Solutions to exercises: week 1

Concep. 2.8 We have

$$
X_{n+1}= \begin{cases}1 & \text { with probability } 1, \text { if } X_{n}=0 \\ 2 & \text { with probability } 1, \text { if } X_{n}=1 \\ 2 & \text { with probability } p, \text { if } X_{n}=2 \\ 0 & \text { with probability } 1-p, \text { if } X_{n}=2\end{cases}
$$

Since X_{n+1} depends only on the current state and not on the past, $\left\{X_{n}, n \geq 0\right\}$ is a DTMC on state space $S=\{0,1,2\}$. The transition probability matrix is given by

$$
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1-p & 0 & p
\end{array}\right]
$$

Concep. 2.9 We have

$$
X_{n}= \begin{cases}1 & \text { if the item that arrives to the shop during } \\ \text { the }(n-1)^{s t} \text { minute is non-defective } \\ 0 & \text { otherwise. }\end{cases}
$$

Since X_{n+1} does not depend on the past, $\left\{X_{n}, n \geq 0\right\}$ is a DTMC on state space $S=\{0,1\}$. The transition probability matrix is given by

$$
P=\left[\begin{array}{ll}
1-p & p \\
1-p & p
\end{array}\right]
$$

Concep. 2.10 Let X_{n}

$$
=\left\{\begin{array}{l}
1 \begin{array}{l}
\text { if the machine is idle at the beginning of the } n^{t h} \text { minute } \\
\text { and there are no items in the bin } \\
2 \\
\text { if the machine is idle at the beginning of the } n^{t h} \text { minute } \\
\text { and there is one item in the bin } \\
3 \\
\text { if the machine has been busy for one minute at the beginning } \\
\text { of the } n^{t h} \text { minute and there are no items in the bin } \\
4 \\
\text { if the machine has been busy for one minute at the beginning } \\
\text { of the } n^{t h} \text { minute and there is one item in the bin } \\
5 \text { if the machine has just started production at the beginning } \\
\text { of the } n^{t h} \text { minute and there are no items in the bin. }
\end{array}
\end{array}\right.
$$

Then, $\left\{X_{n}, n \geq 0\right\}$ is a DTMC on $S=\{1,2,3,4,5\}$ with the transition probability matrix

$$
P=\left[\begin{array}{ccccc}
1-p & p & 0 & 0 & 0 \\
0 & 1-p & 0 & 0 & p \\
1-p & p & 0 & 0 & 0 \\
0 & 1-p & 0 & 0 & p \\
0 & 0 & 1-p & p & 0
\end{array}\right]
$$

Concep. 2.11 Let X_{n}

$$
=\left\{\begin{array}{l}
1 \begin{array}{l}
\text { if the machine is idle at the beginning of the } n^{t h} \text { minute } \\
\text { and there are no items in the bin }
\end{array} \\
2 \text { if the machine has been busy for one minute at the beginning } \\
\begin{array}{l}
\text { of the } n^{t h} \text { minute and there are no items in the bin } \\
\text { if the machine has been busy for one minute at the beginning } \\
\text { of the } n^{t h} \text { minute and there is one item in the bin. } \\
4 \\
\text { if the machine has just started production at the beginning } \\
\text { of the } n^{t h} \text { minute and there are no items in the bin }
\end{array}
\end{array}\right.
$$

Then, $\left\{X_{n}, n \geq 0\right\}$ is a DTMC on $S=\{1,2,3,4\}$ with the transition probability matrix

$$
P=\left[\begin{array}{cccc}
1-p & 0 & 0 & p \\
1-p & 0 & 0 & p \\
0 & 0 & 0 & 1 \\
0 & 1-p & p & 0
\end{array}\right]
$$

Concep. 2.12 Let

$$
X_{n}= \begin{cases}0 & \text { if day } n \text { and } n-1 \text { are both rainy } \\ 1 & \text { if day } n \text { is sunny and day } n-1 \text { is rainy } \\ 2 & \text { if day } n \text { is rainy and day } n-1 \text { is sunny } \\ 3 & \text { if day } n \text { and } n-1 \text { are both sunny. }\end{cases}
$$

Then, $\left\{X_{n}, n \geq 0\right\}$ is a DTMC on state space $S=\{0,1,2,3\}$ with the transition probability matrix

$$
P=\left[\begin{array}{cccc}
.4 & .6 & 0 & 0 \\
0 & 0 & .2 & .8 \\
.3 & .7 & 0 & 0 \\
0 & 0 & .1 & .9
\end{array}\right]
$$

