
Lectures 12 and 13 - Complexity Penalized Maximum Likelihood

Estimation

Rui Castro

May 5, 2013

1 Introduction

As you learned in previous courses, if we have a statistical model we can often estimate unknown
“parameters” by the maximum likelihood principle. Suppose we have independent, but not
necessarily identically distributed, data. Namely, we model the data {Yi}ni=1 as independent
random variables with densities (with respect to a common dominating measure) given by pi(·; θ),
where θ is an unknown “parameter”1. The Maximum Likelihood Estimator (MLE) of θ is simply
given by

θ̂n = arg max
θ∈Θ

n∏
i=1

pi(Yi|θ) ,

where Θ is the set of possible parameters. If the support of pi(·; θ) is not a function of θ then
we re-write the above estimator in terms of the log-likelihood

θ̂n = arg max
θ∈Θ

n∑
i=1

log pi(Yi|θ) . (1)

We will consider this setting in what follows.
Why is maximum likelihood a good idea? To better understand this let’s introduce the

Kullback-Leibler divergence.

Definition 1 (Kullback-Leibler Divergence). Convention 0 · log 0 = limx→0+ x log x = 0. Let p
and q be two densities (for simplicity say these are with respect to the Lebesgue measure). Then
the Kullback-Leibler divergence is defined as

KL(p‖q) =

{ ∫∞
−∞ p(x) log p(x)

q(x)dx if p� q

∞ otherwise
,

where p� q means q dominates p, that is, for almost all x if q(x) = 0 then p(x) = 0.

Here are some important facts about the KL divergence.

1The word parameter is in between quotes as θ can be infinite dimensional, in what is generally referred to as
non-parametric estimation. For instance, this is the case in non-parametric regression.

1

• KL(p‖q) ≥ 0, with equality if and only if p(x) = q(x) almost everywhere, which means
p and q represent the same probability measure. The proof of this follows easily from
Jensen’s inequality.

KL(p‖q) =

∫
p(x) log

p(x)

q(x)
dx

= Ep
[
log

p(X)

q(X)

]
, where X is a r.v. with density p

= Ep
[
− log

q(X)

p(X)

]
≥ − logEp

[
q(X)

p(X)

]
= − log

∫
p(x)

q(x)

p(x)
dx

= − log

∫
q(x)dx = − log 1 = 0 .

where the inequality follows from Jensen’s inequality and it is strict unless p(x) = q(x)
almost everywhere (note: there are minute technicalities omitted in the above proof).

• KL(p‖q) 6= KL(q‖p). In other words, the KL divergence is not symmetric. It is therefore
not a distance (in addition, it doesn’t satisfy the triangle inequality). Let’s see an example:
let p(x) = 1{x ∈ [0, 1]} and q(x) = 1{x ∈ [0, 2]}/2. Then KL(p‖q) = log 2 and KL(q‖p) =
∞.

• The KL divergence is related to testing between two simple hypothesis.If the null hypoth-
esis corresponds to density p and the alternative corresponds to density q the probabilities
of type I and II error are intimately related to KL(p‖q) and KL(q‖p) respectively. In
particular larger KL divergences correspond to smaller the error probability.

• The product-density property: Let pi and qi, i ∈ 1, . . . , n be univariate densities and
define the following multivariate densities

p(x1, . . . , xn) = p1(x1) · p2(x2) · · · pn(xn) ,

q(x1, . . . , xn) = q1(x1) · q2(x2) · · · qn(xn) .

Then

KL(p‖q) =
n∑
i=1

KL(pi‖qi) .

The proof is quite simple and left as an exercise.

Now let’s look again at the MLE formulation in (1). Begin by assuming Yi are independent
random variables with density qi. We can re-write the MLE as

θ̂n = arg min
θ∈Θ

n∑
i=1

log
qi

pi(Yi; θ)
.

2

The expected value of the r.h.s of the above is simply

KL(q‖p(θ)) ,

where q ≡ q1(·) · · · qn(·) and p(θ) ≡ p1(·; θ) · · · pn(·; θ) are the product densities under the true
data distribution and a model parameterized by θ, respectively. Therefore we see that the MLE
is attempting to find the parameter θ ∈ Θ that is “closer” to the true data distribution, where
distance is measured as the KL divergence between the distributions of the data. Actually, with
some small additional assumptions one can argue, by the strong law of large numbers, that

1

n

n∑
i=1

log
qi

pi(Yi; θ)
− 1

n
KL(q‖p(θ))

a.s.→ 0 ,

as n → ∞, and that 1
nKL(q‖p(θ)) converges to some point c > 0. So, in a sense, the MLE is

asymptotically identifying the model in Θ that is closer to the true distribution of the data.

