors are small.
For s > 0 large, the Fourier transform of the Gaussian kernel is relatively narrow and if it is truncated
close to the center, truncation errors are small. So for small scales s > 0 one applies a spatial convolution
implementation and for large s > 0 one applies a discrete Fourier implementation (where one can take
advantage of the fast Fourier transform FFT).

Unfortunately, such convolution-based implementations, lack the possibility to transparently include
geometric data-adaptation via a nonlinear diffusion where one steers the translation-invariant vector fields
with constant coefficients towards the position-dependent gauge-frames (or locally adaptive frames):

shift-invariant frame → locally adaptive frame

{∂x1 , · · · , ∂xd} →
{
B1(x) :=

d∑
i=1

ci1(x) ∂xi , · · · , Bd(x) :=
d∑
i=1

cid(x) ∂xi

}
.

(65)

with cj(x) = (c1j (x), . . . , cdj (x))T the normalized15 eigenvectors of the structure tensor of the image or
the Hessian of the image, with indexing ordered by magnitude of the eigenvalues with c1(x) = c∗(x) and
minimal absolute eigenvalue |λ1(x)| = min

i∈{1,...,d}
|λi(x)|. Recall from Section 7.2 that this relates to the

exponential curve fit

t 7→ x + t c∗(x)

to the image data Γf := {(x, f(x)) x ∈ supp(f)} at location x ∈ Rd.
Therefore, in order to include locally adapative frames (65) in our diffusions, we resort to basic finite

difference implementations that we will explain next.

Finite Difference Schemes for Linear Diffusions

As a popular and basic example we consider the explicit scheme with a central difference approximation
of the Laplacian which boils down do discrete convolutions with stencil [1,−2, 1]:

un+1
i,j − u

n
i,j = ∆s

|∆x|2 (1uni−1,j − 2uni,j + 1uni+1,j) + ∆s
|∆y|2 (1uni,j−1 − 2uni,j + 1uni,j+1),

u0i,j = fi,j .
(66)

For n = 0, 1 . . . and i ∈ {1, . . . , Nx}, j ∈ {1, . . . , Ny}.
Another popular and basic example is the corresponding implicit scheme given by

un+1
i,j − u

n
i,j = ∆s

|∆x|2 (1un+1
i−1,j − 2un+1

i,j + 1un+1
i+1,j) + ∆s

|∆y|2 (1un+1
i,j−1 − 2un+1

i,j + 1un+1
i,j+1),

u0i,j = fi,j .
(67)

In both cases we have uni,j ≈ u(i∆x, j∆y, n∆s), with u the solution to diffusion system (3) in the continuous
setting. For simplicity, we assume ∆y = ∆x in the remainder of this section.

When storing the components in one vector un := (uni,j)
Nx,Ny
i,j=1 and when storing the convolutions with

stencil [1,−2, 1] (where one may choose to work with zero padding outside the discrete domain, or to include
periodic, Dirichlet or Neumann boundary conditions) as linear matrix operator ∆D ∈ RNxNy×NxNy , we
may rewrite the explicit scheme (66) as

un+1 = (1 +∆s∆D) un = (e∆s∆D +O((∆s/∆x)2) ) un,

15 Normalization means here that ‖cj(x)‖ =

√
d∑
k=1
|ckj (x)|2 = 1 for all j = 1, . . . , d.
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and the implicit scheme (67) as

un+1 = (1−∆s∆D)−1 un = (e∆s∆D +O((∆s/∆x)2) ) un,

where in the case of the implicit scheme sparse matrix inversion can be done (numerically). It reveals that
the implicit scheme actually implements a small step resolvent operator and it is therefore unconditionally
stable. This is in contrast to the explicit scheme where a sufficient condition for stability (regardless the
initial condition fi,j) is

∆s

(∆x)2
≤ 1

4
. (68)

Exercise 20 Apply the well-known Gershgorin circle theorem to the matrix (1 + ∆s∆D) to derive the
stability bound (68) for the explicit scheme.

As a result, the advantage of using an implicit scheme is that one can take larger stepsizes to gain speed
(while losing accuracy). The advantage of using an explicit scheme is that no (numerical) matrix-inversion
is required which makes the method simple with good accuracy for small step sizes.

In comparison to the true heat equation the errors of both schemes are O(∆s)+O((∆x)2) which follows
by basic Taylor expansion around the grid-points. As a result the schemes only have a first order accuracy
in time. Of course, one can extend such discretization schemes to higher order schemes. When schemes have
a higher order in the spatial direction, this typically comes with the price of larger discrete convolution
stencils and a possible loss of rotation-covariance. Therefore it is popular to stick to the central differences
in space (for second order accuracy in space). A popular scheme that is both second order in space and in
scale is the Crank-Nicolson method:

un+1 =

(
I − ∆D∆s

2

)−1 (
I +

∆D∆s

2

)
un.

Exercise 21 Explain why the Crank-Nicolson method creates only second order errors in time, whereas
the Euler forward explicit and implicit methods give first order errors in time.
hint: Compute the Taylor series of ex, 1 + x, (1− x)−1 and

(
1− x

2

)−1 (
1 + x

2

)
around x = 0 up to order 3.

In the next two paragraphs we address two standard versions of nonlinear diffusions:

– nonlinear diffusions with adaptive scalar diffusivity, where the scalar diffusivity of 1 in between ∆ =
div◦1◦grad is replaced by a scalar field that strongly dampens diffusion across edges. It only accounts
for the strength of edges, not their directions.

