
Solutions to exercises: week 2
Comp. 2.19 a. irreducible, b. irreducible, c. reducible, d. reducible.

Comp. 2.20 a. aperiodic, b. periodic with period 4, c. periodic with period 2, d.
periodic with period 3.

Comp. 2.21 a) The normalized balance equations of Theorem 2.5 are as follows:

[π1 π2 π3 π4] = [π1 π2 π3 π4] ·


.10 .30 .20 .40
.10 .30 .40 .20
.30 .10 .10 .50
.15 .25 .35 .25

 ,
π1 + π2 + π3 + π4 = 1.

Otherwise:

π1 = 0.10π1 + 0.10π2 + 0.30π3 + 0.15π4,
π2 = 0.30π1 + 0.30π2 + 0.10π3 + 0.25π4,
π3 = 0.20π1 + 0.40π2 + 0.10π3 + 0.35π4,
π4 = 0.40π1 + 0.20π2 + 0.50π3 + 0.25π4,
1 = π1 + π2 + π3 + π4.

b) 1. The DTMC is irreducible and aperiodic. Hence the limiting
distribution exists, and is given by π = [.1703 .2297 .2687 .3313].

2. By Corollary 2.3, the stationary distribution is given by π∗ =
π.

3. By Theorem 2.7 or 2.9, the occupancy distribution is given
by π̂ = π∗.

Comp. 2.24 The questions a) and b) are solved simultaneously. We solve the nor-
malized balance equations of Theorem 2.5 “by hand”.

1. The limiting distribution does not exist since the DTMC is peri-
odic.

2. The stationary distribution π∗ is given by the solution to (see
Theorem 2.6)

[π∗1 π
∗
2 π
∗
3 π
∗
4] = [π∗1 π

∗
2 π
∗
3 π
∗
4] ·


0 0 .40 .60
1 0 0 0
0 1 0 0
0 1 0 0

 ,
1



π∗1 + π∗2 + π∗3 + π∗4 = 1.

Otherwise:

π∗1 = π∗2,
π∗2 = π∗3 + π∗4,
π∗3 = 0.40π∗1,
π∗4 = 0.60π∗1,
1 = π∗1 + π∗2 + π∗3 + π∗4.

Solving “by hand”, we get π∗ = (1
3
, 1

3
, 2

15
, 1

5
).

3. By Theorem 2.7 or 2.9, the occupancy distribution is given by
π̂ = π∗.

Comp. 2.25 Consider the DTMC {Xn, n ≥ 0} with the transition probability ma-
trix as given in the solution to Computational Problem 2.5. Solve the
normalized balance equation numerically to obtain

π = [.0393 .0805 .0960 .0981 .0981 .0981 .0980 .0980 .0980 .0980 .0979].

The DTMC is irreducible and aperiodic. Hence π is the limiting dis-
tribution, which also equals occupancy distribution π̂. Hence, the long
run fraction of time that the buffer is full is given by

π̂10 = π10 = 0.0979.

The expected number of packets in the buffer in the long run is given
as

10∑
i=0

iπi = 5.3686.

Comp. 2.26 Using the P matrix of Example 2.6, we can compute the corresponding
limiting distribution as

π = [.2727 .4545 .1818 .0909].

Since the hundred employees are independent of each other, the ex-
pected number of employees in grades i = 1, 2, 3, 4 in steady state is
given by

100π = [27.27 45.45 18.18 9.09].
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Comp. 2.33 Let c(i) be the expected number of items finished by the end of the
nth minute if the machine is in state i at the beginning of the nth
minute. Referring to the solution of Conceptual Problem 2.10, we get
c = [0 0 2 2 0]′. over the state space S = {1, 2, 3, 4, 5}.