Example 1. The regression setting with deterministic design: Let

Yi = r(xi) + εi, i = 1, . . . , n

where εi are i.i.d. normal random variables with variance σ2. Then each Yi has density

1√
2πσ2

exp

(
−(Yi − r(xi)2

2σ2

)
.

The joint likelihood of Y1, . . . , Yn is

n∏
i=1

1√
2πσ2

exp

(
−(Yi − r(xi)2

2σ2

)
,

and the MLE is simple given by

r̂n = arg min
r∈R

n∑
i=1

(Yi − r(xi))2 .

So we see that we recover our familiar sum of squared residuals in this case.

In what follows we’ll make use of the KL divergence to characterize the behavior of the MLE
for a variety of settings. For this we’ll need two other measures between densities.

1.1 The Hellinger Distance and the Affinity

As we argued above, the KL divergence is not a proper distance (in particular it is not symmetric
and does not satisfy the triangle inequality). However, it is not hard to define other distances
between densities. Notably useful is the Hellinger distance

Definition 2 (Hellinger Distance). Let p and q be two densities with respect to the Lebesgue
measure. The Hellinger distance is defined as

H(p, q) =

(∫ (√
p(x)−

√
q(x)

)2
dx

)1/2

.

3

This is a proper distance, as it is symmetric, since H(p, q) = H(q, p), non-negative, and it sat-
isfies the triangle inequality. Remarkably the squared Hellinger distance provides a lower bound
for the KL divergence, so convergence in KL divergence implies convergence of the Hellinger
distance.

Proposition 1.
H2(p, q) ≤ KL(p‖q) .

Proof.

H2(p, q) =

∫ (√
p(x)−

√
q(x)

)2
dx

=

∫
p(x)dx+

∫
q(x)dx− 2

∫ √
p(x)q(x)dx

= 2

(
1−

∫ √
p(x)q(x)dx

)
≤ −2 log

∫ √
p(x)q(x)dx , since 1− x ≤ − log x

= −2 log

∫ √
q(x)

p(x)
p(x)dx

= −2 logE

[√
q(X)

p(X)

]
, where X has density p

≤ −2E
[
log
√
q(X)/p(X)

]
, by Jensen’s inequality

= E [log(p(X)/q(X))] ≡ KL(p‖q) .

Note that we have also showed that

H2(p, q) = 2

(
1−

∫ √
p(x)q(x)dx

)
≤ −2 log

∫ √
p(x)q(x)dx .

The quantity inside the log is called the Affinity, and is a measure of the similarity between two
densities (valued 1 is these are identical, and zero if they have disjoint support).

Definition 3 (Affinity). Let p and q be two densities with respect to the Lebesgue measure. The
Affinity is defined as

A(p, q) =

∫ √
p(x)q(x)dx .

In summary, we have shown that

H2(p, q) ≤ −2 logA(p, q) ≤ KL(p‖q) .

4

1.2 The important case of Gaussian distributions

An important case to consider is when p and q are Gaussian distributions with the same variance
but different means. Let

pθ(x) =
1√

2πσ2
e−

(x−θ)2

2σ2 .

Then

KL(pθ1‖pθ2) =

∫
log

pθ1(x)

pθ2(x)
pθ1(x)dx

=

∫
(x− θ2)2 − (x− θ1)2

2σ2
pθ1(x)dx

= E
[

(X − θ2)2 − (X − θ1)2

2σ2

]
where X has density pθ1

=
1

2σ2
E[(X − θ2)2]− 1

2σ2
E[(X − θ1)2]

=
1

2σ2
E[(X − θ1 + θ1 − θ2)2]− 1

2σ2
E[(X − θ1)2]

=
1

2σ2
(σ2 + (θ1 − θ2)2)− 1

2σ2
σ2

=
(θ1 − θ2)2

2σ2
.

So, in this case, the KL divergence is symmetric.
Now, for the affinity and Hellinger distance we proceed in a similar fashion.

A(pθ1 , pθ2) =

∫ √
pθ1(x)pθ2(x)dx

=

∫
1√

2πσ2
e−

(x−θ1)
2

4σ2 e−
(x−θ2)

2

4σ2 dx

=

∫
1√

2πσ2
e−

x2−2θ1x+θ
2
1+x

2−2θ2x+θ
2
2

4σ2 dx

=

∫
1√

2πσ2
e−

x2−2θ1x+θ
2
1+x

2−2θ2x+θ
2
2

4σ2 dx

=

∫
1√

2πσ2
e−

x2−2
θ1+θ2

2 x+
θ21+θ

2
2

2
2σ2 dx

=

∫
1√

2πσ2
e−

(
x− θ1+θ22

)2
−
(
θ1+θ2

2

)2
+
θ21+θ

2
2

2

2σ2 dx

= e

(
θ1+θ2

2

)2
−
θ21+θ

2
2

2

2σ2

∫
1√

2πσ2
e−

(
x− θ1+θ22

)2

2σ2 dx

= e

(
θ1+θ2

2

)2
−
θ21+θ

2
2

2

2σ2

= e−
(θ1−θ2)

2

8σ2 .

