Solutions to exercises: week 3

Comp. 2.45 a) The set of equations is
$t_{0}=0$,
$t_{1}=1+0.3679 t_{0}+0.3679 t_{1}+0.1839 t_{2}+0.0613 t_{3}$
$+0.0153 t_{4}+0.0031 t_{5}+0.0005 t_{6}+0.0001 t_{7}$,
$t_{2}=1+0.3679 t_{1}+0.3679 t_{2}+0.1839 t_{3}$
$+0.0613 t_{4}+0.0153 t_{5}+0.0031 t_{6}+0.0006 t_{7}$,
$t_{3}=1+0.3679 t_{2}+0.3679 t_{3}$
$+0.1839 t_{4}+0.0613 t_{5}+0.0153 t_{6}+0.0037 t_{7}$,
$t_{4}=1+0.3679 t_{3}$
$+0.3679 t_{4}+0.1839 t_{5}+0.0613 t_{6}+0.0190 t_{7}$,
$t_{5}=1$
$+0.3679 t_{4}+0.3679 t_{5}+0.1839 t_{6}+0.0803 t_{7}$,
$t_{6}=1$
$+0.3679 t_{5}+0.3679 t_{6}+0.2642 t_{7}$,
$t_{7}=1$

$$
+0.3679 t_{6}+0.6321 t_{7}
$$

b) Let $\left\{X_{n}, n \geq 0\right\}$ be the DTMC in Example 2.12. Let $T=$ $\min \left\{n \geq 0: X_{n}=0\right\}$ and $m_{i}=\mathrm{E}\left(T \mid X_{0}=i\right)$. We are asked to compute m_{7}. Using the P matrix from Equation (2.29) in Theorem 2.13, we get $m_{7}=60.7056$.

Handout section 2

Exercise 1 (a) -
(b) i. $13,5,2.1$
ii. 18 trainees, 1 junior mechanic, 0 senior mechanics

Exercise 2 (a) The state space is $S=\{1,2,3,4, L I C\}$, where $i(i=1,2,3,4)$ stands for premium level i and LIC stands for "Left Insurance Company".
The matrix of transition probabilities P at this S is:

$$
P=\left(\begin{array}{ccccc}
0.5 & 0.3 & 0 & 0 & 0.2 \\
0.4 & 0 & 0.5 & 0 & 0.1 \\
0 & 0.25 & 0 & 0.7 & 0.05 \\
0 & 0 & 0.125 & 0.85 & 0.025 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(b) The expected numbers on the four premium levels are: 31500, 24500, 39375, 58750.
(c) The long-run expected numbers on the four premium levels are: $\approx 23478, \approx 29348, \approx 49217, \approx 236348$.

Comp. 3.4 The lifetime of the satellite is given by $\max \left(T_{1}, T_{2}\right)$ where $T_{1}, T_{2} \sim$ $\operatorname{Exp}(\lambda)$ (with $\lambda=.2$) random variables. The cdf is given by

$$
\begin{aligned}
\mathrm{P}\left(\max \left(T_{1}, T_{2}\right)<x\right) & =\mathrm{P}\left(T_{1}<x, T_{2}<x\right) \\
& =\mathrm{P}\left(T_{1}<x\right) \mathrm{P}\left(T_{2}<x\right)=\left(1-e^{-0.2 x}\right)^{2} .
\end{aligned}
$$

The expected lifetime can be found either by integrating the complementary cdf or by using the result of Conceptual Problem 3.12. Here, we show the second approach. Let X_{2} be the time interval during which both computers are working, and X_{1} be the time interval during which only one computer is working. Thus the first failure occurs at time X_{2} and the second at time $X_{2}+X_{1}$. Hence, $\max \left\{T_{1}, T_{2}\right\}=X_{2}+X_{1}$. Now, $X_{2}=\min \left(T_{1}, T_{2}\right)$, hence $X_{2} \sim \exp (2 \lambda)$. Also, X_{1} is the remaining lifetime of the computer that did not fail at time X_{2}. From the memoryless property of the exponential distribution it follows that this remaining lifetime is $\exp (\lambda)$. Hence

$$
\mathrm{E}\left(\max \left\{T_{1}, T_{2}\right\}\right)=\mathrm{E}\left(X_{2}+X_{1}\right)=\frac{1}{2 \lambda}+\frac{1}{\lambda}=7.5 \text { years. }
$$

