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In this brief note a simple regression problem will be introduced, illustrating
clearly the bias-variance tradeoff.

Let
Yi = f(xi) +Wi , i = 1, . . . , n ,

where xi = i/n, f : [0, 1] → R is a function, and Wi’s are independent random
variables such that

E[Wi] = 0 and E[W 2
i ] = σ2 <∞.

The object of interest is the function f . Using the data {Yi} we want to construct

an estimate f̂n that is good, in the sense that the squared L2 distance

‖f̂n − f‖2 =

∫ 1

0

(f̂n(t)− f(t))2dt ,

is small (note that the above is a random quantity). In particular we want to
minimize the expected risk

E[‖f̂n − f‖2] .

In order to characterize the expected risk we need further assumptions on
the function f , namely we assume it is Lipschitz smooth. Formally we assume

f ∈ FL ≡ F = {f : [0, 1]→ R : |f(s)− f(t)| ≤ L|t− s|, ∀t, s ∈ [0, 1]} ,

where L > 0 is a constant. Notice that such functions are continuous, but
not necessarily differentiable. An example of such a function is depicted in
Figure 1(a).

Our approach will use piecewise constant functions, in what is usually re-
ferred to as a regressogram (this is the regression analogue of the histogram).
Let m ∈ N and define the class of piecewise constant functions

Fm =

f : f(t) =

m∑
j=1

cj 1

{
j − 1

m
≤ t < j

m

}
, cj ∈ R

 .

The set Fm is a linear space consisting of functions that are constant on the
intervals

Ij,m ≡
[
j − 1

m
,
j

m

)
, j = 1, . . . ,m .
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Figure 1: Example of a Lipschitz function (blue), and corresponding observa-
tions (red): The red dots correspond to (i/n, Yi), i = 1, . . . , n.

Clearly ifm is large we can approximate almost any bounded function arbitrarily
well. For notational ease we will drop the subscript m in Ij,m and use simply
Ij .

We are going to use a bias-variance decomposition. First let’s define our
estimator. It is going to be simply the average of the data in each one of
the intervals Yi. A way to motivate this estimator is as follows. Our goal is
to minimize E[‖f̂n − f‖2], but obviously we cannot compute this expectation.
Let’s consider instead an empirical surrogate for it, namely

R̂n(f ′) =
1

n

n∑
i=1

(f ′(xi)− Yi)2 ,

where f ′ is an arbitrary function. Now let f ′ ∈ Fm, so that we can write it as

f ′(t) =

m∑
j=1

cj1{t ∈ Ij} ,

where cj ∈ R. Define
Nj = {i : xi ∈ Ij} .

We can rewrite the R̂n(f ′) as

R̂n(f ′) =
1

n

n∑
i=1

 m∑
j=1

cj1{xi ∈ Ij} − Yi

2

=
1

n

m∑
j=1

∑
i∈Nj

(cj − Yi)2 .

Define the estimator
f̂n = arg min

f ′∈Fm

R̂n(f ′) . (1)
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Then

f̂n(t) =

m∑
j=1

ĉj1{t ∈ Ij} ,

where

ĉj =
1

|Nj |
∑
i∈Nj

Yi , (2)

where |Nj | denotes the number of elements in Nj . Notice that |Nj | is always
greater than zero provided m < n. We will assume this throughout the entire
document.

Exercise 1 Prove that the solution of (1) is given by f̂n(t) =
∑m

j=1 ĉj1{t ∈ Ij},
where the ĉj’s are given by (2).

Define also f̄ ∈ Fm, the expected value of f̂n:

f̄(t) = E[f̂n(t)] =

m∑
j=1

c̄j1{t ∈ Ij} , c̄j =
1

|Nj |
∑
i∈Ij

f(xi) .

We are ready to do our bias-variance decomposition.

