I! ! { technische universiteit eindhoven

The M /G /1 queue

In many applications, the assumption of exponentially distributed service
times is not realistic (e.g., in production systems). Therefore, we will now
look at a model with generally distributed service times.

Model:

e Arrival process is a Poisson process with rate \.

e Service times of customers (Y7, Y, . ..) are identically distributed with
an arbitrary distribution function.
Mean service time: F(Y]) = 7.
Variance of the service time: E((Y; — E(Y}))?) = o™
Second moment of the service time: E(Y}?) = 0% + 7% = s°.

e There is a single server and the capacity of the queue is infinite.

/ faculteit wiskunde en informatica 1/19



I! ! { technische universiteit eindhoven

Unfortunately, in this model the process {X (¢) : t > 0}, the number of
customers in the system at time ¢, is not a CTMC. Hence, determination of
the limiting distribution of the process { X (¢) : t > 0}) should be done in a
different way.

We will restrict ourselves, however, to a so-called mean-value analysis: de-
termination of the expected time in the system, the expected number of
customers in the system, ......

Stability condition:
Just as for the M /M /1 queue, the stability condition for the M /G /1 queue
is that the amount of work offered per time unit to the server should be less

than the amount of work the server can handle per time unit, i.e.,

p = <1
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Occupation rate of the server:

Because the expected amount of work offered to the server per time unit
equals p < 1, the fraction of time the server is busy (= occupation rate of
the server) is also equal to p. The fraction of time the server is idle is hence
equalto 1 — p.

Expected time in the queue, 17/ :

The time a customer is waiting in the queue consists of two parts:

e the remaining service time of the customer in service;

e the service times of the customers in the queue.

Hence, in order to calculate W, we first have to obtain the expected remai-
ning service time of the customer in service.
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Expected remaining service time of the customer in service

Here is figure of the remaining service time of the customer in service as
function of time.

Take a big interval of length 7.

Expected number of served customers in [0, 7] : AT

Contribution of one customer to the expected area: E(Y/2) = s*/2.
=> Total expected area in figure: AT - s*/2.

—> Expected remaining service time: \s*/2.
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The expected time in queue, W, now can be determined using the following
mean-value relations:

W, = As°/2+ L,T,
L, = \W,.

Remark that in the first relation we use the PASTA property and that the
second relation is Little’s formula applied to the queue.
Hence we have
As? A\s?
20l = A1) 2(1—p)

\2s?
L, = \W, = ————.
! To2(1-p)
Once we know W, and L, then W and L of course follow from

W=W,+7 and L=L,+p.
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Example: M /M /1 queue

In the case of exponentially distributed service times with parameter p we

have
1 1 2
T = —, 0'2:—2, 82:—2,
H H H
and hence the expected remaining service time equals
A oA
2w U

This also follows from the memoryless property of the exponentisl dsitribu-
tion (explain).

For the quantities W, and L, we find (as before)

W, = ———,
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Example: M /D /1 queue
In the case of deterministic service times equal to 7 we have

2 2 2
o°=0, s =7°,

and hence the expected remaining service time equals

As? TP

B T
>~ 2 MY
For the quantities W, and L, we find
2
T P P
W,=—-——— L,=—7——.
1TRT—, Ty

Remark that in the M/D/1 queue, the quantities W, and L, are smaller
than in the corresponding M /M /1 queue. This is due to the smaller vari-
ance of the service times in the M/D/1.
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The G/M/1 queue

we will now look at a model in which not the service times but the interarri-
val times are generally distributed, the G/M /1 queue.

Model:

e The arrival process is a process in which the interarrival times
(Ay, Ay, ...) of customers are identically distributed with an arbitrary
distribution function G(+). The mean interarrival time equals F(A;) =

1/\. The function G(s) is defined as

G(s) = E(e*™).

e Service times are exponentially dsistributed with parameter p.

e There is a single server and the capacity of the queue is infinite.
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Unfortunately, also for this model the process { X (¢) : t > 0}, the number
of customers in the system at time ¢, is not a CTMC. Also we can not use the
mean-value analysis, as presented before for the M/G/1 queue, because
the PASTA property does not hold anymore (the arrival process is not a
Poisson process here).

We will restrict ourselves to stating results for the limiting distribution of
the number of customers at arrival instants (77,7 = 0,1,2,...) en and at
arbitrary instants (p;, 7 = 0,1,2,...).

