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Permutation Methods

A simple but powerful non-parametric idea originating with
Fisher and Pitman (1937):

* Before computers became pervasive these methods were
viewed as computationally cumbersome - and were brushed
aside for a long time.

* Provide a unified framework for the study of rank-based
tests

Bradley (1968, p. 85):

Eminent statisticians have stated that the randomization test is
the truly correct one and that the corresponding parametric
test is valid only to the extend that it results in the same
statistical decision.



Permutation vs. Randomization Tests

Typical Setting: We have observations from two different groups, or
under two different conditions.

Question: Is there a difference between the two groups or
conditions?

- Randomization Model: available subjects are randomly assigned to
treatments. The resulting inference pertains only the observed
individuals (there is no concept of a population)

- Randomization Tests

* Population Model: subjects are randomly sampled from different
subpopulations

* Permutation Tests

Advantages: conceptually very easy, and results in exact inference
procedures.

Disadvantages: Cannot be used for every testing problem and is
computationally intensive



The Randomization Model - Example

Basis: subjects are randomly assigned to different treatments (usual
practice in medicine)

* The only random aspect of the model is the assignment of
treatments
* Inference is limited to subjects under study (there is no population)

Typical Setting:

N patients are randomly assigned to treatment/control group. The
effect to treatment/control is recorded:

A treatment to speed-up post-surgical recovery: n patients are ran-
domly assigned a specific treatment, and m = N —n are assigned to
a control group and given a placebo treatment. The corresponding
recovery times are recorded:
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The Randomization Model - Example

A treatment to speed-up post-surgical recovery: n patients are ran-
domly assigned a specific treatment, and m = N —n are assigned to
a control group and given a placebo treatment. The corresponding
recovery times are recorded:
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More specifically let N =7, n =4 and m = 3 and

(z1,22,23) = (23,33,40) (control)

(y1,y2,y3,ys) = (19,22,25,26) (treatment)

A sensible statistic: t =y —=

In this case t = —9. It seems sensible to state the treatment makes
a difference if ¢t is small, but “how small is small” ?



The Randomization Model - Example

Notation: Identify the patients with numbers 1,...,N and let
z1,...,2y denote the recovery times of the N patients. Let d be
the set of patients receiving treatment

d={ie{l,...,N} : patient ¢ received treatment} .

Clearly

Two hypothesis:

Hp : no difference between treatment/control

H4 : treatment reduces recovery time

Test statistic: tu,=y—=



The Randomization Model - Example

The only random aspect of this setting is the random assignment
of treatment. So we can check if randomly chosen assignements
would result in very different outcomes...

Let D be a subset of {1,..., N} with cardinality n, chosen uniformly
at random over all the possible (i\{) possible sets.

Define
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n m

ieD i¢D
This is our test statistic, and we observed the value ¢,.
Under the null hypothesis the observed value t; should be a sample

from the distribution tp. We can easily compute this distribution
by trying out all possible assignments!!!



The Randomization Model - Example

NoO. X1 X X3 X4 Y; Y- Y3 tp
1 19 22 25 26 23 33 40 -9.00
2 22 23 25 26 19 33 40 -6.67
3 22 33 25 26 19 23 40 | -0.83
4 22 25 26 40 19 23 33 3.25

Randomisation distribution
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The observed value ¢, is quite extreme.



The Randomization Model - Example

Randomisation distribution
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The p-value of the randomization test is simply given by
1
Pr,(tp < ta) = Z 1{t; < tq} ,
() &=

where D is the set of ALL possible assignments.

In the example p = = = 0.0857.



The Randomization Model

These tests are “exact”, in the sense that we can control exactly
the probability of type I error. However, we need to be a bit careful
as the possible values of the test statistic are discrete, and therefore
the test cannot be exact for an arbitrary significance level.

Lemma:
If the significance level is o = ﬁ and we take as critical region

—00, t() e randomization test is exact, that is
(—00,t(x] th domization test | t, that i
Py, (reject Hp) = o .

In the above, ¢ is the kth smallest value in {t/, : d' € D}.

Remarks: we can obvioulsly use other test statistics, e.g. differ-
ence in the group medians, or the sum of responses in one of the

groups:
n—+m
Sp = Zzzl{z c D} .

1=1

EXxercise: Show that this test statistic is equivalent to ¢,.



The Randomization Model

More Remarks: Asymptotically the randomization test results in
the same inference procedure as the 2-sample t-test (although the
basis of the inference is completely different).

If we apply these ideas for ranks we recover the famous Wilcoxon-
rank-sum test.

Bradley (1968, p. 85):

Eminent statisticians have stated that the randomization test is
the truly correct one and that the corresponding parametric
test is valid only to the extend that it results in the same
statistical decision.



The Population Model
Basis:

* Data is assumed to correspond to random samples from different
populations.

- This is a stronger assumption than in the previous setting but...

- Conclusions can be generalized to populations.

X1,.... X, "' F and w,....v,%aq.

Ho . F =G Versus H,:F#G

Remarks: The mechanicsis the same as before, but the reasoning
is different:

Under the null hypothesis all sasmples come from the same distribu-
tion. Therefore, conditionally on the values of {X1,...,Xm, Y1,...,Ys}
any possible assignment into two different populations is equally
likely.



The Population Model

X1,.... Xpn ~'F and w,....v,%'aq.

Hy: F =G Versus H, . F#+G

Let N =n + m and define
1 =X1,. sl =XmyZp+1 =Y1,..., ZIN = YN ,

and denote by z1,...,zy the observed values.