– nonlinear diffusions with adaptive tensorial diffusivity, where the scalar diffusivity of 1 in between
∆ = div ◦ 1 ◦ grad is replaced by a symmetric field that steers the diffusion in the directions of the
locally adaptive frame of vector fields (65). This allows us to integrate both the strength and direction
of
1. edges (in case the structure tensor of the image is used for exp curve fits of order 1).
2. lines (in case the Hessian of the image is used for exp curve fits of order 2).

In Figure 12 (top-row) we observe the difference between a linear diffusion, an non-linear diffusion (with
locally isotropic scalar diffusivity) and an nonlinear diffusion with a tensorial adaptive diffusivity, for a fixed
large diffusion time. In Figure 12 (top-row) we observe the output of an anisotropic, tensorial, nonlinear
diffusion (CED [22]) for several scales/diffusion times. The method works well on van Gogh paintings as
there are very few crossings structures/lines in such paintings.

8.2 Nonlinear Diffusion with Adaptive Scalar Diffusivity

A first step to include a data-driven nonlinearity is to include a scalar diffusivity. The basic idea (by
Perona & Malik [26]) was to stop the diffusion at edge locations which are typically locations where the
(Gaussian)-gradient is high. This means that one obtains the diffusion PDE: ∂u

∂s (x, s) =

(
div ◦ e−

‖∇tf(x)‖2

c2 ◦ ∇u
)

(x, s), for all x ∈ R2, s > 0,

u(x, 0) = f(x) for all x ∈ R2,
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Fig. 12 Top row: from left to right, 1. input RGB-colour image f : Ω → R3, 2. output of linear diffusion, 3. output of
nonlinear diffusion with scalar diffusivity [26], 4. output of anisotropic nonlinear diffusion (CED: Coherence Enhancing
Diffusion [22]). Diffusions are applied to each of the RGB channels, and a stopping time (scale) of diffusion was set to
s = 4 in all cases. Bottom row: from left to right, 1. input image, 2.-4. output CED diffused image at times, s = 1 s = 3
and s = 4. CED performs well on these images since they contain very little crossings. See also Fig. 13.

where we use the Gaussian gradient ∇tf = ∇Gt ∗ f of the initial condition f as our diffusivity multiplier

operator with multiplier e−
‖∇tf‖2

c2 must be differentiable. Here one typically chooses t > 0 such that the
standard deviation σ =

√
2t is in the order of 1 or 2 pixel-sizes, to avoid edge dislocations over scale.

Note also that in the PDE system we identified the diffusivity multiplier by the corresponding multiplier
operator which explains the two composition maps ◦ in the PDE. We do this in view of generalizations
where we replace the scalar diffusivity multiplier with a diffusion-matrix operator as we will explain soon
in Subsection 8.3.

This can be implemented via finite differences using zero-padding. Here within the finite schemes (66)
and (67) one must now take care of appropriate sampling of the diffusivity. We set the short notation

d(x, y) := e−
‖∇tf(x,y)‖2

c2 and h = ∆x, and approximate the scalar diffusivity in say x-direction16 as follows

∂x (d(x, y)∂xu(x, y, s))
CD. h

2≈ d(x+ h
2
,y) ∂xu(x+

h
2
,y,s)−d(x− h

2
,y) ∂xu(x− h

2
,y,s)

h

CD&CD. h
2≈ d(x+ h

2 , y)
(
u(x+h,y,s)−u(x,y,s)

h2

)
− d(x− h

2 , y)
(
u(x,y,s)−u(x−h,y,s)

h2

)
lin.int.d
≈ d(x,y)+d(x+h,y)

2

(
u(x+h,y,s)−u(x,y,s)

h2

)
− d(x−h,y)+d(x,y)

2

(
u(x,y,s)−u(x−h,y,s)

h2

)
=

d(x, y)
(
u(x+h,y,s)−2u(x,y,s)+u(x−h,y,s)

2h2

)
+ d(x+h, y)

(
u(x+h,y,s)−u(x,y,s)

2h2

)
+ d(x−h, y)

(
u(x−h,y,s)−u(x,y,s)

2h2

)
for each point (x, y, s) = (i∆x, j∆y, k∆s) on the grid. Note we applied central differences (CD) for the last
derivative, forward and backward differences for the first derivative, all at stepsize h/2 so that concatenation
stays on the grid, with relatively small stencils.

16 The same procedure is applied in y-direction.
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Remark 15 In the final step we applied a linear interpolation which decreases the accuracy order in spatial
direction from 2 to 1. One could instead use quadratic interpolation in between the 3 grid points d(x+h, y),
d(x− h, y) and d(x, y) to preserve second order accuracy in space, but this increases the stencil size for d
and leads to a less sharp diffusion-reduction across edges in practice.

Remark 16 Above we considered the unbounded case, where we assumed f has compact support on say
Ω = [0, 1]× [0, 1]. Alternatively, one can work on a bounded domain with Neumann boundary conditions:

∂u
∂s (x, s) =

(
div ◦ e−

‖∇tf(x)‖2

c2 ◦ ∇u
)

(x, s) for all x ∈ Ω, s ≥ 0,

∂u
∂n (x, s) = 0 for all x ∈ ∂Ω, s ≥ 0,

u(x, 0) = f(x) for all x ∈ Ω.

where the Neumann boundary condition can (with some book-keeping) be easily included in the finite
difference discretization matrix.

Remark 17 (the parameter c > 0).
Visually appealing results can be obtained, but the result is very sensitive to the parameter c > 0. An
automatic setting for parameter c > 0 that works reasonably well is to make a histogram of gradients and
to set c equal to the 50% quantile of all gradient norms {‖∇tf(x)‖ | x ∈ supp(f)} in the image.

