Solutions to exercises: week 6

Concep. 6.20 Consider the queue in front of server 1. The inter-arrival times are iid, each being a sum of two iid $\exp (\lambda)$ random variables. Hence it is a $G / M / 1$ queue.

Concep. 6.21 The pdf of an $\mathrm{U}(a, b)$ random variable is

$$
g(x)=\frac{1}{b-a}, \quad a \leq x \leq b
$$

Hence

$$
\tilde{G}(s)=\int_{a}^{b} e^{-s x} g(x) d x=\frac{e^{-a s}-e^{-b s}}{s(b-a)} .
$$

The key functional equation is $u=\tilde{G}(\mu(1-u))$, which reduces to

$$
u=\frac{e^{-a \mu(1-u)}-e^{-b \mu(1-u)}}{\mu(1-u)(b-a)} .
$$

Comp. 6.10 This is an $M / M / 1 / K$ queue with $\lambda=1$ per hour, $\quad \mu=20 / 24=$ $5 / 6$ per hour, $K=10$. The machine is off whenever the warehouse is full. The long run fraction of the time the machine is off is given by $p_{10}(10)=0.1926$.

Comp. 6.11 This is the same queue as in Computational Problem 6.10. The demands are lost when the warehouse is empty. The demands occur according to a Poisson process. Hence, according to PASTA, the long run probability that a demand sees the warehouse empty is given by $p_{0}(10)$. Hence the long run fraction of the demands lost are given by $p_{0}(10)=0.0311$.

Comp. 6.12 This is the same queue as in Computational Problem 6.10. Let W be the expected time an item spends in the warehouse in steady state. Then the expected revenue from the sale is $100-W$ dollars. Using the parameters given in Computational Problem 6.10, we get $W=8.3114$ hours. Hence the expected sale price is $\$ 91.6886$. Now the rate at which items enter the warehouse is

$$
\lambda \cdot\left(1-p_{K}(K)\right)=1 \cdot(1-0.1926)=0.8074 \text { per hour. }
$$

Hence the revenue rate is $0.8074 \cdot 91.6886=74.0294$ dollars $/$ hour .
Alternative solution: If there are i items on stock, the warehouse looses i dollar per hour. So the expected loss per hour is L dollar, where L is the expected number of items on stock. Hence the revenue rate is

$$
\lambda \cdot\left(1-p_{K}(K)\right) \cdot 100-L=80.74-6.71=74.03 \text { dollar per hour. }
$$

Comp. 6.13 This is an $M / M / s / K$ queue with $\lambda=60, \mu=10, s=6$. We need to determine K such that $p_{K}(K) \leq 0.05$. We have

$$
p_{10}(10)=0.1286, \cdots, p_{22}(22)=0.0506, \quad p_{23}(23)=0.0481
$$

Hence the system needs a total of 23 lines. It currently has 10. Hence an additional 13 need to be installed. The expected queueing time increases from $0.0246^{*} 60=1.48$ minutes to $0.1290^{*} 60=7.74$ minutes.

Comp. 6.21 a) $M / M / 1$ queue.
b)

c) The balance equations are

$$
\begin{aligned}
\lambda p_{0} & =\mu p_{1} \\
(\lambda+\mu) p_{n} & =\lambda p_{n-1}+\mu p_{n+1}, \quad n=1,2,3, \ldots,
\end{aligned}
$$

or, alternatively,

$$
\lambda p_{n}=\mu p_{n+1}, \quad n=0,1,2, \ldots
$$

Normalizing equation: $\sum_{n=0}^{\infty} p_{n}=1$.
d) $\lambda<\mu$.
e) We have $\mu=12$ items per hour. The fraction of demands lost is $1-\rho$, where $\rho=\lambda / \mu$. Hence we must have $\rho \geq 0.9$, i.e., $\lambda \geq 0.9 \mu=10.8$ per hour. Thus, the mean production time is at most $60 / 10.8=5.556$ minutes. The mean number in the warehouse is then $\rho /(1-\rho)=0.9 / 0.1=9$.

Comp. 6.27 This is an $M / M / 20$ queue with $\lambda=36, \quad \mu=2$. The desired answer is $W_{q}=0.1377$ hours $=8.26$ minutes.

Comp. 6.28 a) This is an $M / M / \infty$ queue with $\lambda=40$ and $\mu=1 / 3$.
b)

c) The balance equations are

$$
\begin{aligned}
\lambda p_{0} & =\mu p_{1} \\
(\lambda+i \mu) p_{i} & =\lambda p_{i-1}+(i+1) \mu p_{i+1}, \quad i=1,2,3, \ldots,
\end{aligned}
$$

or, alternatively,

$$
\lambda p_{i}=(i+1) \mu p_{i+1}, \quad i=0,1,2, \ldots
$$

Normalizing equation: $\sum_{i=0}^{\infty} p_{i}=1$.
d) Use that

$$
\begin{aligned}
p_{i} & =\frac{\lambda}{i \mu} p_{i-1} \\
& =\frac{120}{i} p_{i-1} \\
& \vdots \\
& =\left(\frac{120^{i}}{i!}\right) p_{0} .
\end{aligned}
$$

From the normalizing equation we obtain $p_{0}=e^{-120}$.
e) - Mean number of cars in parking lot: $L=\lambda / \mu=120$. (in steady state the number of cars in the lot is a Poisson random variable with mean $40 /(1 / 3)=120)$. Mean waiting time of cars: $W=L / \lambda=3$ minutes.

