
Solutions to exercises: week 5

Concep. 5.1 Let the successive lifetimes of the batteries in the replacement problem
of Example 5.2 be Li. Define N0 = 0 and define

Nr+1 = min{i > Nr : Li > 3}, r ≥ 0.

Thus the Nrth replacement is the rth planned replacement. Hence the
time between the (r − 1)st and rth planned replacement is given by

Tr =
Nr−1∑

i=Nr−1+1

Li + 3.

Since Li are iid, and Li, i > Nr do not depend upon Li, i ≤ Nr,
{Tr, r = 1, 2, 3..} is a sequence of iid random variables. Hence {N(t), t ≥
0} is a renewal process.

Concep. 5.7 Let Tn be the time between the arrival of the (n − 1)st and nth task
at the receiving station. {Tn, n ≥ 1} is given to be a sequence of iid
random variables. Hence {Y (t), t ≥ 0} is a renewal process generated
by {Tn, n ≥ 0}. Let T ′n be the time between the arrival of the (n− 1)st
and nth batch (of size K) at the workshop. We have

T ′n =
nK∑

i=(n−1)K+1

Ti, n ≥ 1.

Hence{T ′n, n ≥ 1} is a sequence of iid random variables. Define the cost
(Cn) incurred over the nth cycle as the number of items received in each
cycle (Cn = K). Then {(T ′n, Cn), n ≥ 1} is a sequence of iid bivariate
random variables. Hence {Z(t), t ≥ 0} is a cumulative process. The
long run rate at which jobs are received by the receiving station is given
by Theorem 5.2 to be

lim
n→∞

Y (t)

t
=

1

τ
,

and, the long run rate at which jobs are received by the workshop is
given by Theorem 5.3,

lim
n→∞

Z(t)

t
=

E(C1)

E(T ′1)
=

K

Kτ
=

1

τ
.

This is indeed to be expected since no jobs are lost or created from the
receiving station to the workshop.
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Comp. 5.1 The lifetime of a battery is given to be Erl(k, λ) with k = 3, and λ = 1.
Hence, the mean lifetime of a battery is τ = k/λ = 3. From Theorem
5.2, the long run replacement rate is given by

lim
t→∞

=
N(t)

t
=

1

τ
=

1

3
.

Comp. 5.2 Let L ∼ Erl(3, 1) be the lifetime of a battery. Then, the expected inter
replacement time is given by

E(T ) = E(min(3, L))

=

∫ 3

0

xfL(x)dx+

∫ ∞
3

3fL(x)dx

=

∫ 3

0

xe−xx
2

2
dx+ 3P(L > 3)

= 3− 13.5e−3 = 2.3279.

Thus, the long run replacement rate is given by

lim
t→∞

=
N(t)

t
=

1

E(T )
= 0.4296.

Comp. 5.3 Let T1 be the time of first planned replacement. Using the argument
in Example 5.7, we get

τ = E(T1) = E(min(L1, 3)) + τP(L1 < 3) = 2.3279 + 0.5768τ.

(Here we have used E(min(L1, 3)) = 2.3279 from Computational Prob-
lem 5.2.) Solving for τ we get τ = 5.5008. Hence, the long run planned
replacement rate is given by

lim
t→∞

N(t)

t
=

1

E(T1)
= 0.1818.

Alternative solution:

An arbitrary replacement is with probability P (L1 > 3) = 0.4232 a
planned replacement. Hence the long-run planned replacement rate is
(0.4296) · (0.4232) = 0.1818.
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Comp. 5.9 Follow the computations in Example 5.14. Let L1 be the lifetime of the
first battery, T1 be the time of first replacement, and C1 be the cost of
that replacement. From the solution to Computational Problem 5.2,

E(T1) = E(min(L1, 3)) = 2.3279.

Furthermore,

E(C1) = 75 + 75P(L1 < 3) = 75 + 75 ∗ .5768 = 118.26.

The long run cost rate under the “planned replacement” policy is given
by

lim
t→∞

C(t)

t
=

E(C1)

E(T1)
=

118.26

2.3279
= 50.80 dollars/year.

Under the “replace upon failure” policy, we have

E(T1) = E(L1) = 3, E(C1) = 75 + 75 = 150.

Hence the long run cost per year is given by

lim
t→∞

C(t)

t
=

E(C1)

E(T1)
=

150

3
= 50 dollars/year.

Hence replacement upon failure is cheaper.

