1 Instruction 6: Selection of exercises from Chapters 5 and 6 of Kulkarni

Theory: paragraphs 5.2, 5.3

Conceptual Problems:

5.1 See the text in the book.
5.7 See the text in the book.

Computational Problems:

5.1 See the text in the book.
5.2 See the text in the book.
5.3 See the text in the book.
5.9 See the text in the book.

Theory: paragraphs 6.1, 6.2, 6.3, 6.4

Conceptual Problems:

6.8 See the text in the book.
6.10 See the text in the book.
6.11 See the text in the book.

Computational Problems:

6.1 See the text in the book.
6.2 See the text in the book.
6.6 Consider the barber-shop as described in the text of this exercise. Make the exercise without using MAXIM. Verify your results afterwards with MAXIM.
a) Classify the model according to the standard nomenclature described in section 6.1.
b) Give the rate diagram for this queueing model.
c) Formulate a set of balance and normalizing equations.
d) Calculate the limiting distribution.
e) What fraction of the customers is lost?
f) Compute the fraction of time the barber is occupied.
g) Make the task as given in the text of this exercise in the book.
h) Determine the expected queueing time.
6.7 See the text in the book.
6.8 Consider the changed situation in the barber-shop as described in the text of this exercise. Make the exercise without using MAXIM. Verify your results afterwards with MAXIM.
a) Classify the model according to the standard nomenclature described in section 6.1.
b) Give the rate diagram for this new model.
c) Formulate a set of balance and normalizing equations.
d) Calculate the limiting distribution.
e) What fraction of the customers is lost?
f) Compute the fraction of time the barbers are occupied.
g) Calculate the throughput of the barber-shop, i.e., the expected number of customers served in the barber-shop per hour.
h) Determine the expected time an entering customer spends in the shop and the expected queueing time of this customer.
i) Make the task as given in the text of this exercise in the book.