Comp. 3.9 The remaining service times at the tellers are exponentially distributed random variables with mean 5 minutes, i.e., with parameter $.2(\mathrm{~min})^{-1}$. Thus, the amount of time the customer has to wait is the minimum of three $\operatorname{Exp}(0.2)$ random variables, which is $\operatorname{Exp}(0.6)$. The mean is $1 / .6$ $=1.667$ minutes.

Comp. 3.10 The expected waiting time at the ATM is 2 minutes, while the expected waiting time inside is 1.667 minutes (from Computational Problem 3.9). Thus he should wait inside.

Concep. 4.1 The state space of $\{X(t), t \geq 0\}$ is $\{0,1,2\}$. In state 2 , both cables are up and each is subject to a load of $L / 2$. Hence the lifetime of each cable is $\operatorname{Exp}(\lambda L / 2)$. The process jumps from state 2 to 1 when either cable
breaks, hence $r_{2,1}=\lambda L / 2+\lambda L / 2=\lambda L$. In state 1 , only one cable is working under a total load of L. Hence its lifetime is $\operatorname{Exp}(\lambda L)$. Once it breaks, the process moves to state 0 . Hence $r_{1,0}=\lambda L$. Once the process enters state 0 , it stays there permanently. Hence $\{X(t), t \geq 0\}$ is a CTMC on state space $S=\{0,1,2\}$ with rate matrix

$$
R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\lambda L & 0 & 0 \\
0 & \lambda L & 0
\end{array}\right]
$$

Concep. 4.2 The state space is $\{0,1, \cdots, 10\}$. In state 0 , the process jumps to 1 when there is an arrival, which occurs with rate λ. Hence $r_{0,1}=\lambda$. In state $i, 1 \leq i \leq 3$, one customer is being served. The process jumps to state $i+1$ with rate λ, and to state $i-1$ with rate μ. Hence, $r_{i, i+1}=\lambda, \quad r_{i, i-1}=\mu$. In state $i, 4 \leq i \leq 7$, two customers are in service. The process jumps to state $i+1$ with rate λ, and to state $i-1$ with rate 2μ, since any one of the two customers in service may complete service to trigger this transition. Proceeding in this fashion we see that $\{X(t), t \geq 0\}$ is a Birth and Death Process with birth parameters

$$
\lambda_{i}=\lambda, \quad 0 \leq i \leq 9,
$$

and death parameters

$$
\mu_{i}= \begin{cases}\mu & \text { for } 1 \leq i \leq 3 \\ 2 \mu & \text { for } 4 \leq i \leq 7 \\ 3 \mu & \text { for } 8 \leq i \leq 10 .\end{cases}
$$

Concep. 4.4 Let $A(t)$ be the set of busy servers at time $t, A(t) \subset\{1,2,3\}$. Let

$$
X(t)= \begin{cases}0 & \text { if } A(t)=\emptyset, \\ 1 & \text { if } A(t)=\{1\}, \\ 2 & \text { if } A(t)=\{2\}, \\ 3 & \text { if } A(t)=\{3\}, \\ 4 & \text { if } A(t)=\{1,2\}, \\ 5 & \text { if } A(t)=\{1,3\}, \\ 6 & \text { if } A(t)=\{2,3\}, \\ 7 & \text { if } A(t)=\{1,2,3\} .\end{cases}
$$

