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1 Introduction: Nonparametric statistics

The term non-parametric statistics often takes a different meaning for different authors. For
example:

Wolfowitz (1942):

We shall refer to this situation (where a distribution is completely determined by
the knowledge of its finite parameter set) as the parametric case, and denote the
opposite case, where the functional forms of the distributions are unknown, as the
non-parametric case.

Randles, Hettmansperger and Casella (2004)

Nonparametric statistics can and should be broadly defined to include all method-
ology that does not use a model based on a single parametric family.

Wasserman (2005)

The basic idea of nonparametric inference is to use data to infer an unknown quantity
while making as few assumptions as possible.

Bradley (1968)

The terms nonparametric and distribution-free are not synonymous... Popular usage,
however, has equated the terms... Roughly speaking, a nonparametric test is one
which makes no hypothesis about the value of a parameter in a statistical density
function, whereas a distribution-free test is one which makes no assumptions about
the precise form of the sampled population.

The term distribution-free is used quite often in the statistical learning theory community,
to refer to an analysis that makes no assumptions on the distribution of training examples
(and only assumes these are independent and identically distributed samples from an unknown
distribution). For our purposes we will say a model is nonparametric if it is not a parametric
model. In the simplest form we speak of a parametric model if the data vector X is such that

X ∼ Pθ ,

and where θ ∈ Θ ⊆ Rd. That is, the statistical model is completely specified by d < ∞
parameters. Of course parametric models can be quite complicated (e.g., time-series models,
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graphical models, Hidden Markov Models (HMM), etc.) but their key feature is that they can be
described by a finite set of parameters, and the dimension of the model (number of parameters)
is fixed a priori regardless of the data.

Fifty years ago, most nonparametric methods were not feasible in practice, due to limited
computing power. Nowadays, this has changed due to rapid developments in computing science.
Nonparametric models can be advantageous since they offer much more flexibility to model the
data. Advantages of parametric methods include:

• Convenience: parametric models are generally easier to work with.

• Efficiency: If parametric model is correct, then parametric methods are more efficient than
their nonparametric counterpart. However, the loss in efficiency of nonparametric methods
is often small.

• Interpretation: Sometimes parametric models are easier to interpret.

Disadvantages include:

• Sometimes it is hard to find a suitable parametric model.

• Parametric methods are often only suitable for interval-scaled data, nonparametric meth-
ods based on order statistics work for ordinal data as well.

• Nonparametric methods are often less sensitive to outliers.

• Parametric methods have a high risk of Mis-specification.

Within non-parametric models, as described above, one can also consider some finer char-
acterizations. Semiparametric models are somewhere in between parametric and nonparametric
models. It is hard to give a precise definition. The typical setting is the case where the statistical
model has a natural parametrization (θ, η) 7→ Pθ,η, where θ is a Euclidean parameter and η lies
in some infinite-dimensional set. Often the main parameter of interest is θ and η is a nuisance
quantity.

Example 1 (Regression) Observe (X1, Y1), . . . , (Xn, Yn) and suppose

Yi = r(Xi) + εi ,

where r is a convex function and {εi} is a sequence of independent N (0, σ2)-distributed random
variables.

Example 2 (Logistic regression) Observe a binary Y and covariate-vector Z. Suppose

Pr(Y = 1) =
1

1 + e−r(Z)
.

Suppose Z = (Z1, Z2) and
r(z1, z2) = η(z1) + θ′z2 .

Example 3 (Interval Censoring) Let the time of “death” be T . Let C be some “check-up time”.
Observe couples

(C,1{T ≤ C}) .
Assume T and C are independent, Model T by a Weibull distribution and leave C unspecified.
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2 Nonparametric estimation of distribution functions and quan-
tiles

In this section we consider what is undoubtedly one of the simplest non-parametric estimators,
namely the Empirical Cumulative Distribution Function (ECDF). Suppose X1, . . . , Xn is an
independent and identically distributed (i.i.d.) sample from an unknown distribution function
F (x) = P(X ≤ x). The empirical (cumulative) distribution function is defined as

F̂n(x) =
1

n

n∑
i=1

1{Xi ≤ x} ,

where

1{Xi ≤ x} =

{
1 if Xi ≤ x
0 otherwise

.