5

Therefore

H2(pθ1 , pθ2) = 2

(
1− e−

(θ1−θ2)
2

8σ2

)
,

and

−2 logA(pθ1 , pθ2) =
(θ1 − θ2)2

4σ2
.

2 Maximum Penalized Likelihood Estimation (MPLE)

Often time, in non-parametric settings, it is necessary to either restrict the choice of possible
models under consideration, or penalize the MLE criterion. The second approach is more general
and we will consider it here. Namely, we are going to study estimators of the form

θ̂n = arg min
θ∈Θ

{
−

n∑
i=1

log pi(Yi; θ) + pen(θ)

}
,

where pen(θ) is intended to penalize “complex” models. Next we prove the following important
result.

Theorem 1 (Li-Barron 2000, Kolaczyk-Nowak 2002). Let Y be a random vector (e.g. Y =
(Y1, . . . , Yn)). Assume the distribution of Y has unknown density p∗. Now suppose we have a
class of probability density functions pθ parameterized by θ ∈ Θ. Assume Θ is a countable set,
and that for each θ we have an associated number c(θ) so that the following inequality holds∑

θ∈Θ

2−c(θ) ≤ 1 (Kraft Inequality) . (2)

Define the Maximum Penalized Likelihood Estimator (MPLE) as

θ̂n ≡ arg min
θ∈Θ
{− log pθ(Y) + 2c(θ) log 2} .

Then

E
[
H2(p∗, pθ̂n)

]
≤ −2E

[
logA(p∗, pθ̂n)

]
≤ min

θ∈Θ
{KL(p∗‖pθ) + 2c(θ) log 2} .

This type of result, known as an oracle bound, tells us that the performance of the proposed
estimator is essentially as good as the performance of a clairvoyant estimator where we replace
the likelihood function by the theoretical counterpart (the KL divergence). Note also the result is
extremely general - there are no assumptions made on the distribution of Y other than having a
density. The major weakness of this result is that it only applies to countable (or finite) classes of
candidate models. As we will see this creates some inconvenience, but we can still analyze many
interesting settings by discretizing/quantizing the classes of models under consideration. There
are possible extension of results of this type to uncountable classes of models, but these require
several technical assumptions and heavy empirical processes machinery to prove. Nevertheless
the main ideas, intuition and results are essentially preserved. Finally, note that this result
gives you performance bounds for maximum likelihood estimation for finite classes of models,
as in that case one can take c(f) = log2 |Θ| and the estimator reduces to the usual MLE (as the
penalty term does not depend on θ).

6

2.1 The Gaussian Regression Case

Before proving the theorem, let’s look at a very special and important case. We will use these
results quite a lot in the what follows. Recall the Gaussian regression model, used in many of
the previous lectures. Suppose

Yi = r∗(xi) + εi , εi
i.i.d.∼ N (0, σ2) ,

where xi are deterministic covariates (e.g., xi = i/n), and r∗ is the true, unknown, regression
function. The density of Yi is parameterized by r and given by

pi(yi; r) =
1√

2πσ2
e−

(yi−r(xi))
2

2σ2 , (3)

with r = r∗. We have seen before for this case we have

KL(pi(r
∗)‖pi(r)) =

1

2σ2
(r∗(xi)− r(xi))2 ,

and

−2 logA(pi(r
∗), pi(r)) =

1

4σ2
(r∗(xi)− r(xi))2 .

This means that, for the joint density of the data, we have

KL(p(r∗)‖p(r)) =
1

2σ2

n∑
i=1

(r∗(xi)− r(xi))2

and

−2 logA(p(r∗),p(r)) =
1

4σ2

n∑
i=1

(r∗(xi)− r(xi))2 .

Finally, as we have seen − log p(Y; r) =
∑n

i=1
(Yi−r(xi))2

2σ2 + const , where the constant term does
not depend on r. So, using all this together with the above theorem we have the following,
important corollary.

Corollary 1. Let
Yi = r∗(xi) + εi , εi

i.i.d.∼ N (0, σ2) ,

where xi are deterministic. Let R be a class of models such that there is a map c : R → [0,∞]
satisfying ∑

r∈R
2−c(r) ≤ 1 .

Define

r̂n = arg min
r∈R

{
1

n

n∑
i=1

(Yi − r(xi))2 +
4σ2c(r) log 2

n

}
.

