Solutions to exercises: week 7

Comp. 6.41 Time unit: hour. $\lambda_{1}=24, \lambda_{2}=0, \mu_{1}=15, \mu_{2}=20, a_{1}=a_{2}=24$.
a) - Use the balance equations

$$
\begin{aligned}
24 p_{1}(0) & =15 p_{1}(1), \\
24 p_{1}(1) & =30 p_{1}(2), \\
24 p_{1}(n) & =45 p_{1}(n+1), \quad n=2,3, \ldots
\end{aligned}
$$

together with the normalizing equation $\sum_{n=0}^{\infty} p_{1}(n)=1$.

- $p\left(n_{1}, n_{2}\right)=p_{1}\left(n_{1}\right) \cdot p_{2}\left(n_{2}\right)$.
- $L_{1}=\sum_{i=0}^{\infty} i p_{1}(i)=1.913$.
$L_{2}=\sum_{i=0}^{\infty} i p_{2}(i)=1.294$.
$W_{1}=L_{1} / a_{1}=0.0797$ hour $=4.782$ minutes.
$W_{2}=L_{2} / a_{2}=0.0539$ hour $=3.235$ minutes.
- Expected number of occupied servers station 1: $a_{1} / \mu_{1}=1.6$. Expected number of occupied servers station 2: $a_{2} / \mu_{2}=1.2$. Mean service time per visit at stations 1: 4 minutes.
Mean service time per visit at stations 2: 3 minutes.
- $L_{1}^{q}=L_{1}-a_{1} / \mu_{1}=0.313$.
$L_{2}^{q}=L_{2}-a_{2} / \mu_{2}=0.094$.
$W_{1}^{q}=W_{1}-4=0.782$ minutes.
$W_{2}^{q}=W_{2}-3=0.235$ minutes.
- probability server in first station occupied: 8/15. probability server in second station occupied: $2 / 5$.
- throughput first station: $a_{1}=24$ customers per hour. throughput second station: $a_{2}=24$ customers per hour.
- $L=L_{1}+L_{2}=3.207$ customers.
$W=W_{1}+W_{2}=0.1336$ hour $=8.017$ minutes.
- fraction in queue: $(0.782+0.235) / 8.017 \approx 12.7 \%$.
fraction in service $(4+3) / 8.017 \approx 87.3 \%$.
b) For stability, we must have $s_{1} \geq 2$ and $s_{2} \geq 2$. Hence, we have the following three options for server allocations $\left(s_{1}, s_{2}\right)$: $(2,4)$, $(3,3),(4,2)$. Let $L_{(2,4)}, L_{(3,3)}$ and $L_{(4,2)}$ be the expected number of customers in the network for the three options. We get $L_{(2,4)}=$ 5.6603, $L_{(3,3)}=3.2070, L_{(4,2)}=3.5355$. Hence the optimal server allocation is three servers at each station.

Comp. 6.45 This is a Jackson network with

$$
\begin{gathered}
N=3, \quad \lambda_{1}=\lambda=20, \quad \lambda_{2}=\lambda_{3}=0 \\
\mu_{1}=12, \quad \mu_{2}=20, \quad \mu_{3}=15, \quad s_{1}=4, \quad s_{2}=s_{3}=2, \\
P=\left[\begin{array}{ccc}
0 & .4 & .6 \\
0.3 & 0 & 0 \\
0.2 & 0 & 0
\end{array}\right] \\
r_{1}=0, \quad r_{2}=0.7, \quad r_{3}=0.8 .
\end{gathered}
$$

The solution to the traffic equation is

$$
a=\left[\begin{array}{lll}
500 / 19 & 200 / 19 & 300 / 19
\end{array}\right]=\left[\begin{array}{lll}
26.32 & 10.53 & 15.79
\end{array}\right] .
$$

a) We have

$$
s_{1} \mu_{1}=48>a_{1}, \quad s_{2} \mu_{2}=40>a_{2}, \quad s_{3} \mu_{3}=30>a_{3} .
$$

Hence the network is stable.
b) Use the balance equations

$$
\begin{aligned}
\frac{200}{19} p_{2}(0) & =20 p_{2}(1) \\
\frac{200}{19} p_{2}(n) & =40 p_{2}(n+1), \quad n=1,2,3, \ldots
\end{aligned}
$$

together with the normalizing equation $\sum_{n=0}^{\infty} p_{2}(n)=1$.
c) $p(3,1,1)=p_{1}(3) \cdot p_{2}(1) \cdot p_{3}(1)=0.185 \cdot 0.307 \cdot 0.327=0.019$.
d) $L_{1}=\sum_{i=0}^{\infty} i p_{1}(i)=2.466$.
$L_{2}=\sum_{i=0}^{\infty} i p_{2}(i)=0.566$.
$L_{3}=\sum_{i=0}^{\infty} i p_{3}(i)=1.456$.
$W_{1}=L_{1} / a_{1}=5.62$ minutes.
$W_{2}=L_{2} / a_{2}=3.22$ minutes.
$W_{3}=L_{3} / a_{3}=5.53$ minutes.
e) Expected number of occupied servers station 1: $a_{1} / \mu_{1}=2.19$.