- Mean number of occupied parking places: 120. Mean parking time of cars: 3 minutes.
- Mean number of cars in the queue: 0.

Mean queueing time of cars: 0 minutes.

- Fraction of time a certain parking place is occupied: 0 (due to the assumption that in the model there are infinitely many parking places)
- Probability that all places are occupied: 0 (due to the assumption that in the model there are infinitely many parking places)
- Throughput is 40 cars per hour.

Comp. 6.32 a) $M / G / 1$ queue. More specifically, it is an $M / E_{2} / 1$ because the service times of customers are Erlang distributed with 2 phases.
b) - The service times are iid $\operatorname{Erl}(2,12)$. Hence $\tau=2 / 12=1 / 6$ hour, $\sigma^{2}=2 /(12)^{2}=1 / 72$ hour ${ }^{2}$. Thus $s^{2}=1 / 72+1 / 36=3 / 72=$ $1 / 24$ hour 2. We also have $\lambda=3$. Hence $L=0.875$. $W=L / \lambda=0.875 / 3=0.2917$ hour $=17.5$ minutes.

- Mean number of occupied servers: $\rho=1 / 2$. Mean service time: $\tau=1 / 6$ hour $=10$ minutes.
- Mean number of customers in the queue: $L_{q}=L-\rho=0.375$. Mean queueing time of customers: $W_{q}=W-\tau=7.5$ minutes.
- Fraction of time server is occupied: $\rho=1 / 2$.
- Throughput: 3 customers per hour.

Comp. 6.33 This is an $M / G / 1$ queue. Let T_{1} and T_{2} be two iid $\operatorname{Exp}(6)$ random variables. Then the service time (in hours) of a single customer is $T=\max \left(T_{1}, T_{2}\right)$. The cdf of T is given by

$$
F(x)=\mathrm{P}(T \leq x)=\mathrm{P}\left(T_{1} \leq x, T_{2} \leq x\right)=\left(1-e^{-6 * x}\right)^{2} .
$$

Hence

$$
\tau=\mathrm{E}(T)=\int_{0}^{\infty} x F^{\prime}(x) d x=0.25 \mathrm{hrs}
$$

and

$$
s^{2}=\mathrm{E}\left(T^{2}\right)=\int_{0}^{\infty} x^{2} F^{\prime}(x) d x=7 / 72 \mathrm{hrs}^{2}
$$

Using $\lambda=3$ we get $L=2.5$. Thus the congestion is more in this setup. This is because one of the two servers is forced to be idle part of the time.

Comp. 6.35 Let T be a typical service time. We are given

$$
\mathrm{P}(T=2)=0.5, \quad \mathrm{P}(T=3)=0.2, \quad \mathrm{P}(T=5)=0.3
$$

Hence $\tau=2 * 0.5+3 * 0.2+5 * 0.3=3.1$ minutes and $s^{2}=4 * 0.5+$ $9 * 0.2+25 * 0.3=11.3$ minutes 2. Using $\lambda=18$ per hour, we get $L=8.194$.

Comp. 6.36 a) - Consider the queue in front of server 1. It is a $G / M / 1$ queue with iid $\operatorname{Erl}(2,10)$ interarrival times, and $\operatorname{Exp}(6)$ service times. The traffic intensity is $\rho=5 / 6<1$. The functional equation becomes

$$
u=\left(\frac{10}{10+6(1-u)}\right)^{2}
$$

with the required solution $\alpha=0.7822$. Using Equation (6.42) we get $L=3.826$ and $W=L / \lambda=3.826 / 5=0.765$ hour $=$ 45.9 minutes.

- Mean number of occupied servers: $\rho=5 / 6$. Mean service time: $1 / \mu=10$ minutes.
- Mean number of customers in queue: $L_{q}=L-\rho=2.993$.

Mean queueing time: $W_{q}=W-1 / \mu=35.9$ minutes.

- Fraction of time server is occupied: $\rho=5 / 6$.
- Throughput: 5 customers per hour.
b) Let $X(t)$ be the number of customers in the single line served by the two servers. Then $X(t)$ is an $M / M / 2$ queue with $\lambda=$ 10, $\mu=6$. The expected number of customers in this system is 5.4545.
c) The expected number of customers in the first system is 7.6518 . The expected number of customers in the second system is 5.4545 . Hence pooling the two servers will reduce congestion.

Comp. 6.40 This is a $G / M / 1$ queue with arrival rate $\lambda=12$ per hour (constant inter arrival times of 5 minutes), and service rate $\mu=15$ per hour. The solution to the functional equation is $\alpha=0.6286$. Hence $L=2.1540$, and the fraction of the time the server is busy is given by $\lambda / \mu=12 / 15=$ 0.8. Hence the cost rate is $0.8 * 40+2.1540 * 2=36.3080$ dollars/hour. If each customer is charged c, the revenue rate is $12 c$ per hour. Hence we must have $c \geq 36.3080 / 12=3.0257$. Thus each customer should be charged at least 3.03 dollars in order for the system to break even.