Remark 18 (solution dependent diffusivity and the illposedness issues that come along).
It is also common in the applications to use the Gaussian gradient of the evolving solution instead of the
initial condition in the discretized PDE, i.e. to replace the scalar diffusivity

e−
‖∇tu(·,0)‖2

c2 = e−
‖∇tf‖2

c2 → e−
‖∇tu(·,s)‖2

c2 . (69)

In practice, in the finite difference scheme one can for example skip the updating of the diffusivity, and
apply it only in the beginning and then after each 10 iterations. The continuous setting of the Perona-Malik
PDE, which actually uses (69), is not well-posed. In regions where the norm of the gradient is smaller than
c, the equation is locally parabolic (and well-posed), but in regions where the norm of the gradient is larger
than c one observes an ill-posed backward diffusion effect! In general one has nonexistence of global-in-time
weak C1 solutions whose initial data have regions with slope larger than the parabolicity threshold. Even
for analytic initial data f such solutions break down in finite time/scale s. Nevertheless, by a rescaling
procedure (while relating c > 0 to the grid size ∆x) it is possible to obtain a continuum limit of the actual
Perona & Malik PDE discretization scheme. For details, see [27]. The ill-posedness (induced by the choice
(69)) is not just a problem in theory, in practice it can manifest itself by the so-called “staircasing effect”,
where staircases arise in linear slope profiles in the image. An adequate practical fix to this problem (via
regression filtering) is proposed in [28].

Remark 19 Instead of using a Gaussian function g 7→ e−(g/c)2 acting on the norm gradient g = ‖∇tf‖,
there are also other options like

g 7→

{
1

(q+( gc )
n
)
p if g ≥ 0

0 else

with n ∈ N, p > 0, c > 0 and q > 0. The case q = 1, n = 2 and p = 1 coincides with other type of
diffusivities proposed by [26]. The case q = 1, n = 2 and p = 1

2 coincides with diffusivity proposed by
Charbonnier et al.[29]. The case (q ↓ 0 and n = 1 and p = 1) coincides with total variation flow. In
particular the total variation flow [30] is of interest, and we shall address its convergence in Subsection 9.2.

8.3 Nonlinear Anisotropic Diffusion steered by Locally Adaptive Frames

Given the locally adaptive frame (65) we construct an anisotropic tensorial diffusivity:
∂u
∂s (x, s) = (div ◦Df ◦ ∇u) (x, s) for all x ∈ Ω, s ≥ 0,
∂u
∂n (x, s) = 0 for all x ∈ ∂Ω, s ≥ 0,

u(x, 0) = f(x) for all x ∈ Ω,
(70)
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where the diffusion matrix Df (x) ∈ Rd×d is symmetric and diagonal along the eigenvectors of the structure-
tensor or Hessian:

Df (x) =
d∑
k=1

λkNEW,f (x) ck(x)(ck(x))T as a matrix-representation w.r.t. standard basis of tensor

d∑
k=1

λkNEW,f (x) ck(x)⊗ ck(x),

and where λkNEW,f (x) are computed in a nonlinear way from the eigenvalues of the structure matrix
Ss,%f(x) or the Hessian Hsf(x) of image f , where one typically keeps the diffusion small along the
eigenvector with largest eigne value, and where one amplifies the anisotropy in the other directions, to
enhance coherent structures in the images. A popular choice is first proposed by J.Weickert in his coherence
enhancing diffusion scheme [22], with for d = 2:

λ1NEW (x) = α, λ2NEW (x) = α+ (1− α) e
− c2

λ1((x)−λ2(x))2 ,

with c > 0 an anisotropy parameter, that likewise in the previous section can be set automatically by
histogram techniques, and an 0 < α � 1 to preserve positivity. In terms of the locally adaptive vector
fields (‘gauge frames’) given by (65) this means that the diffusion generator is diagonal:

∂u
∂s (x, s) = Qu(x, s) for all x ∈ Ω, s ≥ 0, with generator Q =

d∑
k=1

Bk ◦ λkNEW,f ◦ Bk.
∂u
∂n (x, s) = 0 for all x ∈ ∂Ω, s ≥ 0,

u(x, 0) = f(x) for all x ∈ Ω.

(71)

Remark 20 From a numerical finite difference point of view, we observe two possibilities for the finite
difference implementations. Either one expresses the system in the fixed frame of reference (70) and then
applies finite differences along the grid. This is commonly done. Or one expresses the system in the moving
frame of reference (71) and applies finite differences with interpolation (e.g. B-spline interpolation (23)),

e.g. to approximate Biu(x, s) = lim
t→0

u(x+tci(x))−u(x)
t ≈ u(x+hci(x))−u(x)

h , with stepsize h > 0.

8.4 Limitations of assigning a Single Frame per Position: Problems at Crossings

The next Mathematica exercise shows the limitations of assigning a single frame {Bk(x)}dk=1 per position
x in the image domain Rd. In essence, the problem is that Gaussian gradients are computed over regions
with scale s = 1

2σ
2 > 0. If in such regions multiple edges or lines pass the direction of

– the Gaussian gradient of the image,
– the smallest eigenvector of the structure tensor of the image,
– the smallest eigenvector of the Hessian image,

is ill-defined and the gauge frame become more or less randomly oriented. This can also be seen in Fig. 7.
Consider for example the huge fluctuations of the ellipsoids at the nose-tip in that image This

We will tackle this in the next section of the lecture notes, where the notion of invertible orientation
scores allows us to assign per position a whole family of oriented frames. Moreover, such frames will live
in the joint space of positions and orientations and allow us to account for curvature and orientation
uncertainty of line detectors. The details on such locally adaptive frames in the joint space of positions
and orientations will follow in the final section of these lecture notes.

Exercise-Mathematica 3. Download the Mathematica notebook ”Lecture1 DiffusiononR2.nb” from
http://www.lieanalysis.nl.education/.