Then

1

n

n∑
i=1

E
[
(r̂n(xi)− r∗(xi))2

]
≤ 2 min

r∈R

{
1

n

n∑
i=1

(r(xi)− r∗(xi))2 +
4σ2c(r) log 2

n

}
.

7

This corollary shows that the maximum penalized likelihood estimator can perform almost
as well (we have a factor 2 in the bound) has if we had observed r∗(xi) instead of Yi (i.e., if we
had removed the noise from the observations and used the same estimator).

Proof of Theorem 1. We have already shown that

H2(p∗, pθ) ≤ −2 logA(p∗, pθ) ,

So, clearly

E
[
H2(p∗, pθ̂n)

]
≤ E

[
−2 logA(p∗, pθ̂n)

]
.

We are going to bound the right-hand-side of the above expression. Begin by defining the
theorectical analog of θ̂n

θ̃n = arg min
θ∈Θ
{KL(p∗‖pθ) + 2c(f) log 2} .

Let’s re-write the definition of the MPLE

θ̂n = arg min
θ∈Θ
{− log pθ(Y) + 2c(θ) log 2}

= arg max
θ∈Θ
{log pθ(Y)− 2c(θ) log 2}

= arg max
θ∈Θ

{
1

2
log pθ(Y)− c(θ) log 2

}
= arg max

θ∈Θ

{
log
√
pθ(Y)− c(θ) log 2

}
= arg max

θ∈Θ

{√
pθ(Y) exp (−c(θ) log 2)

}
= arg max

θ∈Θ

{√
pθ(Y)2−c(θ)

}

This means that, for ANY θ ∈ Θ√
pθ̂n(Y)2−c(θ̂n) ≥

√
pθ(Y)2−c(θ) .

In particular we have √
pθ̂n(Y)

pθ̃n(Y)

2−c(θ̂n)

2−c(θ̃n)
≥ 1 .

8

With this fact in hand let’s proceed with the bound

E
[
−2 logA(p∗, pθ̂n)

]
= 2E

[
log

1

A(p∗, pθ̂n)

]

≤ 2E

[
log

(√
pθ̂n(Y)

pθ̃n(Y)

2−c(θ̂n)

2−c(θ̃n)

1

A(p∗, pθ̂n)

)]

= 2E

log

√ p∗(Y)

pθ̃n(Y)

√
pθ̂n(Y)

p∗(Y)

2−c(θ̂n)

2−c(θ̃n)

1

A(p∗, pθ̂n)

= E

[
log

p∗(Y)

pθ̃n(Y)

]
+ 2c(θ̃n) log 2 + E

√pθ̂n(Y)

p∗(Y)

2−c(θ̂n)

A(p∗, pθ̂n)

= KL(p∗‖pθ̃n) + 2c(θ̃n) log 2

+E

log

√pθ̂n(Y)

p∗(Y)

2−c(θ̂n)

A(p∗, pθ̂n)

 .

So, the first two terms of the last line are exactly what we have in the statement of the theorem.
To conclude the proof we just need to show the last term is always smaller than zero. Note
that there are two random quantities in that term, namely Y and θ̂n (which is a function of Y).
Next, we use first Jensen’s inequality and then a very crude bound to essentially get rid of θ̂n,
taking advantage of the fact that θ̂n ∈ Θ.

First note that, by Jensen’s inequality

E

log

√pθ̂n(Y)

p∗(Y)

2−c(θ̂n)

A(p∗, pθ̂n)

 ≤ logE

√pθ̂n(Y)

p∗(Y)

2−c(θ̂n)

A(p∗, pθ̂n)

Now we can make use of the Kraft inequality through a union bound. In this case the union

bound is simply saying that any individual term in a summation of positive terms is smaller
than the summation.2 So, we bound the inside of the expectation by a sum over Θ.

logE

√pθ̂n(Y)

p∗(Y)

2−c(θ̂n)

A(p∗, pθ̂n)

 ≤ logE

[∑
θ∈Θ

√
pθ(Y)

p∗(Y)

2−c(θ)

A(p∗, pθ)

]

= log

∑
θ∈Θ

2−c(θ)
E
[√

pθ(Y)
p∗(Y)

]
A(p∗, pθ)

= log

(∑
θ∈Θ

2−c(θ)

)
≤ log 1 = 0

2Let z1, z2, . . . be non-negative. Then for all i ∈ N zi ≤
∑∞
j=1 zj

9

where the last step follows from Kraft’s inequality, and the previous step follows simply by
noting that

E

[√
pθ(Y)

p∗(Y)

]
=

∫ √
pθ(y)

p∗(y)
p∗(y)dy =

∫ √
pθ(y)p∗(y)dy = A(p∗, pθ) .