Concep. 2.15 Let A denote the event that the DTMC visits state 1 before it visits state N. Then

$$
\begin{aligned}
u_{i}=\mathrm{P}\left(A \mid X_{0}=i\right) & =\sum_{j=1}^{N} \mathrm{P}\left(A \mid X_{1}=j, X_{0}=i\right) \mathrm{P}\left(X_{1}=j \mid X_{0}=i\right) \\
& =\sum_{j=1}^{N} \mathrm{P}\left(A \mid X_{0}=j\right) \mathrm{P}\left(X_{1}=j \mid X_{0}=i\right) \\
& =\sum_{j=1}^{N} u_{j} p_{i, j} .
\end{aligned}
$$

Also, if $X_{0}=1$, then A occurs with probability 1 , and if $X_{0}=N$, then A occurs with probability 0 . Hence

$$
u_{1}=1, \quad u_{N}=0 .
$$

Concep. 2.16 We have for $1 \leq X_{n} \leq(N-1)$

$$
X_{n+1}= \begin{cases}X_{n}+1 & \text { with probability }\left(N-X_{n}\right) / N \\ X_{n}-1 & \text { with probability } X_{n} / N .\end{cases}
$$

Further we have

$$
\mathrm{P}\left(X_{n+1}=1 \mid X_{n}=0\right)=1, \mathrm{P}\left(X_{n+1}=N-1 \mid X_{n}=N\right)=1 .
$$

Since X_{n+1} depends only on the current state and not on the past, $\left\{X_{n}, n \geq 0\right\}$ is a DTMC on state space $S=\{0, \ldots, N\}$ with transition probabilities

$$
p_{i, i+1}=\frac{N-i}{N}, \quad p_{i, i-1}=\frac{i}{N}(1 \leq i \leq(N-1)), p_{0,1}=1, p_{N, N-1}=1 .
$$

Comp. 2.1 a) $p_{5, j}=\mathrm{P}\left(X_{1}=j \mid X_{0}=5\right)=0(j=0,1,2,3)$ because 1 packet is transmitted and the number of new packets A_{1} is at least 0 .

$$
\begin{aligned}
& p_{5,4}=\mathrm{P}\left(X_{1}=4 \mid X_{0}=5\right)=\mathrm{P}\left(A_{1}=0\right)=0.3679 . \\
& p_{5,5}=\mathrm{P}\left(X_{1}=5 \mid X_{0}=5\right)=\mathrm{P}\left(A_{1}=1\right)=0.3679 . \\
& p_{5,6}=\mathrm{P}\left(X_{1}=6 \mid X_{0}=5\right)=\mathrm{P}\left(A_{1}=2\right)=0.1839 . \\
& p_{5,7}=\mathrm{P}\left(X_{1}=7 \mid X_{0}=5\right)=\mathrm{P}\left(A_{1} \geq 3\right)=0.0803 .
\end{aligned}
$$

b) There are two paths from state 7 at time 0 to state 7 at time 2 . The path: $7 \rightarrow 7 \rightarrow 7$ with probability $(0.6321)^{2}$; in each time slot 1 packet is transmitted and at least 1 new packet arrives.
The path: $7 \rightarrow 6 \rightarrow 7$ with probability (0.3679)(0.2642); in the first time slot 1 packet is transmitted and 0 new packets arrive, in the second time slot 1 packet is transmitted and at least 2 new packets arrive. So $p_{7,7}^{(2)}=0.4968$.
c) $a^{(0)}=(0,0,0,0,0,0,1)$.

With MAXIM follows $a^{(2)}=(0,0,0,0,0,0.1353,0.3679,0.4968)$, so $a_{7}^{(2)}=0.4968$.
d) Use the P matrix given in Equation (2.29). The desired quantity is

$$
\mathrm{E}\left(X_{5} \mid X_{3}=7\right)=\mathrm{E}\left(X_{2} \mid X_{0}=7\right)=\sum_{j=0}^{7} j\left[P^{(2)}\right]_{7, j}=\sum_{j=0}^{7} j a_{j}^{(2)}=6.3613 .
$$

Comp. 2.5 a) $A_{n}=$ the number of arrivals of new packets during the nth time slot, the interval $(n-1, n]: A_{n} \sim \operatorname{bin}(n=5, p=0.2)$.