You can run the notebook by selecting the cells and pressing ‘shift’ and ‘enter’.
The images test images (‘fingerprints’ and ‘van Gogh paintings’) are special in the sense that there are very
few complex structures such as crossings, corners and bifurcations. Therefore the locally adaptive frames
and non-linear diffusions in the image domain work well.
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In order to see the limitations of assigning a single frame to a spatial position (in scale space) you can
download ”testimage-Diffusion.png” from http://www.lieanalysis.nl.education/ and run the experiments
on this testimage and observe the problems for large diffusion times yourself.
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Figure 15: Shows the typical different behavior of CED-OS compared to CED. In CED-OS crossing
structures are better preserved.
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Figure 16: Result of CED-OS and CED on microscopy images of bone tissue. Additional Gaussian
noise is added to verify the behaviour on noisy images.

Figure 15 shows the effect of CED-OS compared to CED on artificial images with crossing line
structures. The upper image shows an additive superimposition of two images with concentric
circles. Our method is able to preserve this structure, while CED can not. The same holds for
the lower image with crossing straight lines, where it should be noted that our method leads to
amplification of the crossings, which is because the lines in the original image are not superimposed
linearly. In this experiment, no deviation from horizontality was taken into account, and the
numerical scheme of Section 7.2 is used. The non-linear diffusion parameters for CED-OS are:
nθ = 32, ts = 12, ρs = 0, β = 0.058, and c = 0.08. The parameters that we used for CED are (see
[40]): σ = 1, ρ = 1, C = 1, and α = 0.001. The images have a size of 56× 56 pixels.

Figure 1 at the beginning of the paper shows the results on an image of collagen fibres obtained
using 2-photon microscopy. These kind of images are acquired in tissue engineering research, where
the goal is to create artificial heart valves. All parameters during these experiments were set the
same as the artificial images mentioned above except for CED parameter ρ = 6. The image size
is 160× 160 pixels.

Figures 16 and 17 show examples of the method on other microscopy data. The same param-
eters are used as above except for ts = 25 in Figure 17. Clearly, the curve enhancement and noise
suppression of the crossing curves is good in our method, while standard coherence enhancing
diffusion tends to destruct crossings and create artificial oriented structures.

Figure 18 demonstrates the advantage of including curvature. Again, the same parameters and

29

Original +Noise CED-OS t = 10 CED t = 10

Figure 15: Shows the typical different behavior of CED-OS compared to CED. In CED-OS crossing
structures are better preserved.

Original +Noise CED-OS t = 30 CED t = 30

Figure 16: Result of CED-OS and CED on microscopy images of bone tissue. Additional Gaussian
noise is added to verify the behaviour on noisy images.

Figure 15 shows the effect of CED-OS compared to CED on artificial images with crossing line
structures. The upper image shows an additive superimposition of two images with concentric
circles. Our method is able to preserve this structure, while CED can not. The same holds for
the lower image with crossing straight lines, where it should be noted that our method leads to
amplification of the crossings, which is because the lines in the original image are not superimposed
linearly. In this experiment, no deviation from horizontality was taken into account, and the
numerical scheme of Section 7.2 is used. The non-linear diffusion parameters for CED-OS are:
nθ = 32, ts = 12, ρs = 0, β = 0.058, and c = 0.08. The parameters that we used for CED are (see
[40]): σ = 1, ρ = 1, C = 1, and α = 0.001. The images have a size of 56× 56 pixels.

Figure 1 at the beginning of the paper shows the results on an image of collagen fibres obtained
using 2-photon microscopy. These kind of images are acquired in tissue engineering research, where
the goal is to create artificial heart valves. All parameters during these experiments were set the
same as the artificial images mentioned above except for CED parameter ρ = 6. The image size
is 160× 160 pixels.

Figures 16 and 17 show examples of the method on other microscopy data. The same param-
eters are used as above except for ts = 25 in Figure 17. Clearly, the curve enhancement and noise
suppression of the crossing curves is good in our method, while standard coherence enhancing
diffusion tends to destruct crossings and create artificial oriented structures.

Figure 18 demonstrates the advantage of including curvature. Again, the same parameters and

29

Original +Noise CED-OS t = 10 CED t = 10

Figure 15: Shows the typical different behavior of CED-OS compared to CED. In CED-OS crossing
structures are better preserved.

Original +Noise CED-OS t = 30 CED t = 30

Figure 16: Result of CED-OS and CED on microscopy images of bone tissue. Additional Gaussian
noise is added to verify the behaviour on noisy images.

Figure 15 shows the effect of CED-OS compared to CED on artificial images with crossing line
structures. The upper image shows an additive superimposition of two images with concentric
circles. Our method is able to preserve this structure, while CED can not. The same holds for
the lower image with crossing straight lines, where it should be noted that our method leads to
amplification of the crossings, which is because the lines in the original image are not superimposed
linearly. In this experiment, no deviation from horizontality was taken into account, and the
numerical scheme of Section 7.2 is used. The non-linear diffusion parameters for CED-OS are:
nθ = 32, ts = 12, ρs = 0, β = 0.058, and c = 0.08. The parameters that we used for CED are (see
[40]): σ = 1, ρ = 1, C = 1, and α = 0.001. The images have a size of 56× 56 pixels.

Figure 1 at the beginning of the paper shows the results on an image of collagen fibres obtained
using 2-photon microscopy. These kind of images are acquired in tissue engineering research, where
the goal is to create artificial heart valves. All parameters during these experiments were set the
same as the artificial images mentioned above except for CED parameter ρ = 6. The image size
is 160× 160 pixels.

