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The M/G/1 queue

In many applications, the assumption of exponentially distributed service
times is not realistic (e.g., in production systems). Therefore, we will now
look at a model with generally distributed service times.

Model:

• Arrival process is a Poisson process with rate λ.

• Service times of customers (Y1, Y2, . . .) are identically distributed with
an arbitrary distribution function.

Mean service time: E(Y1) = τ .

Variance of the service time: E((Y1 − E(Y1))
2) = σ2.

Second moment of the service time: E(Y 2
1 ) = σ2 + τ 2 = s2.

• There is a single server and the capacity of the queue is infinite.
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Unfortunately, in this model the process {X(t) : t ≥ 0}, the number of
customers in the system at time t, is not a CTMC. Hence, determination of
the limiting distribution of the process {X(t) : t ≥ 0}) should be done in a
different way.

We will restrict ourselves, however, to a so-called mean-value analysis: de-
termination of the expected time in the system, the expected number of
customers in the system, ......

Stability condition:

Just as for the M/M/1 queue, the stability condition for the M/G/1 queue
is that the amount of work offered per time unit to the server should be less
than the amount of work the server can handle per time unit, i.e.,

ρ := λτ < 1.
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Occupation rate of the server:

Because the expected amount of work offered to the server per time unit
equals ρ < 1, the fraction of time the server is busy (= occupation rate of
the server) is also equal to ρ. The fraction of time the server is idle is hence
equal to 1− ρ.

Expected time in the queue, Wq:

The time a customer is waiting in the queue consists of two parts:

• the remaining service time of the customer in service;

• the service times of the customers in the queue.

Hence, in order to calculate Wq we first have to obtain the expected remai-
ning service time of the customer in service.
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Expected remaining service time of the customer in service

Here is figure of the remaining service time of the customer in service as
function of time.

Take a big interval of length T .

Expected number of served customers in [0, T ] : λT .

Contribution of one customer to the expected area: E(Y 2
1 /2) = s2/2.

=> Total expected area in figure: λT · s2/2.

=> Expected remaining service time: λs2/2.
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The expected time in queue,Wq, now can be determined using the following
mean-value relations:

Wq = λs2/2 + Lqτ,

Lq = λWq.

Remark that in the first relation we use the PASTA property and that the
second relation is Little’s formula applied to the queue.
Hence we have

Wq =
λs2

2(1− λτ )
=

λs2

2(1− ρ)
,

Lq = λWq =
λ2s2

2(1− ρ)
.

Once we know Wq and Lq, then W and L of course follow from

W = Wq + τ and L = Lq + ρ.
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Example: M/M/1 queue

In the case of exponentially distributed service times with parameter µ we
have

τ =
1

µ
, σ2 =

1

µ2
, s2 =

2

µ2
,

and hence the expected remaining service time equals

λs2

2
=

λ

µ2
= ρ · 1

µ
.

This also follows from the memoryless property of the exponentisl dsitribu-
tion (explain).

For the quantities Wq and Lq we find (as before)

Wq =
1

µ

ρ

1− ρ
, Lq =

ρ2

1− ρ
.



/k

12

7/19

Example: M/D/1 queue

In the case of deterministic service times equal to τ we have

σ2 = 0, s2 = τ 2,

and hence the expected remaining service time equals

λs2

2
=

λτ 2

2
= ρ · τ

2
.

For the quantities Wq and Lq we find

Wq =
τ

2

ρ

1− ρ
, Lq =

ρ2

2(1− ρ)
.

Remark that in the M/D/1 queue, the quantities Wq and Lq are smaller
than in the corresponding M/M/1 queue. This is due to the smaller vari-
ance of the service times in the M/D/1.
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The G/M/1 queue

we will now look at a model in which not the service times but the interarri-
val times are generally distributed, the G/M/1 queue.

Model:

• The arrival process is a process in which the interarrival times
(A1, A2, . . .) of customers are identically distributed with an arbitrary
distribution function G(·). The mean interarrival time equals E(A1) =
1/λ. The function G̃(s) is defined as

G̃(s) = E(e−sA1).

• Service times are exponentially dsistributed with parameter µ.

• There is a single server and the capacity of the queue is infinite.
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Unfortunately, also for this model the process {X(t) : t ≥ 0}, the number
of customers in the system at time t, is not a CTMC. Also we can not use the
mean-value analysis, as presented before for the M/G/1 queue, because
the PASTA property does not hold anymore (the arrival process is not a
Poisson process here).

We will restrict ourselves to stating results for the limiting distribution of
the number of customers at arrival instants (π∗

j , j = 0, 1, 2, . . .) en and at
arbitrary instants (pj, j = 0, 1, 2, . . .).

Stability condition:

Just as for the M/G/1 queue, the stability condition for the G/M/1 queue
is that the amount of work offered per time unit to the server should be less
than the amount of work the server can handle per time unit, i.e.,

ρ :=
λ

µ
< 1.
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The function G̃(s) = E(e−sA1) is called the Laplace-Stieltjes transform of the
random variable A1 and can be calculated as follows.