This is a natural estimator of the true CDF F , and it is essentially the CDF of a distribution
that puts mass 1/n on each data point. The following are some important properties of the
empirical CDF.

• Note that, for a fixed point x ∈ R, the quantity nF̂n(x) has a binomial distribution with
parameters n and success probability F (x). Therefore

E
[
F̂n(x)

]
= F (x) and V(F̂n(x)) =

F (x)(1− F (x))

n
.

Furthermore, using Chebyshev’s inequality we have

P(|F̂n(x)− F (x)| ≥ ε) ≤ F (x)(1− F (x))

nε2
,

which implies that F̂n(x) converges in probability to F (x) as n→∞. Note however that
the strong law of large numbers applies as well, and implies a stronger result, namely that
F̂n(x) converges to F (x) almost surely, for every fixed x ∈ R.

• Chebyshev’s inequality is rather loose, and although it can be used to get pointwise con-
fidence bounds these will be extremely conservative. In particular in light of the central
limit theorem P(|F̂n(x) − F (x)| ≥ ε) should scale roughly like e−ε

2
instead of 1/ε2. A

stronger concentration of measure inequality that can be applied in this setting is Hoeffd-
ing’s inequality, which implies that for any ε > 0.

P(|F̂n(x)− F (x)| ≥ ε) ≤ 2e−2nε
2
.

• The Glivenko-Cantelli theorem implies a much stronger convergence result, namely that
strong convergence holds uniformly in x:

sup
x∈R
|F̂n(x)− F (x)| a.s.→ 0 .

• Finally a uniform concentration inequality, the Dvoretzky-Kiefer-Wolfowith (DKW) in-
equality, holds in this case as well. For any ε > 0 and any n > 0

P(sup
x∈R
|F̂n(x)− F (x)| ≥ ε) ≤ 2e−2nε

2
.
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2.1 A confidence band for F̂n

Using the DKW inequality we can get a confidence band for F̂n. Namely rewriting DKW we get

P(∀x ∈ R |F̂n(x)− F (x)| < ε) ≥ 1− 2e−2nε
2
.

Equating α = 2e−2nε
2
, which implies that ε =

√
1
2n log 2

α , we get

P

(
∀x ∈ R |F̂n(x)− F (x)| <

√
1

2n
log

2

α

)
≥ 1− α .

Taking into consideration that F (x) ∈ [0, 1] we can get a slightly more refined result. Let

L(x) = max

{
F̂n(x)−

√
1

2n
log

2

α
, 0

}
,

U(x) = min

{
F̂n(x) +

√
1

2n
log

2

α
, 1

}
,

Then, for any CDF F and all n

P (∀x ∈ R L(x) ≤ F (x) ≤ U(x)) ≥ 1− α .

2.2 Confidence intervals for the distribution function at a fixed point

In this section we look at various ways to construct a confidence interval (CI) for p = F (x). Since
Y = nF̂n(x) has a Bin(n, p) distribution, such an interval can be obtained from a confidence
interval for a Binomial success probability, given observation Y . There are many ways to do it,
and below we list four possibilities.

1. Exact (Clopper-Pearson): Here we use the connection between the critical region of a
point-null hypothesis and confidence intervals. The null hypothesis H0 : p = p0 is rejected
for an observed y if

P(Y ≥ y) ≤ α/2 or P(Y ≤ y) ≤ α/2 ,

where Y ∼ Bin(n, po). For the observed value y, a CI for p is then given by the complement
of the critical region, which leads to the interval

{p : Pp(Y ≥ y) > α/2 and Pp(Y ≤ y) > α/2} .

This interval is in general conservative, with coverage probability always greater or equal
to 1− α. However, due to the discreteness of Y exact coverage is generally not possible.