Figures 16 and 17 show examples of the method on other microscopy data. The same param-
eters are used as above except for ts = 25 in Figure 17. Clearly, the curve enhancement and noise
suppression of the crossing curves is good in our method, while standard coherence enhancing
diffusion tends to destruct crossings and create artificial oriented structures.

Figure 18 demonstrates the advantage of including curvature. Again, the same parameters and

29

Original +Noise CED-OS t = 10 CED t = 10

Fig. 5. Shows the typical different behavior of CED-OS compared to CED. In CED-OS
crossing structures are better preserved.

Original CED-OS t = 2 CED-OS t = 30 CED t = 30

Fig. 6. Shows results on an image constructed from two rotated 2-photon images of
collagen tissue in the heart. At t = 2 we obtain a nice enhancement of the image.
Comparing with t = 30 a nonlinear scale-space behavior can be seen. For comparison,
the right column shows the behavior of CED.

9 Conclusions

In this paper we introduced nonlinear diffusion on the Euclidean motion group.
Starting from a 2D image, we constructed a three-dimensional orientation score
using rotated versions of a directional quadrature filter. We considered the ori-
entation score as a function on the Euclidean motion group and defined the
left-invariant diffusion equation. We showed how one can use normal Gaussian
derivatives to calculate regularized derivatives in the orientation score. The non-
linear diffusion is steered by estimates for oriented feature strength and curvature
that are obtained from Gaussian derivatives. Furthermore, we proposed to use
finite differences that approximate the left-invariance of the derivative operators.

The experiments show that we are indeed able to enhance elongated patterns
in images and that including curvature helps to enhance lines with large cur-
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Fig. 13 The problem of assigning a single frame per position in the vicinity of crossings, is clearly visible when applying
the nonlinear diffusions (CED: Coherence Enhancing Diffusions) in the middle column. In a later section of the lecture
notes, we will construct locally adaptive frames in orientation scores (multi-orientation representations of images) which
allows us to make crossing-preserving coherence-enhancing diffusions. Left : original image. Middle: result of CED [22],
see Eq. (70) and expressed in the locally adaptive frame in (71). Right: CED via invertible orientation score (CED-OS)
cf. [31], [32, part II]. CED-OS is capable of handling crossings and bifurcations, whereas CED produces spurious artifacts
at such junctions. For extensions of CEDOS to 3D images see [33], for extensions to multiple scales see [34].

9 Variational Techniques for Image-Denoising

9.1 A Variational Method Connected to Linear Scale Space Diffusion via Resolvent Operators: Tikhonov
regularization

Let us consider the following popular variational optimization for image denoising:

pα(f) := arg min
p∈L2(Rd)

Ef (p),

with Ef (p) :=
∫
Rd α|f(x)− p(x)|2 + ‖∇p(x)‖2 dx,

(72)

with α > 0 some a priori constant. Typically, the first term is referred to as the ‘data term’ as it includes
the input data f and the second term is referred to as the ‘smoothness prior’ as in the minimization it takes
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care of a smoothness assumption on the output. Parameter α > 0 below balances between data-fidelity
and smoothness of the minimizer pα(f).

This popular variational regularization method is a special case of ‘Tikhonov regularization’ (which in
its general form also allows for other operators in the ‘smoothness prior’ rather than first order derivative
operators).

Lemma 3 Problem (72) has the following solution

pα(f) = −α(∆− αI)−1f = Rα ∗ f (73)

with Rα ∈ L1(Rd) the positive probability kernel (with L1-norm equal to 1) that arises by taking the Laplace
transform of the Gaussian kernel w.r.t. scale, i.e.

Rα(x) = α

∞∫
0

Gs(x) e−αs ds. (74)

Proof. The problem has a unique solution due to convexity of the mapping f 7→ pα(f), cf. [35]. It is
thereby sufficient to study the Euler-Lagrange (EL) equations where the first order variation vanishes. We
compute for arbitrary δ ∈ C∞c (Rd) (i.e. compactly supported smooth functions on Rd)

lim
ε↓0

Ef (p+εδ)−Ef (p)
ε = 2

∫
Rd

(α(p− f)−∆p) δ dx = 0

where we applied integration by parts in Rd(Green’s 1st identity). Now the above equation holds for all
δ ∈ C∞c (Rd), and the latter function space is dense in L2(Rd), so we find EL-equation:

(αI −∆)p = αf

and the rest of the result follows by application of Laplace transform w.r.t. scale in the Fourier domain:

F(pα(f))(ω) = Fp(ω) = α(α+ ‖ω‖2)−1Ff(ω)

= α(2π)
d
2

∞∫
0

e−s‖ω‖
2

(2π)
d
2
e−sα ds Ff(ω)

= (2π)
d
2 α

∞∫
0

(F Gs)(ω) e−sα ds Ff(ω)

from which both (73), (74) and ‖Rα‖L1(Rd) = 1 and Rα ≥ 0 follows, by application of inverse Fourier
transform. where we recall (7) and (8).

Remark 21 There is a basic stochastic interpretation to the above formula. Let (XS)S≥0 denote a Wiener
process with zero mean and variance S = 1

2σ
2. At time 0 we have a grey-scale particle at the origin 0 ∈ Rd

as X0 ∼ δ0, then as scale/time S > 0 increases the probability density of finding the particle at position
x at time S = s equals

P (XS = x | S = s) = Gs(x).