2.2 Choosing the values c(θ)

In order to apply the theorem or the corollary we need to construct a map c(·) from Θ to
[0,∞). These values can be though of as a measure of the complexity of each model θ. If one
has a proper probability mass distribution over Θ, say Pprior : Θ → [0, 1], then we can just use
c(θ) = − log2 Pprior(θ). Clearly this satisfies the Kraft inequality. Moreover this estimator as a
strong Bayesian interpretation - it corresponds to the Maximum a Posteriori estimator for the
prior Pprior. Another way to satisfy the Kraft inequality is to use coding arguments. This has the
advantage that we can very easily devise maps that automatically satisfy the Kraft inequality.

Assume we have assign a binary codeword (sequence of 0s and 1s) to each element of Θ. Let
c(θ) denote the size of the codeword (size of the sequence). The set Θ is called the alphabet, and
the idea is to encode sequences of symbols from the alphabet by concatenating the corresponding
codewords. A very useful class of codes are called prefix codes.

Definition 4. A code is called a prefix or instantaneous code if no codeword is a prefix of any
other codeword.

The reason for such name and definition is clarified in the following example.

Example 2. (From Cover & Thomas ’91)
Consider an alphabet of symbols, say A,B,C, and D and the codebooks in Figure 2. Suppose

Symbol Singular Nonsingular But Not Uniquely Decodable But Prefix Code
Codebook Uniquely Decodable Not a Prefix Code

A 0 0 10 0
B 0 010 00 10
C 0 01 11 110
D 0 10 110 1110

Figure 1: Four possible codes for an alphabet of four symbols.

we want to convey the sentence ADBBAC. This will be encoded in each system respectively as
000000, 010010010001, 1011000001011, and 0111010100110. It is clear that with the singular
codebook we assign the same codeword to each symbol - a system that is obviously flawed! In the
second case the codes are not singular but the codeword 010 could represent B or CA or AD,
so the above binary sequence is ambiguous, as it can be decoded both as ADBBAC or BBBAC
for instance. Hence it is not a uniquely decodable codebook. The third and fourth cases are both
examples of uniquely decodable codebooks, but the fourth has the added feature that no codeword
is a prefix of another. Prefix codes can be decoded from left to right instantaneously since each
codeword is “self-punctuating” - that is, you know immediately when a codeword ends. Note that,
until the tenth bit in the third case, you don’t know if the sequence is ADBB... or ACBBB...
and only then can you decide. In the fourth case you know immediately when a codeword ends
and another starts.

10

The good thing about prefix codes is that these are easy to construct and automatically
satisfy the Kraft inequality. We will use this approach often.

2.2.1 The Kraft Inequality

Theorem 2. For any binary prefix code, the codeword lengths c1, c2, ... satisfy

∞∑
k=1

2−ck ≤ 1 .

Conversely, given any c1, c2, ... satisfying the inequality above we can construct a prefix code
with these codeword lengths.

Proof. We will prove that for any binary prefix code, the codeword lengths c1, c2, . . ., satisfy∑
k 2−ck ≤ 1. The converse is easy to prove also, but it not central to our purposes here (for a

proof, see Cover & Thomas ’91). Consider a binary tree like the one shown in Figure 2.2.1

0 1

0 1 0 1

0 1

000 001

Root

111001

Figure 2: A binary tree.

The sequence of bit values leading from the root to a leaf of the tree represents a codeword.
The prefix condition implies that no codeword is a descendant of any other codeword in the
tree. Therefore we can each leaf of the tree represents a codeword in our code. Let cmax be the
length of the longest codeword (also the number of branches to the deepest leaf) in the tree.

Consider a node in the tree at level ci. This node in the tree can have at most 2cmax−ci

descendants at level cmax. Furthermore, for each leaf of the tree the set of possible descendants
at level cmax is disjoint (since no codeword can be a prefix of another). Therefore, since the total
number of possible leafs at level cmax is 2cmax , we have∑

i∈leafs

2cmax−ci ≤ 2cmax ⇒
∑

i∈leafs

2−ci ≤ 1 ,

which proves the case when the number of codewords is finite.

11

Suppose now that we have a countably infinite number of codewords. Let b1, b2, . . . , bci be
the ith codeword and let

ri =

ci∑
j=i

bj2
−j

be the real number corresponding to the binary expansion of the codeword (in binary ri =
0.b1 b2 b3 . . .). We can associate the interval [ri, ri + 2−ci) with the ith codeword. This is the set
of all real numbers whose binary expansion begins with b1, b2, . . . , bci . Since this is a subinterval
of [0, 1], and all such subintervals corresponding to prefix codewords are disjoint, the sum of their
lengths must be less than or equal to 1. This proves the case where the number of codewords is
infinite.

3 Adapting to Unknown Parameters

Earlier in the course we saw that one can estimate Lipschitz smooth functions well. In this
section we generalize those results to include smoother functions. Furthermore, we will be able
to automatically adjust to the unknown level of smoothness of functions.