Define the event
E = {(Zl, Cee ZN) = (Zp(l), e 7Zp(N)) for some permutation p}
= {(2(1),---,Z(N)) = (Z(1),---,Z(N))} :

The idea is that we are going to condition on the event that the
order statistics are the ones we observed (event E)



The Population Model

Define the event
E = {(Zl,...,ZN) = (2p(1)s - - - » Zp(n)) FOr some permutation p} :
Clearly

1
]P)HO(Zl p— Zl,.. .,ZN p— ZN|E) — ﬁ .
so we have '

1
Py, (observed division over groups|F) = —— .

()

As before, all we have to do is to construct a test statistic Ty, and
compare it with a (conditional) reference distribution Tp under the
null.



The Population Model

For instance let

Y

Td:|X—?

so we will test if the means of the two populations are significantly
different.

The conditional p-value of this test is simply given by

Z 1T, > Ty} .

1
P = IP)HO(TD > Td|E) — m
mn dleD

Lemma:

If the significance level is o = &

@)

the permutation test is exact, that is

and we take as critical value T

IP’HO(reject H0|E) — PHO(TD > T’|E) =,
where T” is the kth largest value in {Ty : d' € D}.




The Population Model

Lemma:
If the significance level is o« = E_ and we take as critical value 7"

@)

the permutation test is exact, that is

IP’HO(reject H0|E) — PHO(TD > T’|E) =,

where T” is the kth largest value in {Ty : d' € D}.

Note that, because the test controls the type I error regardless of
event E, this test is also unconditionally exact. This is why we
can issue meaningful statistical statements about the populations.

Let’'s see an example...




The Population Model - Example

Byzantine coins: We wish to investigate the silver content (%AQg)
of a number of Byzantine coins discovered in Cyprus. The coins
are from the first and fourth coinage in the reign of King Manuel
I, Commenus (1143-1180). First we visualize the data, using a
stripplot.

cl<-c(5.9, 6.8, 6.4, 7.0, 6.6, 7.7, 7.2, 6.9, 6.2)
c4<-c(5.3, 5.6, 5.5, 5.1, 6.2, 5.8, 5.8)
coindata<-data.frame(coinage=c(cl,c4),
type=c(rep("first",9) ,rep("fourth",7)))
stripchart(coinage~type,data=coindata,cex=1.5,pch=16,
main=’Stripchart of Byzantine Coins’)

In this case let X's denote the data relative to the first coinage
and Y's the data pertaining the fourth coinage, therefore m = 9,
n=~1".



The Population Model - Example

Stripchart of Byzantine Coins

fourth

first

coinage

Suppose we want to test the null hypothesis
that there is no difference among the silver
content in different coinages versus an alter-
native where there is a difference.

A reasonable test statistic is
T=Y - X,

where X; correspond to the data relative to the
first coinage and Y, corresponds to the data of
the fourth coinage.

Since the sample is relatively small there are only (16) — 11440

permutations.

9



The Population Model - Example

Histogram of T under H_0

twosample.perm.test<-function(x,y)
{ g - -
z<-c(x,y) N
m<-length(x) i

n<-length(y) S - i
N<-n+m — i
mat<-combn(N,m) . n
o
8 N - P
poss<-ncol (mat)
t<-teststat(x,y) & 2 L
o
T<-numeric(poss) % 8 7 | n
for ( i in 1:poss) i i
{ —
o
x<-z[mat[,i]] Q - ] .
y<-z[-mat[,i]]
T[il<-teststat(x,y) -
} S
return(list (T=T,t=t))
}
o - o
. | T T T |
teststat<-function(x,y) mean (y) -mean (x) e e 40 T i
result<-twosample.perm.test(cl,c4) result$T

hist(result$T,50, main=’Histogram of T under H_0’);abline(v=result$t, col=’red’, lwd=2);

p_value<-mean(abs (result$T-mean(result$T)) >=abs(result$t-mean (result$T)))
cat (’P-value for the test ’,p_value,’\n’)

There are better ways to code thisll!



The Population Model - Example

Histogram of T under H_0
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Observed value is quite extreme. We can safely
reject the null hypothesis with high confidence.

The p-value can be computed as described in
the article by Ernst, and we get p = 0.000699,
SO we can quite confidently reject the null hy-
pothesis.

The conditional inference (coin) package can also do the calcula-
tions (and much faster) using the following code.

oneway_test (coinage~type,data=coindata,distribution="exact")

This package offers much more functionality for computing p-values
for permutation tests. However, it takes some study to understand
what’s going on and what user input is necessary.



Monte-Carlo Computations

Computation of all the possible permutations is seldomly possible
for most problems. For instants if N =30 and n = 15 we have

(]Z) ~ 155 x 10° .

Often one can enumerate permutations efficiently, and are able to
compute distributions involving millions of permutations.

Nevertheless, it is quite easy to sample from the permutation distri-
bution!!! Therefore, we can estimate p-values easily using Monte-
Carlo methods.



Monte-Carlo Computations

Suppose the test statistic is t; and we want to compute the p-value
for a one-sided test rejecting the null if t; > 7. We can generate M
i.i.d. samples from the test statistic under the null and estimate
the p-value as

14+ 500 1{t: >t}
M-+1 '

D=

Since we compute p from a binomial random variable we can actu-
ally get a CI for p, and therefore we can easily get a conservative
bound for the p-value.



Final Remarks

When applicable, permutation methods are a sensible way to per-
form statistical inference. Furthermore, given the computational
power available to us these are also extremelly practical.

Not all statistics can be used with permutation methods. Under
the null the distribution of the test statistic must be invariant under
permutations. This might not always be the case, for instance:

X —-Y
SIS

T =

This is the t-statistic for comparing means when sampling from two
independent normal populations with possibly different variances. If
the variances are different then the distribution of T' is not invariant
under permutations, even when the means are identical.