$$
\begin{aligned}
& \mathrm{P}\left(A_{n}=0\right)=\binom{5}{0} \cdot 2^{0} \cdot 8^{5-0}=0.32768 \\
& \mathrm{P}\left(A_{n}=1\right)=\binom{5}{1} \cdot 2^{1} \cdot 8^{5-1}=0.4096 \\
& \mathrm{P}\left(A_{n}=2\right)=\binom{5}{2} \cdot 2^{2} \cdot 8^{5-2}=0.2048 \\
& \mathrm{P}\left(A_{n}=3\right)=\binom{5}{3} \cdot 2^{3} \cdot 8^{5-3}=0.0512 \\
& \mathrm{P}\left(A_{n}=4\right)=\binom{5}{4} \cdot 2^{4} \cdot 8^{5-4}=0.0064 \\
& \mathrm{P}\left(A_{n}=5\right)=\binom{5}{5} \cdot 2^{5} \cdot 8^{5-5}=0.00032
\end{aligned}
$$

$X_{n}=$ the number of packets in the buffer at the end of the nth time slot.

$$
\begin{aligned}
& \mathrm{P}\left(X_{1}=0 \mid X_{0}=1\right)=\mathrm{P}\left(A_{1}=0\right)=0.32768 . \\
& \mathrm{P}\left(X_{1}=1 \mid X_{0}=1\right)=\mathrm{P}\left(A_{1}=1\right)=0.4096 . \\
& \mathrm{P}\left(X_{1}=2 \mid X_{0}=1\right)=\mathrm{P}\left(A_{1}=2\right)=0.2048 . \\
& \mathrm{P}\left(X_{1}=3 \mid X_{0}=1\right)=\mathrm{P}\left(A_{1}=3\right)=0.0512 .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}\left(X_{1}=4 \mid X_{0}=1\right)=\mathrm{P}\left(A_{1}=4\right)=0.0064 . \\
& \mathrm{P}\left(X_{1}=5 \mid X_{0}=1\right)=\mathrm{P}\left(A_{1}=5\right)=0.00032 . \\
& \mathrm{P}\left(X_{1}=j \mid X_{0}=1\right)=0(j=6,7,8,9,10) . \\
& \mathrm{P}\left(X_{1}=j \mid X_{0}=8\right)=0(j=0,1,2,3,4,5,6) . \\
& \mathrm{P}\left(X_{1}=7 \mid X_{0}=8\right)=\mathrm{P}\left(A_{1}=0\right)=0.32768 . \\
& \mathrm{P}\left(X_{1}=8 \mid X_{0}=8\right)=\mathrm{P}\left(A_{1}=1\right)=0.4096 . \\
& \mathrm{P}\left(X_{1}=9 \mid X_{0}=8\right)=\mathrm{P}\left(A_{1}=2\right)=0.2048 . \\
& \left.\mathrm{P}\left(X_{1}=10 \mid X_{0}=8\right)=\mathrm{P}\left(A_{1} \geq 3\right)\right)=0.0579 .
\end{aligned}
$$

The other rows of the transition probability matrix are found in a similar way. The transition probability matrix is given by

$$
P=\left[\begin{array}{ccccccccccc}
.3277 & .4096 & .2048 & .0512 & .0064 & .0003 & 0 & 0 & 0 & 0 & 0 \\
.3277 & .4096 & .2048 & .0512 & .0064 & .0003 & 0 & 0 & 0 & 0 & 0 \\
0 & .3277 & .4096 & .2048 & .0512 & .0064 & .0003 & 0 & 0 & 0 & 0 \\
0 & 0 & .3277 & .4096 & .2048 & .0512 & .0064 & .0003 & 0 & 0 & 0 \\
0 & 0 & 0 & .3277 & .4096 & .2048 & .0512 & .0064 & .0003 & 0 & 0 \\
0 & 0 & 0 & 0 & .3277 & .4096 & .2048 & .0512 & .0064 & .0003 & 0 \\
0 & 0 & 0 & 0 & 0 & .3277 & .4096 & .2048 & .0512 & .0064 & .0003 \\
0 & 0 & 0 & 0 & 0 & 0 & .3277 & .4096 & .2048 & .0512 & .0067 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & .3277 & .4096 & .2048 & .0579 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .3277 & .4096 & .2627 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .3277 & .6723
\end{array}\right]
$$

b) $a^{(0)}=(0,0,0,0,0,0,0,0,0,0,1)$,
$a^{(1)}=a^{(0)} P=(0,0,0,0,0,0,0,0,0,0.327680,0.672320)$, so the expected number of packets in the buffer at the end of the first time slot is equal to $\mathrm{E}\left(X_{1} \mid X_{0}=10\right)=\sum_{i=0}^{10} i a_{i}^{(1)}=9.6723$.
In a similar way are calculated:
$a^{(2)}$ and $\mathrm{E}\left(X_{2} \mid X_{0}=10\right)=9.4307$,
$a^{(5)}$ and $\mathrm{E}\left(X_{5} \mid X_{0}=10\right)=8.8992$,
$a^{(10)}$ and $\mathrm{E}\left(X_{10} \mid X_{0}=10\right)=8.2678$.
Comp. 2.6 a) The matrix P of Conceptual Problem 2.8 with $p=0.95$ is: $P=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.05 & 0 & 0.95\end{array}\right]$. With MATLAB follows:

