
Applied Statistics 2013

Homework 4 - Due 8th of April

Exercise 1. Failure of the Bootstrap: In this exercise we will see another example demon-
strating the bootstrap can fail. Let X1, . . . , Xn be i.i.d. samples from a uniform distribution over
[0, θ], θ > 0. For convenience let’s denote this distribution by Fθ.

a) Show that the maximum likelihood estimator for θ is given by θ̂n = X(n) = maxiXi.

b) Show that the distribution of θ̂n is

G(t) = PFθ(θ̂n ≤ t) =


0 if t < 0
(t/θ)n if 0 ≤ t ≤ θ
1 if t > θ

.

c) Use this to derive the analytic expression for the variance of θ̂n, that is VFθ(θ̂n).

d) Write a script that generates n observations from a uniformly distributed random variable
on [0, θ] and implements the nonparametric bootstrap by drawing B bootstrap samples.
Using this code with n = 25 and B = 5000, calculate θ̂n and also θ̂∗n,b, b = 1, . . . , B. Use

the bootstrap samples to approximate VFθ(θ̂n) and compare it to your answer to (c). Repeat
this experiment several times and experiment also with different values of B and n. What
do you observe?

e) From your experiments in (d) you should notice that you are not able to use the non-
parametric bootstrap to accurately estimate the variance. Let’s try to understand what
is going wrong. Here we’ll use the notational convention of Theorems 3.19 and 3.21 of
Wasserman’s book. Define Tn = n(θ − θ̂n) and T ∗n = n(θ̂n − θ̂∗n) (the bootstrap analogue).
Show that for t ≥ 0

PF̂n(T ∗n ≤ t) ≥ PF̂n(T ∗n ≤ 0) = 1− (1− 1/n)n ,

the first inequality being trivial.

f) Show that
lim inf
n→∞

sup
t
|PF (Tn ≤ t)− PF̂n(T ∗n ≤ t)| ≥ 1− e−1 .

This means that the distribution of θ̂n computed by the non-parametric bootstrap procedure
is significantly different than the real distribution. Refer back to question (d) and plot the
histogram of θ̂∗n,b and check that this agrees with the above statement.
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g) The parametric bootstrap generates bootstrap samples X∗1 , . . . , X
∗
n by drawing from a uni-

form distribution on [0, θ̂n], instead of drawing from the empirical distribution function.
Argue that

sup
t
|PF (Tn ≤ t)− PFθ̂n (T ∗n ≤ t)|

P→ 0 ,

as n→∞. Verify that this make sense by drawing B = 5000 bootstrap simulations.
Hint: Show that Tn converges to an exponential distribution with mean θ.

Exercise 2. Exercise 15.8 from [Kvam and Vidakovic (2007)]:

The last sentence is to be replaced by:

Use the bootstrap to compute the standard error for RR.

Exercise 3. In this exercise we will give the necessary steps to deduce the bias corrected (BC)
percentile confidence interval. Let X1, . . . , Xn ∼ F and suppose we wish to construct a confi-
dence interval for θ = T (F ). Let θ̂n = T (F̂n) be an estimator for θ (F̂n denotes the empirical
distribution function). Our approach is going to be very similar to the one for the percentile
confidence intervals, but in this case we will take into account a possible bias. Let m be an
increasing transformation (which may depend on the sample size n) and define ψ̂n = m(θ̂n),
ψ = m(θ). Assume that

PF (ψ̂n − ψ + b ≤ x) = G(x) , (1)
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where b is a constant that may depend on F and n, and G is a continuous, invertible, and
symmetric distribution around zero (meaning G(x) = 1 − G(−x)). Note that if b = 0 this is
precisely the setup for deriving the percentile interval, so b plays the role of an unknown bias.

a) Show that if m and b were known, then a 100(1− α)%-confidence interval for θ would be
given by (Ln, Un) where

Ln = m−1(ψ̂n +G−1(α/2) + b) and Un = m−1(ψ̂n −G−1(α/2) + b) .

b) Let H(x) = PF̂n(θ̂∗n ≤ x) denote the bootstrap distribution of θ̂∗n. Show that H(Ln) ≈
G
(
G−1(α/2) + 2b

)
and H(Un) ≈ 1 − G

(
G−1(α/2)− 2b

)
. Explain where the bootstrap

approximation appears in the derivation.

c) Suppose we have constructed a large set of B bootstrap samples and computed θ̂∗n,1, . . . , θ̂
∗
n,B.