2. Asymptotic (Wald): Let p̂n = Y/n. By the central limit theorem

√
n

p̂n − p√
p(1− p)

D→ N (0, 1) ,
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where we use the symbol
D→ to denote convergence in distribution. We also know that

p̂n converges almost surely (and hence in probability) to p, therefore we can use Slutsky’s
theorem to replace p in the denominator by p̂n and conclude that

√
n

p̂n − p√
p̂n(1− p̂n)

D→ N (0, 1) .

Isolating p, we obtain the following CI for p[
p̂n − zα/2

√
p̂n(1− p̂n)

n
, p̂n + zα/2

√
p̂n(1− p̂n)

n

]
,

where zα/2 denotes the upper α/2-quantile of the standard normal distribution.

3. Asymptotic, using a variance stabilizing transformation: Instead of estimating p
in the denominator by p̂n one can also use a variance stabilizing transformation. Let φ be
function that is differentiable at point p and has non-zero derivative (we will see what is
a good choice for this function in a bit). By the δ-method 1

√
n(φ(p̂n)− φ(p))

D→ N (0, p(1− p)(φ′(p))2) .

Now take φ so that φ′(p) = 1/(
√
p(1− p). After some clever manipulation it is clear the

function we want is φ(x) = 2 arcsin
√
x. Therefore

2
√
n(arcsin(

√
p̂n)− arcsin(

√
p))

D→ N (0, 1) .

Since φ is monotone, we obtain that the following approximate 1− α confidence interval[
sin2

(
arcsin(

√
p̂n)−

zα/2

2
√
n

)
, sin2

(
arcsin(

√
p̂n) +

zα/2

2
√
n

)]
.

with probability approximately 1− α.

4. Wilson Method: In the Wald method we made use of Slutsky’s theorem, but we don’t
really need that extra step. Namely we can take the following approximate (asymptotic)
equality

P

(
−zα/2 ≤

√
n

p̂n − p√
p(1− p)

≤ zα/2

)
≈ 1− α .

Solving the inequalities for p give the desired confidence interval, which has endpoints

p̂n +
z2
α/2

2n ± zα/2
√

p̂n(1−p̂n)+z2α/2/(4n)
n

1 + z2α/2/n
.

5. Hoeffding’s inequality: One can also use Hoeffding’s inequality to construct a CI, in
the exact same fashion as the DKW-based confidence band we computed above.

1Let Yn be a sequence of random variables and φ : R → R a map that is differentiable at µ and φ′(µ) 6= 0.

Suppose
√
n(Yn − µ)

D→ N (0, 1). Then
√
n(φ(Yn)− φ(µ))

D→ N (0, (φ′(µ))2).
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To judge the actual performance of the various confidence intervals we should assess their
coverage probability, that is, if the CI takes the form [l(Y ), u(Y )] we want to evaluate P(p ∈
[l(Y ), u(Y )]) for Y ∼ Bin(n, p). This is in general not so easy to do analitically, so we conduct a
small simulation study, where we instead look at the coverage fraction. For now, pick n = 10 and
p = 0.6. We generated 1000 Bin(n, p) random variables. For each realization, we compute the
Clopper-Pearson, Wald (asymptotic), Wilson and variance stabilizing 95% confidence interval.
Subsequently, we compute the fraction of times that the CIs contain the true parameter p = 0.6.
This is the actual (observed) coverage fraction of the interval. Next, we repeat this procedure
for values of p on a fine grid on [0, 1] (keep n = 10) and make a figure in which we plot the
fraction of times that the observed coverage against p in [0, 1].

We did the same for n = 25 and n = 100. The results are in Figure 1. From these figures we
see that exact confidence intervals are conservative: the actual coverages are above 95%. Wilson
confidence intervals tend to behave well, except near the boundaries (p ≈ 0 and p ≈ 1). For n
large, variance stabilized asymptotic confidence intervals have good performance as well.