$$
\begin{aligned}
& P^{5}=\left[\begin{array}{lll}
0.045125 & 0.047500 & 0.907375 \\
0.045369 & 0.045125 & 0.909506 \\
0.045475 & 0.045369 & 0.909156
\end{array}\right] \\
& a^{(5)}=a^{(0)} P^{5}=(0,0,1) P^{5}=(0.045475,0.045369,0.909156)
\end{aligned}
$$

b) The set A of possible paths from state 2 at time $n=0$ to state 2 at time $n=5$ are given by:

$$
\begin{array}{llllll}
n=0 & n=1 & n=2 & n=3 & n=4 & n=5 \\
2 \rightarrow & 2, \\
2 \rightarrow & 0 \rightarrow & 1 \rightarrow & 2 \rightarrow & 2 \rightarrow & 2, \\
2 \rightarrow & 2 \rightarrow & 0 \rightarrow & 1 \rightarrow & 2 \rightarrow & 2, \\
2 \rightarrow & 2 \rightarrow & 2 \rightarrow & 0 \rightarrow & 1 \rightarrow & 2 .
\end{array}
$$

The probability at the first path is $(0.95)^{5}$, at each of the other paths is $(0.95)^{2}(0.05)$, so $\mathrm{P}(A)=0.909156$.
c) $p_{2,2}^{(5)}$ is defined as the probability te be in state 2 at time $n=5$, starting in state 2 at time $n=0$. The set A contains all possible paths to go in 5 state transitions from state 2 to state 2 , so it is obvious that $\mathrm{P}(A)=p_{2,2}^{(5)}$. Because in this case $a_{2}^{(0)}=1$ it follows immediately that $p_{2,2}^{(5)}=a_{2}^{(5)}$.
d) With MATLAB or MAXIM calculate $a^{(5)}, a^{(10)}, a^{(15)}, a^{(20)}$, starting from $a^{(0)}=(0,0,1)$. The asked probabilities are $a_{2}^{(5)}=0.90915594$, $a_{2}^{(10)}=0.90909084, a_{2}^{(15)}=0.9090909091, a_{2}^{(20)}=0.9090909090$.

Comp. 2.7 The distribution of the grade of a randomly chosen employee at the beginning of week one is $a=$ [.50 .25 .15 .10]. Hence we study one employee with initial distribution a. Hence,

$$
\mathrm{P}\left(X_{3}=j\right)=\sum_{i=1}^{4} a_{i} p_{i, j}^{(3)}
$$

is the probability that a randomly chosen employee ends up in grade j at the beginning of week 4 . Hence, the expected number of employees in grade j is given by

$$
100 *[.50 .25 .15 .10] * P^{3}=\left[\begin{array}{lll}
47.40 & 28.01 & 14.67 \\
9.92
\end{array}\right]
$$

where P is from Example 2.6.

Comp. 2.8 Using the P matrix from Equation (2.7), the desired probability is obtained as $\mathrm{P}\left(X_{3}=0, X_{2}=0, X_{1}=1 \mid X_{0}=1\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(X_{3}=0 \mid X_{2}=0\right) \mathrm{P}\left(X_{2}=0 \mid X_{1}=1\right) \mathrm{P}\left(X_{1}=1 \mid X_{0}=1\right) \\
& =p_{0,0} p_{1,0} p_{1,1}=(0.03)(0.02)(0.98)=5.88 \times 10^{-4} .
\end{aligned}
$$

