2DD50 - Solutions to exercises week 8

Concep. 6.20 Consider the queue in front of server 1. The inter-arrival times are iid, each being a sum of two iid $\exp (\lambda)$ random variables. Hence it is a $G / M / 1$ queue.

Concep. 6.21 The pdf of an $\mathrm{U}(a, b)$ random variable is

$$
g(x)=\frac{1}{b-a}, \quad a \leq x \leq b
$$

Hence

$$
\tilde{G}(s)=\int_{a}^{b} e^{-s x} g(x) d x=\frac{e^{-a s}-e^{-b s}}{s(b-a)} .
$$

The key functional equation is $u=\tilde{G}(\mu(1-u))$, which reduces to

$$
u=\frac{e^{-a \mu(1-u)}-e^{-b \mu(1-u)}}{\mu(1-u)(b-a)} .
$$

Comp. 6.32 a) $M / G / 1$ queue. More specifically, it is an $M / E_{2} / 1$ because the service times of customers are Erlang distributed with 2 phases.
b) - The service times are iid $\operatorname{Erl}(2,12)$. Hence $\tau=2 / 12=1 / 6$ hour, $\sigma^{2}=2 /(12)^{2}=1 / 72$ hour 2. Thus $s^{2}=1 / 72+1 / 36=3 / 72=$ $1 / 24$ hour 2. We also have $\lambda=3$. Hence $L=0.875$. $W=L / \lambda=0.875 / 3=0.2917$ hour $=17.5$ minutes.

- Mean number of occupied servers: $\rho=1 / 2$. Mean service time: $\tau=1 / 6$ hour $=10$ minutes.
- Mean number of customers in the queue: $L_{q}=L-\rho=0.375$. Mean queueing time of customers: $W_{q}=W-\tau=7.5$ minutes.
- Fraction of time server is occupied: $\rho=1 / 2$.
- Throughput: 3 customers per hour.

Comp. 6.33 This is an $M / G / 1$ queue. Let T_{1} and T_{2} be two iid $\operatorname{Exp}(6)$ random variables. Then the service time (in hours) of a single customer is $T=\max \left(T_{1}, T_{2}\right)$. The cdf of T is given by

$$
F(x)=\mathrm{P}(T \leq x)=\mathrm{P}\left(T_{1} \leq x, T_{2} \leq x\right)=\left(1-e^{-6 * x}\right)^{2} .
$$

Hence

$$
\tau=\mathrm{E}(T)=\int_{0}^{\infty} x F^{\prime}(x) d x=0.25 \mathrm{hrs}
$$

and

$$
s^{2}=\mathrm{E}\left(T^{2}\right)=\int_{0}^{\infty} x^{2} F^{\prime}(x) d x=7 / 72 \mathrm{hrs}^{2}
$$

Using $\lambda=3$ we get $L=2.5$. Thus the congestion is more in this setup. This is because one of the two servers is forced to be idle part of the time.

Comp. 6.35 Let T be a typical service time. We are given

$$
\mathrm{P}(T=2)=0.5, \quad \mathrm{P}(T=3)=0.2, \quad \mathrm{P}(T=5)=0.3
$$

Hence $\tau=2 * 0.5+3 * 0.2+5 * 0.3=3.1$ minutes and $s^{2}=4 * 0.5+$ $9 * 0.2+25 * 0.3=11.3$ minutes 2. Using $\lambda=18$ per hour, we get $L=8.194$.

Comp. 6.36 a) - Consider the queue in front of server 1. It is a $G / M / 1$ queue with iid $\operatorname{Erl}(2,10)$ interarrival times, and $\operatorname{Exp}(6)$ service times. The traffic intensity is $\rho=5 / 6<1$. The functional equation becomes

$$
u=\left(\frac{10}{10+6(1-u)}\right)^{2}
$$

with the required solution $\alpha=0.7822$. Using Equation (6.42) we get $L=3.826$ and $W=L / \lambda=3.826 / 5=0.765$ hour $=$ 45.9 minutes.

- Mean number of occupied servers: $\rho=5 / 6$.

Mean service time: $1 / \mu=10$ minutes.

- Mean number of customers in queue: $L_{q}=L-\rho=2.993$.

Mean queueing time: $W_{q}=W-1 / \mu=35.9$ minutes.

- Fraction of time server is occupied: $\rho=5 / 6$.
- Throughput: 5 customers per hour.
b) Let $X(t)$ be the number of customers in the single line served by the two servers. Then $X(t)$ is an $M / M / 2$ queue with $\lambda=$ $10, \mu=6$. The expected number of customers in this system is 5.4545 .
c) The expected number of customers in the first system is 7.6518 . The expected number of customers in the second system is 5.4545 . Hence pooling the two servers will reduce congestion.

Comp. 6.40 This is a $G / M / 1$ queue with arrival rate $\lambda=12$ per hour (constant inter arrival times of 5 minutes), and service rate $\mu=15$ per hour. The solution to the functional equation is $\alpha=0.6286$. Hence $L=2.1540$, and the fraction of the time the server is busy is given by $\lambda / \mu=12 / 15=$ 0.8 . Hence the cost rate is $0.8 * 40+2.1540 * 2=36.3080$ dollars/hour. If each customer is charged c, the revenue rate is $12 c$ per hour. Hence we must have $c \geq 36.3080 / 12=3.0257$. Thus each customer should be charged at least 3.03 dollars in order for the system to break even.