Concep. 6.8 Let X(t) be the number of items in the warehouse at time t. The state
space of {X(t), t ≥ 0} is {0, 1, 2, · · · , K}. Assume that the machine
always produces items, and if there is no space in the warehouse for a
produced item, it is lost. Since the exponential distribution has mem-
oryless property, this has the same effect as turning the machine off
when the warehouse is full. Then the production process is PP (λ) and
acts as an arrival process to the warehouse. Assume that the items
form a queue in the warehouse. Then the first item in the warehouse
has to wait an Exp(µ) amount of time for the next demand before it
is removed. Again, memoryless property of exponential distribution
implies that lost demands do not have any effect. Hence the “service
times” of the items are iid Exp(µ) random variables. Hence the number
of items in the warehouse forms an M/M/1/K queue.
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Concep. 6.10 {X(t), t ≥ 0} is a stochastic process with state space {0, 1, 2, · · · , K}.
When X(t) = i > 0, a repair takes place with rate µ (in which case the
state decreases by 1), and a failure occurs at rate (K − i)λ (in which
case the state increases by 1). If X(t) = 0, no repairs take place, while
a failure occurs at rate Kλ. Hence {X(t), t ≥ 0} is a birth and death
process with birth rates

λi = (K − i)λ, 0 ≤ i ≤ K,

and death rates
µi = µ, 1 ≤ i ≤ K.

Concep. 6.11 {X(t), t ≥ 0} is a birth and death process with birth rates

λi = (K − i)λ, 0 ≤ i ≤ K,

and death rates
µi = min(i, s)µ, 0 ≤ i ≤ K.

Comp. 6.1 λ = 5, τ = 1.3. Let s be the number of servers. From Theorem 6.4,
the queue is stable if s > λτ = 5 ∗ 1.3 = 6.5. Hence the minimum
number of servers needed for stability is 7.

Comp. 6.2 From Example 6.5, the expected number of busy servers is given by
B = min(λτ, s) = min(6.5, s). Thus B = s if 1 ≤ s ≤ 6, and B = 6.5 if
s ≥ 7.

Comp. 6.6 Time unit: hour. λ = 8, µ = 4.

a) This is an M/M/1/K queue with K = 4.

b)

0 1 2 3 4

8 8

444

8 8

4
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c) Balance equations

8p0(4) = 4p1(4),

12p1(4) = 8p0(4) + 4p2(4),

12p2(4) = 8p1(4) + 4p3(4),

12p3(4) = 8p2(4) + 4p4(4),

4p4(4) = 8p3(4),

or, alternatively,

8p0(4) = 4p1(4),

8p1(4) = 4p2(4),

8p2(4) = 4p3(4),

8p3(4) = 4p4(4).

Normalizing equation: p0(4) + p1(4) + p2(4) + p3(4) + p4(4) = 1.

d) The limiting distribution is given by

p(4) =

[
1

31
,

2

31
,

4

31
,

8

31
,
16

31

]
.

e) p4(4) = 16
31

f) 1− p0(4) = 30
31

g) The arrival rate of entering customers is λ(1 − p4(4)) = 120
31

cus-

tomers per hour. Furthermore, L =
∑4

i=0 ipi(4) = 98
31

. Hence

W =
L

λ(1− p4(4))
= 0.8167 hours = 49 minutes

h) W q = W − 1
4

= 0.5667 hours = 34 minutes.

Comp. 6.7 The fraction of the customers lost is given by p4(4) = 0.5161. Hence
the fraction of the customers that enter is given by 1− p4(4) = 0.4839.
Hence the rate at which customers enter is 0.4839∗8 = 3.8712 per hour.
Each entering customer pays 12 dollars. Hence the long run revenue
rate is

3.8712 ∗ 12 = 46.4544 dollars/hour.
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Comp. 6.8 a) This is an M/M/s/K queue with s = 2 and K = 4.

b)

0 1 2 3 4

8 8

4

8 8

8 8 8
c) Balance equations

8p0(4) = 4p1(4),

12p1(4) = 8p0(4) + 8p2(4),

16p2(4) = 8p1(4) + 8p3(4),

16p3(4) = 8p2(4) + 8p4(4),

8p4(4) = 8p3(4),

or, alternatively,

8p0(4) = 4p1(4),

8p1(4) = 8p2(4),

8p2(4) = 8p3(4),

8p3(4) = 8p4(4).

Normalizing equation: p0(4) + p1(4) + p2(4) + p3(4) + p4(4) = 1.

d) The limiting distribution is given by

p(4) =

[
1

9
,
2

9
,
2

9
,
2

9
,
2

9

]
.

e) p4(4) = 2
9

f) 0 · p0(4) + 1
2
· p1(4) + 1 · (p2(4) + p3(4) + p4(4)) = 7

9

g) λ(1− p4(4)) = 56
9

(alternatively: 7
9
· 2 · 4 = 56

9
)

h) The arrival rate of entering customers is λ(1 − p4(4)) = 56
9

cus-

tomers per hour. Furthermore, L =
∑4

i=0 ipi(4) = 20
9

. Hence

W =
L

λ(1− p4(4))
= 0.3571 hours = 21.43 minutes
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and

W q = W − 1

4
= 0.1071 hours = 6.43 minutes

i) The new rate of revenue is given by

12 ∗ λ ∗ (1− p4(4)) = 74.6667 dollars/hour.
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