R code for producing these figures is in the file confint binom.r available in the course
website. Note that confidence intervals are available from the library Hmisc using the binconf

command.

2.3 Confidence intervals for quantiles using order statistics

Let X1, . . . , Xn be a random sample from a distribution F . For the computation of the ECDF
the order of the samples has no importance, therefore it is useful to define the order statistics.

Definition 1 Let X1, . . . , Xn be set of random variables. Let π : {1, . . . , n} → {1, . . . , n} be
a permutation operator such that Xπ(i) ≤ Xπ(j) if i < j. We define the order statistics as
X(i) = Xπ(i). Therefore

X(1) ≤ X(2) ≤ · · · ≤ X(n) .

Note that the order statistics are just a reordering of the data. Two particularly inter-
esting order statistics are the minimum and the maximum, namely X(1) = miniXi and
X(n) = maxiXi. Some distributional properties of order statistics can be found for example
in [Gibbons and Chakraborti (1992)]. Here we follow section 2.8 of that book.

A quantile of a continuous distribution of a random variable X is a real number which divides
the area under the probability density function into two parts of specified amounts. Let the p-th
quantile be denoted by qp for all p ∈ (0, 1). In terms of the cumulative distribution function,
then, qp is defined in general to be any number which is the solution to the equation

F (qp) = p .

If F is continuous and strictly increasing a unique solution exists. If there are flat pieces in the
graph of F , or discontinuities (i.e., X is not a continuous random variable), then it is customary
to define

F−1(y) := inf{x : F (x) ≥ y} ,
and to define the p-th quantile uniquely as F−1(p).

To estimate the qp we can take a plug-in approach, and use the ECDF, which can be written
in terms of the order statistics as

F̂n(x) =

n∑
i=1

1{X(i) ≤ x} .
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Figure 1: Coverage of confidence intervals for various parameters of a binomial distribution.
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The quantile qp can be estimated by

q̂n(p) = F̂−1n (p) .

From here on we will assume the distribution function F is continuous (therefore there are
no ties in the order statistics). In that case it is clear that if p ∈

(
i−1
n , in

]
, then F̂−1n (p) = X(i),

the i-th order statistic 2. Suppose that a confidence interval for qp is desired for some specified
value of p. A logical choice for the confidence interval end points are two order statistics X(r)

and X(s). Therefore, for a given significance level α we need to find r and s to be such that

P(X(r) < qp ≤ X(s)) ≥ 1− α .

Now
{qp > X(r)} = {X(r) < qp ≤ X(s)} ∪ {qp > X(s)} ,

and the two events on the right hand side are disjoint. Therefore,

P(X(r) < qp ≤ X(s)) = P(X(r) < qp)− P(X(s) < qp) . (1)

So it is clear that, to construct a confidence interval, we need to study the event {X(r) < u}
for u ∈ R. Since we are assuming F is continuous, this implies that X(r) is also continuous and
therefore we can simply study the event {X(r) ≤ u}, which holds with the same probability. This
event holds if and only if at least r of the sample values X1, . . . , Xn are less or equal to u. Let N
denote the number of samples values that are less or equal to u, namely N =

∑n
i=1 1{Xi ≤ u}.

Clearly this has a binomial distribution with success probability P(Xi ≤ u) = F (u). Thus

P(X(r) ≤ u) = P(N ≥ r) =
n∑
i=r

(
n

i

)
F (u)i(1− F (u))n−i .

Finally taking u = qp = F−1(p) and putting everything together in equation (1) we get

P(X(r) < qp ≤ X(s)) =
s−1∑
i=r

(
n

i

)
pi(1− p)n−i .

Now r < s need to be chosen such that this probability is at least 1−α. Dividing the mass α/2
evenly we get

P(B ≥ s) ≤ α/2 and P(B < r) ≤ α/2 ,

where B is a binomial random variable with parameters n and p. Therefore

r = max{k ∈ {0, 1, . . . , n− 1} : P(B < k) ≤ α/2} ,

and use the convention X(0) = −∞. Similarly

s = min{k ∈ {1, . . . , n+ 1} : P(B < k) ≥ 1− α/2} ,

and use the convention X(n+1) =∞.