Comp. 2.9 a) $Y_{n}=$ the number of machines "up" at the beginning of day n. State space is $S=\{0,1,2\}$. The second column of P contains the probabilities $p_{i, 1}(i=0,1,2)$.
$p_{0,1}=\mathrm{P}\left(Y_{n+1}=1 \mid Y_{n}=0\right)=$
$\mathrm{P}(1$ machine "up" at day $(n+1) \mid 2$ machines "down" at day n)
$=2^{*} 0.03^{*} 0.97=0.0582$,
$p_{1,1}=\mathrm{P}\left(Y_{n+1}=1 \mid Y_{n}=1\right)=$
$\mathrm{P}(1$ machine "up" at day $(n+1) \mid 1$ machine "up" at day $n)=$ P (machine "up" stays "up", machine "down" stays "down") + $\mathrm{P}($ machine "down" becomes "up", machine "up" goes "down" $)=$ $0.98 * 0.03+0.97 * 0.02=0.0488$,
$p_{2,1}=\mathrm{P}\left(Y_{n+1}=1 \mid Y_{n}=2\right)=$
$\mathrm{P}(1$ machine "up" at day $(n+1) \mid 2$ machines "up" at day $n)=$ $\mathrm{P}(1$ machine "up" goes "down", the other machine stays "up" $)=$ $0.98 * 0.02 * 2=0.0392$.
b) Using the P matrix from Equation (2.8), the desired probability is obtained as $\mathrm{P}\left(X_{3}=2, X_{2}=1, X_{1}=2 \mid X_{0}=2\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(X_{3}=2 \mid X_{2}=1\right) \mathrm{P}\left(X_{2}=1 \mid X_{1}=2\right) \mathrm{P}\left(X_{1}=2 \mid X_{0}=2\right) \\
& =p_{1,2} p_{2,1} p_{2,2}=(0.9506)(0.0392)(0.9604)=0.0358
\end{aligned}
$$

Comp. 2.12 a) X_{n} is the number of PC's in stock at 8:00 a.m. Monday of the nth week. If there are 2 or more PC's in the store at 5:00 p.m. Friday of the nth week, then no more PC's will be ordered that weekend and then the number in stock at 8:00 a.m. Monday of the $(n+1)$ th week is equal to the number in stock at 5:00 p.m. Friday of the nth week. Otherwise PC's are ordered that weekend and the number in stock at 8:00 a.m. Monday of the $(n+1)$ th week is
equal to 5 . If the number in stock at 8:00 a.m. Monday is taken as state of the DTMC, then the state space is $S=\{2,3,4,5\}$.
The demand D_{n} in week n is Poisson distributed with an average demand of 3 PC's. The distribution is given in Table 2.1.

Only the probabilities in the second and the fourth row of P are explained below, the probabilities in the first and third row can be derived in an analogous way.
$p_{3,2}=\mathrm{P}\left(X_{n+1}=2 \mid X_{n}=3\right)=\mathrm{P}\left(D_{n}=1\right)=0.1494$,
$p_{3,3}=\mathrm{P}\left(X_{n+1}=3 \mid X_{n}=3\right)=\mathrm{P}\left(D_{n}=0\right)=0.0498$,
$p_{3,4}=\mathrm{P}\left(X_{n+1}=4 \mid X_{n}=3\right)=0$,
$p_{3,5}=\mathrm{P}\left(X_{n+1}=5 \mid X_{n}=3\right)=\mathrm{P}\left(D_{n} \geq 2\right)=0.8008$.
$p_{5,2}=\mathrm{P}\left(X_{n+1}=2 \mid X_{n}=5\right)=\mathrm{P}\left(D_{n}=3\right)=0.2240$,
$p_{5,3}=\mathrm{P}\left(X_{n+1}=3 \mid X_{n}=5\right)=\mathrm{P}\left(D_{n}=2\right)=0.2240$,
$p_{5,4}=\mathrm{P}\left(X_{n+1}=4 \mid X_{n}=5\right)=\mathrm{P}\left(D_{n}=1\right)=0.1494$,
$p_{5,5}=\mathrm{P}\left(X_{n+1}=5 \mid X_{n}=5\right)=\mathrm{P}\left(D_{n} \geq 4 \cup D_{n}=0\right)=0.0498+$ $0.3528=0.4026$.
b) Using the P matrix of Example 2.4, the desired probability is obtained as $\mathrm{P}\left(X_{4}=3, X_{3}=5, X_{2}=2, X_{1}=4 \mid X_{0}=5\right)$

$$
=p_{5,4} p_{4,2} p_{2,5} p_{5,3}=(.1494)(.2240)(.9502)(.2240)=0.0071
$$

Comp. 2.13 This implies that 4 or more PC's are sold during the previous week, hence the desired probability is

$$
\mathrm{P}\left(D_{n} \geq 4\right)=0.3528
$$

Comp. 2.16 Use the P matrix in Equation (2.10) to compute the following

$$
M(51)=\left[\begin{array}{cccc}
10.1373 & 7.5681 & 4.5759 & 29.7188 \\
9.2203 & 8.5956 & 4.5609 & 29.6232 \\
9.2794 & 7.6673 & 5.5884 & 29.4649 \\
9.2756 & 7.7264 & 4.6714 & 30.3266
\end{array}\right]
$$

Thus, starting with full inventory, the store will have full inventories on the average 30.33 Mondays of the year.