Now in such a Markov traveling time is memoryless and the only continuous memoryless distribution is the
negatively exponential distribution S ∼ NE(α), i.e. P (S = s) = αe−αs for all s ≥ 0. Now the probability
density of finding a greyscale particle that started at the origin 0 at scale/time 0 regardless its traveling
time at location x can be rewritten as as

P (XS = x | S ∼ NE(α)) =

∫
R+

P (XS = x | S = s)P (S = s) ds.

where we consider a sub-ordinated random process where traveling time is random: S ∼ NE(α).
Now assume X0 ∼ f (like in Figure 1) instead of X0 ∼ δ0 while retaining the same Gaussian transition

density. Then we find by linearity and shift-invariance of the mapping f 7→ Pα(f) that:

(pα(f))(x) = P (XS = x | X0 ∼ f, S ∼ NE(α)) =
∞∫
0

P (XS = x | X0 ∼ f, S = s) P (S = s) ds

=
∞∫
0

(∫
Rd
Gs(x− x̃)f(x̃) dx̃

)
αe−αsds =

∞∫
0

((Gs ∗ f)(x) ) αe−αsds = α
∞∫
0

u(x, s)e−αsds

=

((∞∫
0

αe−αsGsds

)
∗ f
)

(x) = (Rα ∗ f)(x).

(75)
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Remark 22 Although not part of this course, we would like to mention that automatic choice of α > 0
can be done in many ways, such as generalized cross-validation [21] or L-curve optimizations [36] or
discrepancy-principles [37].

Remark 23 It is for application sometimes wise to take a Gamma-distribution S ∼ Γ (s; k, α) with expec-
tation E(S) = k

α instead of a negatively exponential distribution for S, in order to ‘push more mass/ink’
forward cf. [38–40]. This means that

P (S = s) = Γ (s; k, α) :=
αk sk−1

Γ (k)
e−αs ⇔ S =

k∑
i=1

Si, with independent Si ∼ NE(α). (76)

Exercise 22 Check the equivalence in (76) and show that (76) boils down to iteration of (75), i.e. a k-fold
iteration of the kernels:

(pα)k(f) = (pα ◦ . . . ◦ pα)(f) = (Rα ∗(k−1) Rα) ∗ f.

What does this mean for the probabilistic interpretation?

Remark 24 (discretization) If we constrain the constrain the set of continuous images from L2(Rd) to the
span V of B-spline functions given by (25), and we replace the continuous data-term by its sampled version

‖α− f‖2L2(Rd) →
N∑
i=1

N∑
j=1

|α(xij)− f(xij)|2

then the matrix-representation of the corresponding linear operator (where both domain and range are
constrained to V ) is given by Eq. (26).

What is also interesting is to consider the problem where the gradient norm is minimized rather than
the gradient norm squared. This gives the following optimization problem:

“qα(f) := arg min
q∈V

∫
Ω

√
α|f(x)− q(x)|2 + ‖∇q(x)‖ dx′′ (77)

over a suitable space V consisting of regular enough images f , with Ω ⊆ Rd. To ensure the same physical
dimensions as with α in (72), we apply the square root on α. In Figure 14 we compare qα(f) with pα(f) for a
fixed choice of α > 0 and one typically observes that using an L1-norm for the gradient in the regularization
term is more effective to remove salt& pepper noise while preserving the actual larges structures in the
image. This is due to the fact that an L1-norm is less sensitive to single outliers than an L2-norm, and
the fact that Total Variation (TV) with the L1-norm allows for a much wider class of functions including
plateau functions with step-edges, which often occur in regular images.

The formulation of TV optimization with an L1-norm is therefore subtle, and in fact it requires a
reformulation of (85), as gradients may not exist for elements from the space V that we will characterize
next. Therefore we wrote quotes in (85) as formally it is not a valid formulation when using regular
derivatives.

9.2 Total Variation and Image Denoising

Let d ∈ {2, 3}. In contrast to the previous section we will not consider the domain Rd, but rather a bounded
and open domain Ω ⊂ Rd. For simplicity we assume Ω is the interior of a rectangular domain if d = 2 or
the interior of a cubic domain if d = 3.

Let C1
c(Ω) denote the space vector fields on Ω which are continuously differentiable with compact

support within Ω. Then the total variation on Ω is given by

TV (f) := sup
v∈C1

c (Ω)


∫
Ω

f(x) div v(x) dx | ∀x∈Ω‖v(x)‖ ≤ 1


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Fig. 14 Left: original images f , middle pα(f) given by (72), right qα(f) given by (85) or rather (80) for a fixed large
value of α > 0, so that the regularization effect is not too strong.

By definition the space of bounded variation functions are all elements in L1(Ω) such that TV (f) <∞:

BV (Ω) := {f ∈ L1(Ω) | TV (f) <∞}

The space BV (Ω) is standardly equipped with the bounded variation norm given by

‖f‖BV = ‖f‖L1(Ω) + TV (f).

Note that for constant f = C one has that TV (f) = 0 and ‖f‖L1(Ω) = C · µ(Ω), where µ(Ω) is the total
measure of Ω.

Next we first address basic properties of the TV-functional and functions of bounded variation. Please
keep in mind that later we will use this functional for image denoising via the optimization given by (80).

Intermezzo: Basic Properties of functions of bounded variations

Next we mention some basic properties on functions of bounded variations that are proven in standard
works such as in [41]. We will use these properties implicitly, and when needed you can use these properties
without proof in exercises if needed. It can be shown that (BV (Ω), ‖ · ‖BV ) is a Banach space. Even a
Banach algebra as one has f, g ∈ BV (Ω)⇒ f · g ∈ BV (Ω).

Regular derivatives of functions of bounded variation may not exist (they may have ‘jump-type’ or
‘removable’ discontinuities), but their derivative 17 does exist almost everywhere.

Furthermore, C1(Ω) is dense within BV (Ω), and every function f ∈ BV (Ω) of bounded variation
can even be written as a limit (in L1-sense) of a sequence of infinitely differentiable compactly supported
functions, cf. [41, ch:5.2, Thm.2].