a) If the machine is idle at the beginning of the first minute, i.e.
a(0) = (1, 0, 0, 0, 0) then a(4) = a(0)P 4 gives the probabilitiy dis-
tribution at the beginning of the fifth minute. In this case a(4)

equals the first row of the matrix P 4.
MAXIM gives a(4) = (0.0023, 0.0862, 0.0045, 0.0857, 0.8213).
The expected number of visits to state i ∈ S during the fifth
minute equals 1∗a(4)

i +0∗(1−a(4)
i ) = a

(4)
i . Hence the expected num-

ber of processed items in the fifth minute equals
∑5

i=1 a
(4)
i c(i) =

2 ∗ (0.0045 + 0.0857) = 0.1804 items.

b) In an analogous way the expected number of items processed in
the fifth and sixth minute is equal to∑5

i=1 (a
(4)
i + a

(5)
i )c(i) = 2 ∗ (0.0045 + 0.0857 + 0.0411 + 0.7802) =

1.823 items.

This last number 1.823 items is also equal to the sum of the num-
ber of items processed in the fifth minute and the expected number
of items for which the processing starts in the fifth minute. This
sum is 0.1804 + 2 * 0.8213 = 1.823 items.

c) We are interested in computing g(1, 9). Using Theorem 2.11, we
get

g(9) = M(9) ∗ c = [7.3152 7.8848 9.3152 9.8848 9.3152]′.

Thus the machine produces 7.3152 items on the average in the
first 10 minutes if it idle and the bin is empty at time 0.

Comp. 2.37 a) In state i (number of PC’s in stock at 8:00 a.m. Monday) the
storage cost during a week is -50 ∗ i. Buying cost (-1500) and
selling revenue (1750) are considered in the week in which a PC
is sold. The demand in a week is Dn, the expected number of
PC’s sold is E(min(i,Dn)). Hence the net revenue becomes c(i) =
−50 ∗ i+ (1750− 1500) ∗ E(min(i,Dn)) (i = 2, 3, 4, 5).
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b) Starting with a(0) = (0, 0, 0, 1) the expected revenue in the third

week is
∑5

i=2 a
(2)
i c(i) = 440.76.

c) The long run expected cost per week of operating the system is
given by (using Theorem 2.12) πc where c is given in Example
2.27 as

c = [337.76 431.96 470.15 466.325]′.

Using the transition probability matrix P given in Equation (2.10),
we compute the limiting distribution as given below

π = [.1812 .1504 .0908 .5775].

Hence, it costs $438.20 per week to operate this system.

Comp. 2.40 a) Xn is the number of packets in the buffer at the end of the nth
time slot. If Xn = 0 then the expected number of transmitted
items in the (n+ 1)th time slot is 0, if Xn ≥ 1 then the expected
number of transmitted packets in the (n + 1)th time slot is 1, so
c = (0, 1, 1, 1, 1, 1, 1, 1).

b) The expected number of transmitted packets in the fifth minute, if
the buffer is full at the beginning of the first minute, is (of course)
equal to 1.
The expected number of transmitted packets in the eighth minute,
if the buffer is full at the beginning of the first minute, is equal to∑7

i=0 a
(7)
i c(i) = 0 ∗ 0.0009 + 1 ∗ 0.9991 = 0.9991.

c) We are interested in g(3, 9), the third component of the vector
g(9) = M(9) ∗ c. With MAXIM follows g(3, 9) = 9.4296 transmit-
ted packets in the first 10 time slots.

d) Let {Xn, n ≥ 0} be the DTMC of Example 2.8. The limiting
distribution of the DTMC is given in Example 2.24 to be

π = [.0682 .1172 .1331 .1361 .1363 .1364 .1363 .1364].

Let c(i) be the expected number of packets transmitted during
the nth slot if the DTMC is in state i a the beginning of the n the
slot. We have

c = [0 1 1 1 1 1 1 1].′
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From Theorem 2.12, the expected number of packets transmitted
per unit time is given by

πc = 0.9318.