• If A1 is a continuous random variable with probability density function
g(·), then

G̃(s) =

∫ ∞

0
e−sxg(x)dx.

• If A1 is a discrete random variable with probability mass function
p(xi) = P (A = xi), i = 1, 2, . . ., then

G̃(s) =

∞∑
i=1

e−sxip(xi).

Examples:

• If A1 is exponential with parameter λ, then G̃(s) = λ/(λ + s).

• If A1 is deterministic and equal to 1/λ, then G̃(s) = e−s/λ.
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Limiting distribution of the number of customers at arrival instants

The limiting distribution of the number of customers at arrival instants is
given by

π∗
j = (1− α)αj, j ≥ 0,

where α is the unique solution in the interval (0,1) of the equation

u = G̃(µ(1− u)).

Example:

If the interarrival times are exponentially distributed with parameter λ, then
α = ρ (check!) and hence

π∗
j = (1− ρ)ρj, j ≥ 0.



/k

12

12/19

Limiting distribution of the number of customers at arbitrary instants

The limiting distribution of the number of customers at arbitrary instants is
given by

p0 = 1− ρ, pj = ρπ∗
j−1 = ρ(1− α)αj−1, j ≥ 1.

Idea proof:

The long-run rate at which the number of customers in the system jumps
from j − 1 to j equals λπ∗

j−1.

The long-run rate at which the number of customers in the system jumps
from j to j − 1 equals µpj.

Because these two rates have to be equal, we have pj = ρπ∗
j−1.
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Expected number of customers in the system

The expected number of customers in the system is given by

L =

∞∑
j=1

jpj = ρ(1− α)

∞∑
j=1

jαj−1 =
ρ

1− α
.

Expected time in the system

The expected time customers spend in the system is given by

W =
L

λ
=

1

µ(1− α)
.

Alternative derivation

W =

∞∑
j=0

π∗
j

j + 1

µ
=

1− α

µ

∞∑
j=0

(j + 1)αj =
1

µ(1− α)
.
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The G/G/1 queue

The last single-station queueing model we discuss will be the G/G/1
queue. In this model, both the interarrival times and the service times have
a general distribution.

For this model, an exact analysis is in general impossible. Therefore, we re-
strict ourselves to giving approximations for the following performance me-
asures:

• Wq, the expected time in the queue;

• W , the expected time in the system;

• Lq, the expected number of customers in the queue;

• L, the expected number of customers in the system.
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Model:

• The arrival process is a process for which the interarrival times
(A1, A2, . . .) of customers are identically distributed random variables
with an arbitrary distribution function.

Mean interarrival time: E(A1).

Variance of the interarrival time: E((A1 − E(A1))
2) = σ2

A1
.

Coefficient of variation of the interarrival time: cA1
=

σA1

E(A1)
.

• Service times of customers (B1, B2, . . .) are identically distributed
random variables with an arbitrary distribution function.

Mean service time: E(B1).

Variance of the service time: E((B1 − E(B1))
2) = σ2

B1
.

Coefficient of variation of the service time: cB1
=

σB1

E(B1)

• There is a single server and the capacity of the queue is infinite.
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Stability condition:

Just as in the M/M/1, M/G/1 and G/M/1 queue, the stability condition
for the G/G/1 queue is that the amount of work offered per time unit to
the server should be less than the amount of work the server can handle per
time unit, i.e.,

ρ :=
E(B1)

E(A1)
< 1.

Approximation Wq:

An often used approximation for the expected time in the queue is given by

Wq ≈
ρ

1− ρ
·
c2
A1

+ c2
B1

2
· E(B1)
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Special cases:

For the M/M/1 queue the approximation is equal to the exact value:

Wq =
ρ

1− ρ
· 1 + 1

2
· E(B1) (M/M/1)

For the M/G/1 queue the approximation is equal to the exact value:

Wq =
ρ

1− ρ
·
1 + c2

B1

2
· E(B1) (M/G/1)

For the G/M/1 queue the approximation is NOT equal to the exact value:

Wq ≈
ρ

1− ρ
·
c2
A1

+ 1

2
· E(B1) (G/M/1)
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Approximations for W , Lq and L:

From the approximation for Wq,

Wq ≈
ρ

1− ρ
·
c2
A1

+ c2
B1

2
· E(B1),

we immediately obtain approximations for W , Lq and L via the formulas

W = Wq + E(B1),

Lq =
Wq

E(A1)
, (Little)

L =
W

E(A1)
. (Little)
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Example:

• In a workstation jobs are delivered at a rate of one job every 8 hours.

• The standard deviation of the time between successice delivery times is
4 hours.

• The average production time of a job is 6 hours with a standard deviation
of 2 hours.

Question:
What would be the reduction in the expected time in the system if the deli-
veries could be made more regular, for instance with a standard deviation
of only one hour?

Answer:
In this case the expected time in the system is reduced from roughly 9.25
hours to approximately 7 hours.