17 More formally, for all f ∈ BV (Ω) one has
∫
Ω fdivv dx = −

∫
Ω v · σdµf for all v ∈ C1

c(Rd) for a Radon measure µf
on Ω and a µ-measurable function σ : Ω → Rd with ‖σ‖ = 1. The measure µf is often denoted by ‖Df‖. See [41, Thm1,

Ch:5]. If f ∈ C1(Ω) then σdµf = ∇f(x) dx.
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Finally, a function of bounded variation f ∈ BV (Ω) can be restricted f |∂Ω in a well-posed way18 to
the boundary ∂Ω .

Exercise 23 (Total Variation for continuously differentiable functions)
Let d = 3. Show that

f ∈ C1(Ω)⇒ 0 ≤ TV (f) =

∫
Ω

‖∇f(x)‖dx (78)

hints: In order to show the above equality you should rely on

1. the standard formula div (fv) = fdiv v +∇f · v.
2. Cauchy-Schwarz inequality.
3. the Gauss divergence theorem.
4. the fact that C1

c (Ω) is dense in L1(Ω).

Let C∞c (Ω) denote the vector space of real-valued functions on Ω which are infinitely differentiable with
compact support (strictly contained within Ω). For the sake of simplicity (application of Gauss theorem)
we restrict ourselves to the case d = 3, although the result does not change for d = 2.

Lemma 4 Let d = 3: Ω ⊂ R3. For all f ∈ C1(Ω) s.t. ∇f does not vanish in Ω, and all δ ∈ C∞c (Ω) we
have that

lim
ε↓0

TV (f + εδ)− TV (f)

ε
= −

∫
Ω

δ(x) div

(
∇f(x)

‖∇f(x)‖

)
dx =: 〈(∂TV )(f), δ〉.

Proof. We apply the previous result (78) and start some direct computations where in the numerator only
the O(ε)-term is relevant (and where we apply

√
1 + ε = 1 + 1

2 ε+O(ε2)):

lim
ε↓0

∫
Ω

‖∇(f+εδ)‖−‖∇f‖
ε dx = lim

ε↓0

∫
Ω

√
∇f ·∇f+2ε∇δ·∇f+O(ε2)−

√
∇f ·∇f

ε dx

= lim
ε↓0

∫
Ω

‖∇f‖ (
√

1+2ε∇δ· ∇f‖∇f‖−1)

ε dx

∗
=
∫
Ω

∇δ · ∇f‖∇f‖ dx

=
∫
Ω

div(δ ∇f‖∇f‖ ) dx−
∫
Ω

δ div
(
∇f
‖∇f‖

)
dx

=
∫
∂Ω

δ‖∇f‖−1 ∂f
∂n dσ +−

∫
Ω

δ div
(
∇f
‖∇f‖

)
dx

= 0−
∫
Ω

δ div
(
∇f
‖∇f‖

)
dx.

where in the third step we rely on Lebesgue dominated convergence principle when switching the limit
and the integration.

Corollary 1 Let f ∈ L1(Ω) ∩ L2(Ω). Then the nonlinear PDE-system associated with a gradient flow of
total variation (known as “Total Variation Flow”) is given by

∂v
∂s = div

(
∇v
‖∇v‖

)
,

v(·, 0) = f(·) ,

N(x) · ∇xv(x, s) = 0 for all x ∈ ∂Ω, s ≥ 0,

(79)

with N(x) the (outward) normal to the boundary ∂Ω (so that in (79) we use Neumann boundary conditions
for all s ≥ 0). Here (s, s) 7→ v(x, s) denotes the unique “entropy solution” (for the precise details and
definition see [42]) of the PDE. The corresponding unique19 solution of the denoising problem

qα = arg min
q∈BV (Ω), q|∂Ω=0

√
α

2

∫
Ω

|q(x)− f(x)|2 dx + TV (q), (80)

18 As there exist trace theorems for functions of bounded variations [41, ch:5.3, Thm.1]. Recall, that in general L1(Ω)-
elements cannot be constrained to ∂Ω as it is a set with zero measure.
19 The mapping q 7→ (

√
α/2)

∫
Ω |q(x)− f(x)|dx + TV (q) is convex.
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satisfies the (non-linear) Euler Lagrange equation:

qα(x)− α−
1
2 div

(
∇qα(x)

‖∇qα(x)‖

)
= f. (81)

for almost every x ∈ Ω where ∇qα(x) 6= 0.

Exercise 24 Let d ∈ {2, 3}. Let pα(f) : Rd → R be defined by (73). Let u : Rd × R+ → R denote the
Gaussian scale space representation of image f given by (2).

a Let α, s > 0. Show that the mappings f 7→ pα(f) and f 7→ u(·, s) are linear.
b Show that pα(x) := (pαf)(x) equals the Laplace tranform (w.r.t. scale s ≥ 0) of u(x, ·). I.e. show that

pα(x) = α

∞∫
0

u(x, s)e−αs ds.

c From the previous item one may get the misconception that qα(x) is a scalar multiple of the Laplace
transform of v(x, ·) evaluated at α. Explain why this is not the case.

Exercise 25 Show that an implicit finite difference scheme of (79) requires to solve at each time step an
equation of the type (81).

Remark 25 In order to avoid (numerical) problems at singular points x0 ∈ Rd where ‖∇u(x0)‖ = 0
and where in the PDE both the numerator and denominator vanish it is common to apply the following
adaptations  ∂uσ

∂s = div

(
∇uσ√

‖∇uσ‖2+σ2

)
,

uσ(·, 0) = f(·).
(82)

for 0 < σ � 1, and to take the limit u(x, s) = lim
σ↓0

uσ(x, s) afterwards20. Similarly one considers,

qα,σ − α−
1
2 div

(
∇qα,σ√

‖∇qα,σ‖2 + σ2

)
= f. (83)

For f ∈ C1(R) equation (83) can be rewritten as

lim
ε↓0

T̃ V σ(q + εδ) + (
√
α/2)‖(q + εδ)− f‖2L2(Rd) − (T̃ V σ(q) + (

√
α/2)‖q − f‖2L2(Rd))

ε
= 0.