The expected number of packets transmitted per unit time plus
the expected number of packets lost per unit time must be equal
to the expected number of packets that arrive to the system per
unit time (in this case it is 1, since the distribution of the num-
ber of packets that come to the system in a time slot is a P (1)
random variable). In Example 2.29, the fraction of packets lost is
computed to be .0682. Now, .0682 + .9318 = 1, thus verifying the
above assertion.

Handout section 1

Exercise 2 (a) End classes E1 = {4, 5, 6, 7}, E2 = {8}, E3 = {9, 10}. C =
{1, 2, 3}.

(b) The limiting distribution over S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is π =
(0, 0, 0, 14

255
, 14

85
, 14

85
, 7

85
, 1

6
, 11

150
, 22

75
).

(c) We have

P∞ =



0 0 0 8
255

8
85

8
85

4
85

1
6

17
150

34
75

0 0 0 14
255

14
85

14
85

7
85

1
6

11
150

22
75

0 0 0 2
51

2
17

2
17

1
17

1
3

1
15

4
15

0 0 0 2
17

6
17

6
17

3
17

0 0 0

0 0 0 2
17

6
17

6
17

3
17

0 0 0

0 0 0 2
17

6
17

6
17

3
17

0 0 0

0 0 0 2
17

6
17

6
17

3
17

0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1
5

4
5

0 0 0 0 0 0 0 0 1
5

4
5



.
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Exercise 3 (a) The state of a student is registrated at the end of a week. During
the presence of a student in the training, this is done immediately
before taking the exam belonging to the course of that week. The
state space is S = {1, 2, 3, 4, 5, 6, 7, 8} with

1: (C1, f) = Course 1, first trial,
2: (C1, s) = Course 1, second trial,
3: (C2, f) = Course 2, first trial,
4: (C2, s) = Course 2, second trial,
5: (C3, f) = Course 3, first trial,
6: (C3, s) = Course 3, second trial,
7: “left training without diploma”,
8: “left training with diploma”.

The matrix of transition probabilities P at S is:

P =



0 15
100

7
10

0 0 0 15
100

0

0 0 5
10

0 0 0 5
10

0

0 0 0 1
10

8
10

0 1
10

0

0 0 0 0 6
10

0 4
10

0

0 0 0 0 0 5
100

5
100

9
10

0 0 0 0 0 0 3
10

7
10

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


.

(b) the possible paths through the state space S are

1→ 2→ 3→ 5→ 7,
1→ 2→ 3→ 4→ 7,
1→ 3→ 4→ 5→ 7,
1→ 3→ 5→ 6→ 7.

The total probability is
33

2000
= 0.0165.

(c) The probabilities are
249271

400000
= 0.6232 en

150729

400000
= 0.3768
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Exercise 4 (a) The state of an employee is registrated at the end of a calendar
year n. For an employee in this job, the state is the salary level
in the salary scale for next year (n+ 1). For an employee who has
left this job, the state is characterised by “LC = Left Company”
or by “AF = Another Function”. In the model is assumed that
new employees in this job always start on January 1 of a year on
salary level 1.
The state space is S = {1, 2, 3, 4, AF, LC}.

The matrix of transition probabilities P at this S is:

P =



0 0.8 0 0 0 0.2

0 0.3 0.5 0 0 0.2

0 0 0.4 0.3 0.1 0.2

0 0 0 0.5 0.4 0.1

0 0 0 0 1 0

0 0 0 0 0 1


.

(b) There are several paths to state AF after 4 years.

year 1 year 2 year 3 year 4 year 5

1 2 2 3 AF

1 2 3 3 AF

1 2 3 4 AF

1 2 3 AF AF

The total probability on these paths is: (0.8)(0.3)(0.5)(0.1) +
(0.8)(0.5)(0.4)(0.1)+(0.8)(0.5)(0.3)(0.4)+(0.8)(0.5)(0.1)(1) = 0.116.

(c) The probability is
71

105
= 0.6762.

The percentage is 32.38%.
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