Expected number of occupied servers station 2: $a_{2} / \mu_{2}=0.53$.
Expected number of occupied servers station 3: $a_{3} / \mu_{3}=1.05$.
Mean service time per visit at stations 1: 5 minutes.
Mean service time per visit at stations 2: 3 minutes.
Mean service time per visit at stations 3: 4 minutes.
f) $L_{1}^{q}=L_{1}-a_{1} / \mu_{1}=0.27$.
$L_{2}^{q}=L_{2}-a_{2} / \mu_{2}=0.04$.
$L_{3}^{q}=L_{3}-a_{3} / \mu_{3}=0.40$.
$W_{1}^{q}=W_{1}-5=0.62$ minutes.
$W_{2}^{q}=W_{2}-3=0.22$ minutes.
$W_{3}^{q}=W_{3}-4=1.53$ minutes.
g) $0.548,0.263$ and 0.527 .
h) probability all servers in first station occupied: $\sum_{n=4}^{\infty} p_{1}(n)=$ 0.225 .
probability all servers in second station occupied: $\sum_{n=2}^{\infty} p_{2}(n)=$ 0.110 .
probability all servers in third station occupied: $\sum_{n=2}^{\infty} p_{3}(n)=$ 0.363 .
i) throughput first station: $a_{1}=26.32$ customers per hour.
throughput second station: $a_{2}=10.53$ customers per hour. throughput third station: $a_{3}=15.79$ customers per hour.
j) $L=L_{1}+L_{2}+L_{3}=4.49$ customers. $W=L / \lambda=13.47$ minutes.
k) Customer visits on average $a_{1} / \lambda=1.32$ times station $1, a_{2} / \lambda=$ 0.53 times station 2 and $a_{3} / \lambda=0.79$ times station 3 . Hence he spends on average 7.40 minutes in station $1,1.69$ minutes in station 2 and 4.36 minutes in station 3. The fraction of time he spends in station 3 is hence $4.36 / 13.47 \approx 32.4 \%$.

1) Expected time in queue: $1.32 \cdot 0.62+0.53 \cdot 0.22+0.79 \cdot 1.53=$ 2.14 minutes.

Expected time in service $1.32 \cdot 5+0.53 \cdot 3+0.79 \cdot 4=11.33$ minutes. Hence fraction in queue is 15.9%, fraction in service is 84.1%.

Handout section 4

Exercise 2 (a) Show that the given $v_{1}, v_{2}, v_{3}, v_{4}$ satisfy the traffic equations $v_{1}=0.8 v_{2}+0.6 v_{3}$, $v_{2}=0.5 v_{1}$, $v_{3}=0.4 v_{1}+0.2 v_{2}+v_{4}$, $v_{4}=0.1 v_{1}+0.4 v_{3}$.
(b) $p\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{46119}(1)^{k_{1}}(1)^{k_{2}}(4)^{k_{3}}(4)^{k_{4}}=\frac{1}{46119}(4)^{k_{3}}(4)^{k_{4}}$, with $k_{1} \geq 0, k_{2} \geq 0, k_{3} \geq 0, k_{4} \geq 0, k_{1}+k_{2}+k_{3}+k_{4}=6$
(c) Stations 1 and 2 have the same relative traffic intensities $\frac{v_{1}}{\mu_{1}}=$ $\frac{v_{2}}{\mu_{2}}=1$. Also Stations 3 and 4 have the same relative traffic intensities.
(d) - The absolute traffic intensities of the stations are $\rho_{1}=\rho_{2}=$ $0.2105, \rho_{3}=\rho_{4}=0.8422$.

- The throughputs of the stations are $0.8420,0.4210,0.8422$, 0.4211 repairs/hour.
(e) The mean number of cars in the stations 3 and 4 is 2.7367 .
(f) - The mean waiting times in the queue are $0.0627,0.1254$, 2.2495, 4.4989 hours.
- The mean times of a car in the stations are $0.3127,0.6254$, $3.2495,6.4989$ hours
(g) The throughput of the whole garage system is the sum of 0.8 times the throughput of station 2 and 0.6 times the throughput of station 3 and of course also equal to the throughput of station 1: 0.8420 repairs/hour. The mean time spent by a car in the system is therefore (Little) 7.1259 hours.

Exercise 3 (a) With $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$, determine a solution of the traffic equations $v=v P$. Show that the relative traffic intensities $v_{1} / \mu_{1}, v_{2} / \mu_{2}$, $v_{3} / \mu_{3}, v_{4} / \mu_{4}$ are equal and show that there are 20 possible distributions of $K=3$ customers over the four stations.
(b) $p_{1}(0)=0.5, p_{1}(1)=0.3, p_{1}(2)=0.15, p_{1}(3)=0.05$.
(c) $\rho_{1}=\rho_{2}=\rho_{3}=\rho_{4}=0.5$.