More formally, Eq. (83), is an Euler-Lagrange equation for the optimization:

qα,σ = arg min
q∈BV (Ω)

( √
α‖q − f‖2 + T̃ V σ(q)

)
,

with T̃ V σ(f) given by

T̃ V σ(f) := sup
w ∈ C∞c (Ω),
σ2 ∈ C∞c (Ω)


∫
Ω

(
f(x)
σ

)
·
(

div w(x)
σ2(x)

)
dx | ∀x∈Ω‖w(x)‖2 + |σ2(x)|2 ≤ 1

 , (84)

which for f ∈ C1(Ω) simplifies to

f ∈ C1(Ω)⇒ T̃ V σ(f) =

∫
Ω

√
‖∇f(x)‖2 + σ2 dx. (85)

20 For the convergence, and for the formal meaning of weak-solutions of the PDE (82), one can rely on formal Gradient-
flow theory by Brezis-Kozuma [43]. In fact this idea generalizes to gradient lows on the space of both positions and
orientations. For the details see [44], but all of this formal analysis is beyond the scope of this course.
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Exercise 26 Use definition (84) to show that (85) indeed holds.
hint: Use the hints/techniques of Exercise 23.

Exercise 27 Recall that functions of bounded variation are f ∈ L1(Ω) with TV (f) <∞. Let 0 ≤ σ ≤ 1.
Show that

TV (f) <∞⇔ T̃ V σ(f) <∞

for all f ∈ C1(Ω).

hint: for ‖∇f‖ � σ2 one has
√
‖∇f‖2 + σ2 = ‖∇f‖+O

(
σ2

2‖∇f‖

)
.

Exercise-Mathematica 4. Download the Mathematica notebook ”Part 1 Exercise 3 4 DiffusiononR2.nb”
from
http://www.lieanalysis.nl/education/.

You can run the notebook by selecting the cells and pressing ‘shift’ and ‘enter’.
Check the behavior for σ ↓ 0 and compare the TV-based denoising with the (adaptive) diffusion that you
also find in the notebook
What is the main difference in practice?

The next exercise (on the next page) exceeds the scope of this lecture, but justifies taking the limit
σ ↓ 0 in the total variation regularization (and in the PDE-algorithms implementing it), as it shows that

lim
σ↓0

qα,σ = qα in L1(Ω).
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Exercise 28 (an alternative TV-formulation of T̃ V σ(f)).
Consider fσ : Ω × [0, 1]→ R given by

fσ(x, xd+1) := f(x) + σxd+1,

with x ∈ Ω ⊂ Rd and 0 < xd+1 < 1, and consider

TV (fσ) = sup
w̃∈C∞c (Ω×[0,1])

 1∫
0

∫
Ω

fσ(x, xd+1) div w̃(x, xd+1) dxdxd+1 | ∀x∈Ω : w̃(x) = 1

 . (86)

a.) Show that TV (fσ) ≥ T̃ V σ(f).

hint: restrict to specific w (which are essentially 1-homogenous in the second entry) as below:

w̃(x, xd+1) = (w1(x, xd+1), · · · , wd(x, xd+1) , wd+1(x, xd+1)) = η(xd+1) (v(x), σ2(x)), (87)

with η(1) = 0, η(0) = 0, and η ∈ C∞([0, 1]) in such a way that η approximates 1(0,1) uniformly on the
open interval (0, 1).

b.) Show that TV (fσ) = T̃ V σ(f).

hint: Consider (w(x), σ2(x)) :=
1∫
0

w̃(x, s) ds.

Exercise 29 (convergence)

a.) Show that if a sequence (fn)n∈N in L1(Ω) has the property that every subsequence (fnk)k∈N has a con-
verging sub-subsequence (fnkl )l∈N with the same limit f∗ ∈ L1(Ω) then the sequence itself converges
to this limit, i.e. then fn → f in L1(Ω) as (n→∞).

hint: this applies to metric spaces in general and the proof follows by contradiction.

b.) Recall that qα was the solution to the total variation regularization problem (80). Now consider its
approximation

qα,σ := arg min
q∈BV (Ω)

1

2

∫
Ω

|q(x)− f(x)|2 dx + α−
1
2 T̃ V σ(q)

Show that
lim
σ↓0

qα,σ = qα in L1(Ω).

where the limit is taken in L1-sense.

hint1: there exist an Arzéla-Ascoli type of theorem for functions of bounded variation:
Known as “Helly’s selection criterium” (Wikipedia) or [41, Thm.4] which states the following when
applied to our choice Ω ⊂ Rn:

Theorem 1 Assume (fk)k∈N is a sequence in BV (Ω) satisfying

sup
k∈N

TV (fk) <∞

Then there exists a subsequence (fkj )j∈N and a function f ∈ BV (Ω) such that

lim
j→∞

fkj = f ∈ L1(Ω) i.e. lim
j→∞

‖fkj − f‖L1(Ω) = 0.

hint2: Use the previous exercise, and apply the standard result that a total variation function TV (·) is
lower-semi-continuous on the set of bounded variation functions, to deduce

lim
n→∞

fn = f ⇒ lim inf
n→∞

T̃ V σ(fn) ≥ T̃ V σ(f).

hint3: Use the previous item 29a, where you may use the fact that Problem (80) has a unique solution.
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