3.1 Lipschitz Functions

Suppose we have a function r∗ : [0, 1]→ [−R,R] satisfying the Lipschitz smoothness assumption

∀s, t ∈ [0, 1] |r∗(s)− r∗(t)| ≤ L|s− t| .

We have seen these functions can be well approximated by piecewise constant functions of the
form

g(x) =

m∑
j=1

cj1{x ∈ Ij} , where Ij =

[
j − 1

m
,
j

m

]
.

Let’s use maximum-likelihood to pick the “best” such model. Suppose we have following regres-
sion model

Yi = r∗(xi) + εi , i = 1, . . . , n ,

where xi = i/n and εi
i.i.d.∼ N (0, σ2). To be able to use the corollary we derived we need

a countable or finite class of models. The easiest way to do so is to discretize/quantize the
possible values of each constant piece in the candidate models. Define

Rm =

m∑
j=1

cj1{x ∈ Ij} : cj ∈ Q

 ,

where

Q = {−R,−Rn− 1

n
, . . . , R} =

{
R
k − n
n

, k = 0, . . . , 2n

}
.

Therefore Rm has exactly (2n + 1)m elements in total. This means that, by taking c(r) =
log2 ((2n+ 1)m) = m log2(2n+ 1) for all r ∈ Rm we satisfy the Kraft inequality∑

r∈Rm

2−c(r) =
∑
r∈Rm

1

|Rm|
= 1 .

12

So we are ready to apply our oracle bound. Since c(r) is just a constant (not really a function
of r) the estimator is simply the MLE

r̂n = arg min
r∈Rm

{
1

n

n∑
i=1

(Yi − r(xi))2 +
4σ2c(r) log 2

n

}

= arg min
r∈Rm

{
1

n

n∑
i=1

(Yi − r(xi))2

}
.

The corollary then says that

E

[
1

n

n∑
i=1

(r̂n(xi)− r∗(xi))2

]
≤ 2 min

r∈Rm

{
1

n

n∑
i=1

(r∗(xi)− r(xi))2 +
4σ2c(r) log 2

n

}
.

So far the result is extremely general, as we have not made use of the Lipschitz assumption.
We have seen earlier that there is a piecewise constant function r̄m(x) =

∑m
j=1 cj1{x ∈ Ij} such

that for all x ∈ [0, 1] we have |r∗(x)− r̄m(x)| ≤ L/m. The problem is that, generally r̄m /∈ Rm
since cj /∈ Q. Take instead the element of Rm that is closest to r̄m, namely

r̃m = arg min
f∈Rm

sup
x∈[0,1]

|r(x)− r̄m(x)| .

It is clear that |f(x) − f̄m(x)| ≤ R/n for all x ∈ [0, 1] therefore, by the triangle inequality we
have

|f(x)− f̃m(x)| ≤ |f(x)− f̄m(x)|+ |f̄m(x)− f̃m(x)| ≤ L

m
+
R

n
.

Now, we can just use this in our bound

E

[
1

n

n∑
i=1

(r̂n(xi)− r∗(xi))2

]
≤ 2 min

r∈Rm

{
1

n

n∑
i=1

(r∗(xi)− r(xi))2 +
4σ2c(r) log 2

n

}

≤ 2

n

n∑
i=1

(
L

m
+
R

n

)2

+
8σ2m log2(2n+ 1) log 2

n

= 2

(
L

m
+
R

n

)2

+
8σ2m log(2n+ 1)

n
.

So, to ensure the best bound possible we should choose m minimizing the right-hand-side. This
yields m ∼ (n/ log n)1/3 and

E

[
1

n

n∑
i=1

(f̂n(xi)− f∗(xi))2

]
= O

(
(n/ log n)−2/3

)
which, apart from the logarithmic factor is the best we can ever hope for (this logarithmic factor
is due to the discretization of the model classes, and is an artifact of this approach). If we want
the truly best possible bound we need to minimize the above expression with respect to m, and
for that we need to know L. Can we do better? Can we “automagically” choose m using the
data? The answer is yes, and for this we will start taking full advantage of our oracle bound.

13

Since we want to choose the best possible m we must consider the following class of models

R =
∞⋃
m=1

Rm .

This is clearly a countable class of models (but not finite). So we need to be a bit more careful
in constructing the map c(·). Let’s use a coding argument: begin by defining

m(r) = min
m∈N
{m : r ∈ Rm} .

Encode r ∈ R using first the bits 00 . . . 01 (total m(r) bits) to encode m(r) and them log2 |Rm|
bits to encode which model inside Rm is r. This is clearly a prefix code and therefore satisfies
the Kraft inequality. More formally

c(r) = m(r) + log2 |Rm(r)| = m(r) + log2

(
(2n+ 1)m(r)

)
= m(r)(1 + log2 ((2n+ 1)) .

