
2DD50 - Solutions to exercises week 7

Concep. 6.8 Let X(t) be the number of items in the warehouse at time t. The state
space of {X(t), t ≥ 0} is {0, 1, 2, · · · , K}. Assume that the machine
always produces items, and if there is no space in the warehouse for a
produced item, it is lost. Since the exponential distribution has mem-
oryless property, this has the same effect as turning the machine off
when the warehouse is full. Then the production process is PP (λ) and
acts as an arrival process to the warehouse. Assume that the items
form a queue in the warehouse. Then the first item in the warehouse
has to wait an Exp(µ) amount of time for the next demand before it
is removed. Again, memoryless property of exponential distribution
implies that lost demands do not have any effect. Hence the “service
times” of the items are iid Exp(µ) random variables. Hence the number
of items in the warehouse forms an M/M/1/K queue.

Concep. 6.10 {X(t), t ≥ 0} is a stochastic process with state space {0, 1, 2, · · · , K}.
When X(t) = i > 0, a repair takes place with rate µ (in which case the
state decreases by 1), and a failure occurs at rate (K − i)λ (in which
case the state increases by 1). If X(t) = 0, no repairs take place, while
a failure occurs at rate Kλ. Hence {X(t), t ≥ 0} is a birth and death
process with birth rates

λi = (K − i)λ, 0 ≤ i ≤ K,

and death rates
µi = µ, 1 ≤ i ≤ K.

Concep. 6.11 {X(t), t ≥ 0} is a birth and death process with birth rates

λi = (K − i)λ, 0 ≤ i ≤ K,

and death rates
µi = min(i, s)µ, 0 ≤ i ≤ K.

Comp. 6.1 λ = 5, τ = 1.3. Let s be the number of servers. From Theorem 6.4,
the queue is stable if s > λτ = 5 ∗ 1.3 = 6.5. Hence the minimum
number of servers needed for stability is 7.
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Comp. 6.2 From Example 6.5, the expected number of busy servers is given by
B = min(λτ, s) = min(6.5, s). Thus B = s if 1 ≤ s ≤ 6, and B = 6.5 if
s ≥ 7.

Comp. 6.6 Time unit: hour. λ = 8, µ = 4.

a) This is an M/M/1/K queue with K = 4.

b)
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c) Balance equations

8p0(4) = 4p1(4),

12p1(4) = 8p0(4) + 4p2(4),

12p2(4) = 8p1(4) + 4p3(4),

12p3(4) = 8p2(4) + 4p4(4),

4p4(4) = 8p3(4),

or, alternatively,

8p0(4) = 4p1(4),

8p1(4) = 4p2(4),

8p2(4) = 4p3(4),

8p3(4) = 4p4(4).

Normalizing equation: p0(4) + p1(4) + p2(4) + p3(4) + p4(4) = 1.

d) The limiting distribution is given by

p(4) =

[
1

31
,

2

31
,
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31
,

8

31
,
16
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]
.

e) p4(4) = 16
31
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f) 1− p0(4) = 30
31

g) The arrival rate of entering customers is λ(1 − p4(4)) = 120
31

cus-

tomers per hour. Furthermore, L =
∑4

i=0 ipi(4) = 98
31

. Hence

W =
L

λ(1− p4(4))
= 0.8167 hours = 49 minutes

h) W q = W − 1
4

= 0.5667 hours = 34 minutes.

Comp. 6.7 The fraction of the customers lost is given by p4(4) = 0.5161. Hence
the fraction of the customers that enter is given by 1− p4(4) = 0.4839.
Hence the rate at which customers enter is 0.4839∗8 = 3.8712 per hour.
Each entering customer pays 12 dollars. Hence the long run revenue
rate is

3.8712 ∗ 12 = 46.4544 dollars/hour.

Comp. 6.8 a) This is an M/M/s/K queue with s = 2 and K = 4.

b)
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c) Balance equations

8p0(4) = 4p1(4),

12p1(4) = 8p0(4) + 8p2(4),

16p2(4) = 8p1(4) + 8p3(4),

16p3(4) = 8p2(4) + 8p4(4),

8p4(4) = 8p3(4),

or, alternatively,

8p0(4) = 4p1(4),

8p1(4) = 8p2(4),

8p2(4) = 8p3(4),

8p3(4) = 8p4(4).
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Normalizing equation: p0(4) + p1(4) + p2(4) + p3(4) + p4(4) = 1.

d) The limiting distribution is given by

p(4) =

[
1

9
,
2

9
,
2

9
,
2

9
,
2

9

]
.