Stability condition:

Just as for the M /G/1 queue, the stability condition for the G/M /1 queue
is that the amount of work offered per time unit to the server should be less
than the amount of work the server can handle per time unit, i.e.,

A
pi=— <1
i
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The function G(s) = E(e~*") is called the Laplace-Stieltjes transform of the
random variable A; and can be calculated as follows.

e If A, is a continuous random variable with probability density function
g(+), then

o If A; is a discrete random variable with probability mass function
p(r;)) = P(A==x;),i=1,2,..., then

Examples:
o If A, is exponential with parameter \, then G(s) = /(A + s).

o If A, is deterministic and equal to 1/), then G(s) = e¢~/*,
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Limiting distribution of the number of customers at arrival instants

The limiting distribution of the number of customers at arrival instants is
given by |
i =(1-a)!, j=>0,

where « is the unique solution in the interval (o,1) of the equation
u=G(u(l—u)).

Example:

If the interarrival times are exponentially distributed with parameter )\, then
a = p (check!) and hence

= (1=p)p, =0
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Limiting distribution of the number of customers at arbitrary instants

The limiting distribution of the number of customers at arbitrary instants is
given by

m=1—p, p=pr,=pll—a)™, j>1
Idea proof:

The long-run rate at which the number of customers in the system jumps
from j — 1to j equals A7;_;.

The long-run rate at which the number of customers in the system jumps
from j to 7 — 1 equals up;.

Because these two rates have to be equal, we have p; = p7’ .
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Expected number of customers in the system

The expected number of customers in the system is given by

o0 . 00 o P
L:Z]szp(l_@)Z]Oﬂ 12@-
j=1 j=1

Expected time in the system

The expected time customers spend in the system is given by

L 1
W = - = ——
Aop(l—a)
Alternative derivation
= 41 1l—a, . . 1
W=> = = 4+ 1)) = ———.
jzo T o jzo pl —a)
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The G/G/1 queue

The last single-station queueing model we discuss will be the G/G/1
queue. In this model, both the interarrival times and the service times have
a general distribution.

For this model, an exact analysis is in general impossible. Therefore, we re-
strict ourselves to giving approximations for the following performance me-
asures:

o IV, the expected time in the queue;
e IV, the expected time in the system;
o L, the expected number of customers in the queue;

e [, the expected number of customers in the system.
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Model:

e The arrival process is a process for which the interarrival times
(A1, Ay, . ..) of customers are identically distributed random variables
with an arbitrary distribution function.

Mean interarrival time: F/(A;).

Variance of the interarrival time: E((A4; — E(A1))?) = 07,.

UAl
E(Ay)”

Coeflicient of variation of the interarrival time: ¢4, =

e Service times of customers (Bi, B,...) are identically distributed
random variables with an arbitrary distribution function.

Mean service time: F(B;).
Variance of the service time: E((B, — E(By))?) = 03,

O'B1

Coeflicient of variation of the service time: cp, = 0N

e There is a single server and the capacity of the queue is infinite.

/ faculteit wiskunde en informatica 15/19



I! ! { technische universiteit eindhoven

Stability condition:

Just as in the M /M /1, M/G/1 and G/M /1 queue, the stability condition
for the G/G/1 queue is that the amount of work offered per time unit to
the server should be less than the amount of work the server can handle per
time unit, i.e.,

Approximation W
An often used approximation for the expected time in the queue is given by

2 2
P Ca tCh

W, =~
T 1—0p 2

- E(By)
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Special cases:

For the M /M /1 queue the approximation is equal to the exact value:

P 141

W. =
T 1l—p 2

E(Bi)  (M/M/1)

For the M /G /1 queue the approximation is equal to the exact value:

0 l—i—CQB1
I—0p 2

W, = E(B)  (M/G/1)

For the G/M /1 queue the approximation is NOT equal to the exact value:

p i+l
I —0p 2

Wy~ E(B)  (G/M]1)
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Approximations for W, L, and L:

From the approximation for W,

p Ch T Cp
IL—0p 2

Wq ~ . E(B1)7

we immediately obtain approximations for W, L, and L via the formulas

W — Wq ‘l‘ E(Bl),

W,
= Littl
L, E(A) (Little)
W ,
L = E(A) (Little)
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Example:
e In a workstation jobs are delivered at a rate of one job every 8 hours.

e The standard deviation of the time between successice delivery times is
4 hours.

e The average production time of a job is 6 hours with a standard deviation
of 2 hours.

Question:

What would be the reduction in the expected time in the system if the deli-
veries could be made more regular, for instance with a standard deviation
of only one hour?

Answer:
In this case the expected time in the system is reduced from roughly 9.25
hours to approximately 7 hours.
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