Although we know, from the coding argument, that the map c(·) satisfies the Kraft inequality
for sure, we can do a little sanity check, and ensure this is indeed true:

∑
r∈R

2−c(r) ≤
∞∑
m=1

∑
r∈Rm

2−c(r)

=
∞∑
m=1

∑
r∈Rm

2−m(r)−log2 |Rm(r)|

≤
∞∑
m=1

∑
r∈Rm

2−m−log2 |Rm|

=
∞∑
m=1

2−m
∑
r∈Rm

1

|Rm|

=
∞∑
m=1

2−m = 1 .

Now, similarly to what we had before

r̂n = arg min
r∈R

{
1

n

n∑
i=1

(Yi − r(xi))2 +
4σ2c(r) log 2

n

}

= arg min
r∈R

{
1

n

n∑
i=1

(Yi − r(xi))2 +
4σ2m(r)(1 + log2(2n+ 1)) log 2

n

}
,

14

which is no longer the MLE, but rather a maximum penalized likelihood estimator. Then

E

[
1

n

n∑
i=1

(r̂n(xi)− r∗(xi))2

]

≤ 2 min
r∈R

{
1

n

n∑
i=1

(r∗(xi)− r(xi))2 +
4σ2m(r)(1 + log2(2n+ 1)) log 2

n

}

≤ 2 min
m∈N

{
min
r∈Rm

{
1

n

n∑
i=1

(r∗(xi)− r(xi))2

}
+

4σ2m(1 + log2(2n+ 1)) log 2

n

}

≤ min
m∈N

{
2

(
L

m
+
R

n

)2

+
8σ2m(log 2 + log(2n+ 1))

n

}
.

Therefore this estimator automatically chooses the best possible number of parameters m. Note
that the price we pay is very very modest - the only change from what we had before was
that the term log(2n + 1) is replaced by log 2 + log(2n + 1), which is a very minute change as
log(2n+1)� log 2 for any interesting sample size. Although this is remarkable, we can probably
do much better, and adjust to unknown smoothness. We’ll see how to do this next.

4 Regression of Hölder smooth functions

Let’s begin by defining a class of Hölder smooth functions. Let α > 0 and define let Hα(C,R)
be the set of all functions r : [0, 1]→ [−R,R] which have bαc derivatives and

|f(x)− T bαcy (x)| ≤ C|x− y|α ∀x, y ∈ [0, 1] ,

where bαc is the largest integer such that bαc < α, and T
bαc
y is the Taylor polynomial of degree

bαc around the point y. In words, a Hölder-α smooth function is locally well approximated by
a polynomial of degree bαc.

Note that the above definition coincides with our Lipschitz function class when α = 1.
Hölder smoothness essentially measures how differentiable functions are, and therefor Taylor
polynomials are the natural way to approximate Hölder smooth functions. We will focus on
Hölder smooth function classes with 0 < α ≤ 2 but the results presented can be easily generalized
for larger values of α. Since α ≤ 2 we will work with piecewise linear approximations, the Taylor
polynomial of degree 1. If we were to consider smoother functions, α > 2 we would need consider
higher degree Taylor polynomial approximation functions, i.e. quadratic, cubic, etc...

4.1 Regression of Hölder smooth functions

Consider the usual regression model

Yi = r∗(xi) + εi , i = 1, . . . , n ,

where xi = i/n and εi
i.i.d.∼ N (0, σ2). Let’s assume r∗ ∈ Hα(C,R), with unknown smoothness

0 < α ≤ 2. Intuitively, the smoother r∗ is the better we should be able to estimate it, as we
can “average” more observations locally. In other words for smoother r∗ we should average over

15

larger bins. Also, we will need to exploit the extra smoothness in our models for r∗. To that
end, we will consider candidate functions that are piecewise linear, i.e., functions of the form

m∑
j=1

(aj + bjx)1{x ∈ Ij} , where Ij =

[
j − 1

m
,
j

m

]
.

As before, we want to consider countable/finite classes of models to be able to apply our corollary,
so we will consider a slight modification of the above. Each linear piece can be described by
their beginning and end points respectively. So we are going to restrict those to lie on a grid.
Namely refer to Figure 3

(i−1)/k i/k

−C

0

C

n
levels

Figure 3: Example on the discretization of f on interval
[
j−1
m , jm

)
Define the class

Rm =

r(x) =
m∑
j=1

`j(x)1{x ∈ Ij}

 ,

where

`j(x) =
x− (j − 1)/m

1/m
bj +

j/m− x
1/m

aj = (mx− j + 1)bj + (j −mx)aj ,

and aj , bj ∈
{
k−
√
n√

n
R : k ∈ {0, . . . , 2

√
n}
}

. Clearly |Rm| = (2
√
n+ 1)2m.