Conclude that an approximate bootstrap interval is given by (L̃n, Ũn) where

L̃n = [θ̂∗n](BG(G−1(α/2)+2b)) ,

and
Ũn = [θ̂∗n](B(1−G(G−1(α/2)−2b))) .

Here [θ̂∗n](j) is the j-th order statistic of θ̂∗n,1, . . . , θ̂
∗
n,B.

d) Note that we still cannot use the above confidence interval, as neither b and G are known.
Let’s address the first problem: use the bootstrap approximation to show that

b ≈ G−1(H(θ̂n)) .

Note that H(θ̂n) can be approximated by the fraction of bootstrap estimates θ̂∗n,j that are

less of equal θ̂n.

e) The BC-interval is obtained by setting G = Φ, the cumulative distribution function of a
standard normal random variable, and plugging in the above estimate of the bias, namely

b̂∗ = Φ

(
1

B

B∑
i=1

1{θ̂∗n,j ≤ θ̂n}

)
.

Put all the pieces together to show that the Bias-Corrected confidence interval is given by(
[θ̂∗n](BΦ(Φ−1(α/2)+2b̂∗)), [θ̂

∗
n](B(1−Φ(Φ−1(α/2)−2b̂∗)))

)
.

Remarks: if we estimate b by zero, then the interval coincides with the percentile confidence
interval you are familiar about from class. An improvement of the BC interval is the BCa confi-
dence interval (the a stands for accelerated). This is obtained by changing our initial assumption
(1) to

PF

(
ψ̂n − ψ
1 + aψ

+ b ≤ x

)
= Φ(x) ,

and finding an appropriate value for a. We do not go into details of this derivation here, but
these are similar in spirit to what you have done.
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Exercise 4.

Suppose X1, . . . , Xn is a random sample from an exponential distribution with parameter λ. So
its density is given by f(x) = λe−λx for x ≥ 0.

a) Show that the maximum likelihood estimator is given by λ̂n = 1/X̄n.

b) Show that
√
n(λ̂n−λ)

D→ N (0, λ2). See for example chapter one in Wasserman. Conclude

with the Delta-method that
√
n(log λ̂n − log λ)

D→ N (0, 1).

c) Show that an asymptotic CI for λ is given by(
λ̂ne

−zα/2/
√
n, λ̂ne

zα/2/
√
n
)
,

with zα denoting the 1− α quantile of the standard normal distribution.

d) Note that λ
∑n

i=1Xi has a Gamma distribution with parameters n and 1. Deduce from
this that an exact confidence interval for λ is given by(

λ̂nG
−1(α/2)/n, λ̂nG

−1(1− α/2)/n
)
,

where G denotes the CDF of a Gamma distribution with parameters n and 1.

e) Do a simulation study to compare the coverage and length of the exact and asymptotic
confidence intervals as derived above, and the BCa confidence interval. The BCa confidence
intervals are easily obtained from the boot-package. Consider sample sizes n = 10, 25, 100
and generate data from an exponential distribution with λ = 5. You can use the following
code to help you.

# obtain exact CI

ci.exact <- function(x,alpha)

{

n <- length(x)

ss <- sum(x)

c(qgamma(alpha/2,n,1)/ss, qgamma(1-alpha/2,n,1)/ss)

}

# obtain asymptotic CI

ci.asympt <- function(x,alpha)

{

d <- exp(qnorm(alpha/2,lower=F)/sqrt(n))

av <- mean(x)

c(1/(av*d), d/av)

}

# obtain nonparametric bootstrap CI (bca interval)

library(boot)

bootfun <- function(x,i)
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{

d <- x[i]

1/mean(d)

}

ci.bca <- function(x,alpha)

{

resboot <- boot(x,bootfun,R=1000)

boot.ci(resboot,conf=1-alpha,type=’bca’)$bca[4:5]

}

f) Modify your code to assess also the length and coverage of other bootstrap confidence inter-
vals, namely the normal, pivotal, and percentile intervals (using the R command boot.ci

these correspond respectively to the CI types normal,basic and percent). How do these
compare with the BCa intervals? Note that, regardless of the distribution, we are comput-
ing bootstrap confidence intervals for 1/E[X1]. Repeat these experiments with distributions
other than the exponential, and see how each bootstrap interval behaves.
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