2Another common definition of a sample quantile q̂n(p) is based on requiring that the ith order statistic is the
i/(n+ 1) quantile. The computation of q̂n(p) runs as follows: q̂n(p) = x(k) + η(x(k+1) − x(k)) with k = bp(n+ 1)c
and η = p(n + 1) − k (bxc denotes the integer part of x). Note that if p = 0.5, this definition agrees with the
usual definition of the sample median.
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Remark 1 The result

PX(r) ≤ u =
n∑
i=r

(
n

i

)
F (u)i(1− F (u))n−i

can also be used to obtain asymptotic distributions for order statistics (see chapter 21 in
[Van der Vaart (1998)]). As a simple example, take r = n− k with k fixed and u = un. then

PX(n−k) ≤ un =

n∑
i=n−k

(
n

i

)
F (un)i(1− F (un))n−i .

Suppose un is such that limn→∞ n(1− F (un)) = τ ∈ (0,∞), then

lim
n→∞

PX(n−k) ≤ un = e−τ
k∑
j=0

τ j

j!

by the Poisson approximation of the binomial distribution. If, for instance, F is the distribution
function of an exponential random variable with mean 1/λ > 0 then taking un = (log(n)− x)/λ
(with x > 0), we obtain τ = ex and

lim
n→∞

PλX(n−k) − log n ≤ −x = e−e
x

k∑
j=1

ejx

j!
.

3 Exercises

Exercise 1 (Computer exercise) Data on the magnitudes of earthquakes near Fiji are available
from R. Just type quakes. For help on this dataset type ?quakes. Estimate the distribution
function. Find an approximate 95% confidence interval for F (4.9)−F (4.3) using a Wilson-type
confidence interval. ([Wasserman (2005)], exercise 11, chapter 2.)

Exercise 2 Compare the coverage of the confidence intervals discussed in this lecture with that
of a Hoeffding type confidence interval (e.g., as described in chapter 1 of [Wasserman (2005)]).
Make a picture similar to Figure 1 including these CIs.

Exercise 3 Let X1, X2, . . . , Xn ∼ F and let F̂n(x) be the empirical distribution function. For

a fixed x, find the limiting distribution of

√
F̂n(x). Hint: use the Delta-method.

([Wasserman (2005)], exercise 4, chapter 2.)

Exercise 4 Write an R-function that implements a confidence interval for the p-th quantile
based on the order-statistics of the data. Simulate 10.000 times a sample of size 10 from a
standard normal distribution and compute the coverage of the confidence interval with p = 0.5.
Repeat for sample sizes 50, 100 and 1000.

Exercise 5 A manufacturer wants to market a new brand of heat-resistant tiles which may
be used on the space shuttle. A random sample of size m ot these tiles is put on a test and
the heat resistance capacities of the tiles are measured. Let X(1) denote the smallest of these
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measurements. The manufacturer is interested in finding the probability that in a future test
(performed by, say, an independent agency) of a random sample of n of these tiles at least k
(k = 1, 2, . . . , n) will have a heat resistance capacity exceeding X(1) units. Assume that the heat
resistance capacities of these tiles follows a continuous distribution with CDF F .

a. Show that the probability of interest is given by
∑n

r=k ar, where

ar =
mn!(r +m− 1)!

r!(n+m)!
.

b. Show that
ar
ar−1

=
r +m− 1

r

a relationship that is useful in calculating ar.
c. Show that the number of tiles, n, to be put on a future test such that all of the n mea-

surements exceed X(1) with probability p is given by

n =
m(1− p)

p
.

([Gibbons and Chakraborti (1992)], exercise 2.31)

4 Useful R-commands

4.1 Empirical distribution function and related

Method R-function within package

Empirical distr. function ecdf stats
Binomial confidence interval binconf Hmisc
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