Since we don’t know the smoothness a priori, we must choose m using the data. Therefore,
in the same fashion as before we take the class

R =
∞⋃
m=1

Rm ,

with m(r) = minm∈N{m : r ∈ Rm}, and

c(r) = m(r) + log2 |Rm(r)| = m(r)(1 + 2 log2

(
(2
√
n+ 1)

)
.

16

Exactly as before, define the estimator

r̂n = arg min
r∈R

{
1

n

n∑
i=1

(Yi − r(xi))2 +
4σ2m(r)(1 + 2 log2(2

√
n+ 1)) log 2

n

}
,

Then

E

[
1

n

n∑
i=1

(r̂n(xi)− r∗(xi))2

]

≤ 2 min
r∈R

{
1

n

n∑
i=1

(r∗(xi)− r(xi))2 +
4σ2m(r)(1 + 2 log2(2

√
n+ 1)) log 2

n

}

≤ 2 min
m∈N

{
min
r∈Rm

{
1

n

n∑
i=1

(r∗(xi)− r(xi))2

}
+

4σ2m(1 + 2 log2(2
√
n+ 1)) log 2

n

}
.

In the above, the first term is essentially our familiar approximation error, and the second term
is in a sense bounding the estimation error. Therefore this estimator automatically seeks the
best balance between the two. To say something more concrete about the performance of the
estimator we need to bring in the assumptions we have on r∗ (so far we haven’t used any).

First, suppose r∗ ∈ Hα (C,R) for 1 < α ≤ 2. We need to find a“good” model in the class
Rm that makes the approximation error small. Take x ∈ Ij where j is arbitrary. From the
definition of Hα (C,R) we have

|r∗(x)− r∗(j/m)− ∂

∂x
r∗(j/m)(x− j/m)| ≤ C|x− j/m|α ≤ C|1/m|α = Cm−α .

Therefore we can approximate r∗(x) with x ∈ Ij by a linear function, such that the error is
bounded by Cm−α. In particular, the best piecewise linear approximation, defined as

r∗m = arg min
piecewise linear functions

sup
x∈[0,1]

|r(x)− r∗(x)| ,

satisfies |r∗(x) − r∗m(x)| ≤ Cm−α for all x ∈ [0, 1]. Clearly, this function in not in Rm, so we
need to do some discretization. Take the function in Rm that is closest to that function r∗m.

r̃∗m = arg min
r∈Rm

sup
x∈[0,1]

|r(x)− r∗m(x)| ,

because of the way we discretized we know that supx∈[0,1] |r̃∗m(x)− r∗m(x)| ≤ R/
√
n. Using this,

together with the triangle inequality yields

∀x ∈ [0, 1] |r̃∗m(x)− r∗(x)| ≤ Cm−α +
R√
n
. (4)

If r∗ ∈ Hα (C,R) for 0 < α ≤ 1 we can proceed in a similar fashion, but simply have to note
that such functions are well approximated by piecewise constant functions. Furthermore these
are a subset of Rm. So, the reasoning we used for Lipschitz functions applies directly here, and
we obtain expression (4) for that case as well.

17

Finally, we can just plug-in these results into the bound of the corollary.

E

[
1

n

n∑
i=1

(r̂n(xi)− r∗(xi))2

]

≤ 2 min
m∈N

{
min
r∈Rm

{
1

n

n∑
i=1

(r∗(xi)− r(xi))2

}
+

4σ2m(1 + 2 log2(2
√
n+ 1)) log 2

n

}

≤ 2 min
m∈N

{(
Cm−α +

R√
n

)2

+
4σ2m(1 + 2 log2(2

√
n+ 1)) log 2

n

}

≤ 2 min
m∈N

O

(
max

{
m−2α,

m−α

n
,

1

n
,
m log n

n

})
.

It is not hard to see that the first and last terms dominate the bound, and so we attain the
minimum by taking (in the bound)

m ∼
(

n

log n

)1/(2α+1)

,

which yields

E

[
1

n

n∑
i=1

(r̂n(xi)− r∗(xi))2

]
= O

((
n

log n

)− 2α
2α+1

)
.

Note that the estimator does not know α!!! So we are indeed adapting to unknown smooth-

ness. If the regression function r∗ is Lipschitz this estimator has error rate O
(

(n/ log n)−2/3
)

.

However, if the function is smoother (say α = 2) the estimator has error rate O
(

(n/ log n)−4/5
)

,

which decays much quicker to zero. More remarkably, apart from the logarithmic factor it can
be shown this is the best one can hope for! So the logarithmic factor is the very small price we
need to pay for adaptivity.

18

