2DD50 - Solutions to exercises week 8

- **Concep. 6.20** Consider the queue in front of server 1. The inter-arrival times are iid, each being a sum of two iid $\exp(\lambda)$ random variables. Hence it is a G/M/1 queue.
- **Concep. 6.21** The pdf of an U(a, b) random variable is

$$g(x) = \frac{1}{b-a}, \quad a \le x \le b.$$

Hence

$$\tilde{G}(s) = \int_{a}^{b} e^{-sx} g(x) dx = \frac{e^{-as} - e^{-bs}}{s(b-a)}$$

The key functional equation is $u = \tilde{G}(\mu(1-u))$, which reduces to

$$u = \frac{e^{-a\mu(1-u)} - e^{-b\mu(1-u)}}{\mu(1-u)(b-a)}$$

- **Comp. 6.32** a) M/G/1 queue. More specifically, it is an $M/E_2/1$ because the service times of customers are Erlang distributed with 2 phases.
 - b) The service times are iid Erl(2,12). Hence $\tau = 2/12 = 1/6$ hour, $\sigma^2 = 2/(12)^2 = 1/72$ hour². Thus $s^2 = 1/72 + 1/36 = 3/72 = 1/24$ hour². We also have $\lambda = 3$. Hence L = 0.875. $W = L/\lambda = 0.875/3 = 0.2917$ hour = 17.5 minutes.
 - Mean number of occupied servers: $\rho = 1/2$. Mean service time: $\tau = 1/6$ hour = 10 minutes.
 - Mean number of customers in the queue: $L_q = L \rho = 0.375$. Mean queueing time of customers: $W_q = W - \tau = 7.5$ minutes.
 - Fraction of time server is occupied: $\rho = 1/2$.
 - Throughput: 3 customers per hour.
- **Comp. 6.33** This is an M/G/1 queue. Let T_1 and T_2 be two iid Exp(6) random variables. Then the service time (in hours) of a single customer is $T = \max(T_1, T_2)$. The cdf of T is given by

$$F(x) = \mathsf{P}(T \le x) = \mathsf{P}(T_1 \le x, T_2 \le x) = (1 - e^{-6*x})^2.$$

Hence

$$\tau = \mathsf{E}(T) = \int_0^\infty x F'(x) dx = 0.25 \text{ hrs},$$

and

$$s^{2} = \mathsf{E}(T^{2}) = \int_{0}^{\infty} x^{2} F'(x) dx = 7/72 \text{ hrs}^{2}.$$

Using $\lambda = 3$ we get L = 2.5. Thus the congestion is more in this setup. This is because one of the two servers is forced to be idle part of the time.

Comp. 6.35 Let T be a typical service time. We are given

$$P(T = 2) = 0.5, P(T = 3) = 0.2, P(T = 5) = 0.3.$$

Hence $\tau = 2 * 0.5 + 3 * 0.2 + 5 * 0.3 = 3.1$ minutes and $s^2 = 4 * 0.5 + 9 * 0.2 + 25 * 0.3 = 11.3$ minutes². Using $\lambda = 18$ per hour, we get L = 8.194.

Comp. 6.36 a) - Consider the queue in front of server 1. It is a G/M/1 queue with iid Erl(2, 10) interarrival times, and Exp(6) service times. The traffic intensity is $\rho = 5/6 < 1$. The functional equation becomes

$$u = \left(\frac{10}{10 + 6(1 - u)}\right)^2,$$

with the required solution $\alpha = 0.7822$. Using Equation (6.42) we get L = 3.826 and $W = L/\lambda = 3.826/5 = 0.765$ hour = 45.9 minutes.

- Mean number of occupied servers: $\rho = 5/6$. Mean service time: $1/\mu = 10$ minutes.
- Mean number of customers in queue: $L_q = L \rho = 2.993$. Mean queueing time: $W_q = W - 1/\mu = 35.9$ minutes.
- Fraction of time server is occupied: $\rho = 5/6$.
- Throughput: 5 customers per hour.
- b) Let X(t) be the number of customers in the single line served by the two servers. Then X(t) is an M/M/2 queue with $\lambda =$ 10, $\mu = 6$. The expected number of customers in this system is 5.4545.

- c) The expected number of customers in the first system is 7.6518. The expected number of customers in the second system is 5.4545. Hence pooling the two servers will reduce congestion.
- **Comp. 6.40** This is a G/M/1 queue with arrival rate $\lambda = 12$ per hour (constant inter arrival times of 5 minutes), and service rate $\mu = 15$ per hour. The solution to the functional equation is $\alpha = 0.6286$. Hence L = 2.1540, and the fraction of the time the server is busy is given by $\lambda/\mu = 12/15 = 0.8$. Hence the cost rate is 0.8 * 40 + 2.1540 * 2 = 36.3080 dollars/hour. If each customer is charged c, the revenue rate is 12c per hour. Hence we must have $c \geq 36.3080/12 = 3.0257$. Thus each customer should be charged at least 3.03 dollars in order for the system to break even.