Then, the usual triggering event analysis in each state shows that $\{X(t), t \geq 0\}$ is a CTMC with the following rate matrix:

$$
R=\left[\begin{array}{cccccccc}
0 & \lambda & 0 & 0 & 0 & 0 & 0 & 0 \\
\mu_{1} & 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\
\mu_{2} & 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\
\mu_{3} & 0 & 0 & 0 & 0 & \lambda & 0 & 0 \\
0 & \mu_{2} & \mu_{1} & 0 & 0 & 0 & 0 & \lambda \\
0 & \mu_{3} & 0 & \mu_{1} & 0 & 0 & 0 & \lambda \\
0 & 0 & \mu_{3} & \mu_{2} & 0 & 0 & 0 & \lambda \\
0 & 0 & 0 & 0 & \mu_{3} & \mu_{2} & \mu_{1} & 0
\end{array}\right] .
$$

Concep. 4.5 The state space of $\{X(t), t \geq 0\}$ is $\{0,1, \cdots, K\}$. When it is in state $i, 0 \leq i \leq M$, all customers are allowed to enter, hence it moves to state $i+1$ with rate $\lambda_{1}+\lambda_{2}$. When it is in state $i, M<i<K$, only customers of type 1 are allowed to enter, hence it moves to state $i+1$ with rate λ_{1}. In state $i, 1 \leq i \leq K$, one customer is in service, whose service time is $\operatorname{Exp}(\mu)$, regardless of its type. Hence the system moves to state $i-1$ with rate μ. Thus, $\{X(t), t \geq 0\}$ is a birth and death process on state space $\{0,1, \cdots, K\}$, with death parameters

$$
\mu_{i}=\mu, \quad 1 \leq i \leq K
$$

and birth parameters

$$
\lambda_{i}= \begin{cases}\lambda_{1}+\lambda_{2} & \text { for } 0 \leq i \leq M \\ \lambda_{1} & \text { for } M+1 \leq i<K \\ 0 & \text { for } i=K\end{cases}
$$

Concep. 4.8 The state of the system $A(t)$ is a vector giving the state of the three machines at time t. Using w for "working", b for "blocked", and i for "idle", we get the following definition of $X(t)$,

$$
X(t)= \begin{cases}1 & \text { if } A(t)=\{w, w, w\} \\ 2 & \text { if } A(t)=\{w, b, w\} \\ 3 & \text { if } A(t)=\{w, i, w\} \\ 4 & \text { if } A(t)=\{w, w, i\} \\ 5 & \text { if } A(t)=\{w, i, i\} \\ 6 & \text { if } A(t)=\{b, w, w\} \\ 7 & \text { if } A(t)=\{b, b, w\} \\ 8 & \text { if } A(t)=\{b, w, i\} .\end{cases}
$$

Then, performing the usual analysis of transition triggering events, we see that $\{X(t), t \geq 0\}$ is a CTMC with the following rate matrix:

$$
R=\left[\begin{array}{cccccccc}
0 & \mu_{2} & 0 & \mu_{3} & 0 & \mu_{1} & 0 & 0 \\
0 & 0 & \mu_{3} & 0 & 0 & 0 & \mu_{1} & 0 \\
\mu_{1} & 0 & 0 & 0 & \mu_{3} & 0 & 0 & 0 \\
0 & 0 & \mu_{2} & 0 & 0 & 0 & 0 & \mu_{1} \\
0 & 0 & 0 & \mu_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mu_{2} & \mu_{3} \\
\mu_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mu_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Concep. 4.9 Let $X(t)$ be the number of customers in the system at time t if the system is up, and let $X(t)=d$ if the system is down at time t. Thus the state-space is $S=\{d, 0,1, \ldots, K\}$. Performing the usual analysis of transition triggering events, we see that $\{X(t), t \geq 0\}$ is a CTMC with transition rates

$$
\begin{aligned}
& r_{i, d}=\theta, \quad \text { for } 0 \leq i \leq K, \\
& r_{d, 0}=\alpha, \quad \text { for } 1 \leq i \leq K, \\
& r_{i, i-1}=\mu, \quad \text { for } 0 \leq i \leq K-1 . \\
& r_{i, i+1}=\lambda,
\end{aligned}
$$

All other transition rates are zero.