e) p4(4) = 2
9

f) 0 · p0(4) + 1
2
· p1(4) + 1 · (p2(4) + p3(4) + p4(4)) = 7

9

g) λ(1− p4(4)) = 56
9

(alternatively: 7
9
· 2 · 4 = 56

9
)

h) The arrival rate of entering customers is λ(1 − p4(4)) = 56
9

cus-

tomers per hour. Furthermore, L =
∑4

i=0 ipi(4) = 20
9

. Hence

W =
L

λ(1− p4(4))
= 0.3571 hours = 21.43 minutes

and

W q = W − 1

4
= 0.1071 hours = 6.43 minutes

i) The new rate of revenue is given by

12 ∗ λ ∗ (1− p4(4)) = 74.6667 dollars/hour.

Comp. 6.10 This is an M/M/1/K queue with λ = 1 per hour, µ = 20/24 =
5/6 per hour, K = 10. The machine is off whenever the warehouse is
full. The long run fraction of the time the machine is off is given by
p10(10) = 0.1926.

Comp. 6.11 This is the same queue as in Computational Problem 6.10. The de-
mands are lost when the warehouse is empty. The demands occur
according to a Poisson process. Hence, according to PASTA, the long
run probability that a demand sees the warehouse empty is given by
p0(10). Hence the long run fraction of the demands lost are given by
p0(10) = 0.0311.

Comp. 6.12 This is the same queue as in Computational Problem 6.10. Let W be
the expected time an item spends in the warehouse in steady state.
Then the expected revenue from the sale is 100−W dollars. Using the
parameters given in Computational Problem 6.10, we get W = 8.3114
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hours. Hence the expected sale price is $91.6886. Now the rate at
which items enter the warehouse is

λ · (1− pK(K)) = 1 · (1− 0.1926) = 0.8074 per hour.

Hence the revenue rate is 0.8074 · 91.6886 = 74.0294 dollars/hour.
Alternative solution: If there are i items on stock, the warehouse looses
i dollar per hour. So the expected loss per hour is L dollar, where L is
the expected number of items on stock. Hence the revenue rate is

λ · (1− pK(K)) · 100− L = 80.74− 6.71 = 74.03 dollar per hour.

Comp. 6.21 a) M/M/1 queue.

b)

0 1 2 3 4 ...........

λ
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c) The balance equations are

λp0 = µp1,

(λ+ µ)pn = λpn−1 + µpn+1, n = 1, 2, 3, . . . ,

or, alternatively,

λpn = µpn+1, n = 0, 1, 2, . . . .

Normalizing equation:
∑∞

n=0 pn = 1.

d) λ < µ.

e) We have µ = 12 items per hour. The fraction of demands lost
is 1 − ρ, where ρ = λ/µ. Hence we must have ρ ≥ 0.9, i.e.,
λ ≥ 0.9µ = 10.8 per hour. Thus, the mean production time
is at most 60/10.8 = 5.556 minutes. The mean number in the
warehouse is then ρ/(1− ρ) = 0.9/0.1 = 9.

Comp. 6.28 a) This is an M/M/∞ queue with λ = 40 and µ = 1/3.

5



b)

0 1 2 3 4 ...........

λ
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λ λ λ

µµ 3 42

c) The balance equations are

λp0 = µp1,

(λ+ iµ)pi = λpi−1 + (i+ 1)µpi+1, i = 1, 2, 3, . . . ,

or, alternatively,

λpi = (i+ 1)µpi+1, i = 0, 1, 2, . . . .

Normalizing equation:
∑∞

i=0 pi = 1.

d) Use that

pi =
λ

iµ
pi−1

=
120

i
pi−1

...

= (
120i

i!
)p0.

From the normalizing equation we obtain p0 = e−120.

e) - Mean number of cars in parking lot: L = λ/µ = 120. (in
steady state the number of cars in the lot is a Poisson random
variable with mean 40/(1/3) = 120).
Mean waiting time of cars: W = L/λ = 3 minutes.

- Mean number of occupied parking places: 120.
Mean parking time of cars: 3 minutes.

- Mean number of cars in the queue: 0.
Mean queueing time of cars: 0 minutes.

- Fraction of time a certain parking place is occupied: 0 (due
to the assumption that in the model there are infinitely many
parking places)
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- Probability that all places are occupied: 0 (due to the as-
sumption that in the model there are infinitely many parking
places)

- Throughput is 40 cars per hour.
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