E[‖f̂n − f‖2] = E[‖f̂n − f̄ + f̄ − f‖2]

= E[‖f̂n − f̄‖2] + E[‖f̄ − f‖2] + 2E[〈f̂n − f̄ , f̄ − f〉]
= E[‖f̂n − f̄‖2] + ‖f̄ − f̂n‖2 + 2〈E[f̂n]− f̄ , f̄ − f〉
= E[‖f̂n − f̄‖2] + ‖f̄ − f̂n‖2 ,

where the final step follows from the fact that E[f̂n(t)] = f̄(t). So the expected
risk is decomposed in two terms, the first is the variance (or estimation error),
and the second is the squared bias (or approximation error). Now we just need
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to evaluate each one of these terms. Let’s start with the bias term.

‖f̄ − f‖2 =

∫ 1

0

(f̄(t)− f(t))2dt

=

m∑
j=1

∫
Ij

(f̄(t)− f(t))2dt

=

m∑
j=1

∫
Ij

(c̄j − f(t))2dt

=

m∑
j=1

∫
Ij

 1

|Nj |

∑
i∈Nj

f

(
i

n

)− f(t)

2

dt

=

m∑
j=1

∫
Ij

 1

|Nj |
∑
i∈Nj

(
f

(
i

n

)
− f(t)

)2

dt

≤
m∑
j=1

∫
Ij

 1

|Nj |
∑
i∈Nj

∣∣∣∣f ( in
)
− f(t)

∣∣∣∣
2

dt

≤
m∑
j=1

∫
Ij

 1

|Nj |
∑
i∈Nj

L

m

2

dt

=

m∑
j=1

∫
Ij

(
L

m

)2

dt

=

m∑
j=1

1

m

(
L

m

)2

=
L2

m2
.

So we see that if m is large (provided it is smaller than n) the bias term goes to
zero. In other words we can approximate a Lipschitz smooth function arbitrarily
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well with a piecewise constant function. Now for the variance.

E[‖f̂n − f̄‖2] = E
[∫ 1

0

(f̂n(t)− f̄(t))2dt

]

= E

 m∑
j=1

∫
Ij

(f̂n(t)− f̄(t))2dt


= E

 m∑
j=1

∫
Ij

(ĉj − c̄j)2dt


= E

 m∑
j=1

(ĉj − c̄j)2
∫
Ij

dt


= E

 m∑
j=1

(ĉj − c̄j)2
1

m


=

1

m

m∑
j=1

E
[
(ĉj − c̄j)2

]

=
1

m

m∑
j=1

E


 1

|Nj |
∑
i∈Nj

Yi −
1

|Nj |
∑
i∈Nj

f(xi)

2
 dt

=
1

m

m∑
j=1

E


 1

|Nj |
∑
i∈Nj

(Yi − f(xi))

2
 dt

=
1

m

m∑
j=1

E


 1

|Nj |
∑
i∈Nj

Wi

2
 dt

=
1

m

m∑
j=1

σ2

|Nj |
.

Now notice that |Nj | ≈ n/m. In fact, if we want to be precise we can say that
|Nj | ≥ bn/mc, where bxc is the largest integer k such that k < x. Therefore
|Nj | ≥ n/m− 1, and so

E[‖f̂n − f̄‖2] ≤ 1

m

m∑
j=1

σ2

bn/mc

=
σ2

bn/mc
≤ σ2

n/m− 1
= σ2m

n

(
n

n−m

)
.
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So, as long as m < cn, with 0 < c < 1 then

E[‖f̂n − f̄‖2] ≤ σ2m

n

1

1− c
,

so the variance term is essentially proportional to m/n. In words this means
the variance term is proportional to the number of model parameters m divided
by the amount of data n.

Combining everything we have

E[‖f̂n‖2 − f‖2] ≤ σ2m

n
+
L2

m2
= O

(
max

{
1

m2
,
m

n

})
, (3)

where we make use of the Big-O notation1. At this point it becomes clear that
there is an optimal choice for m, namely if m is small then the squared bias
term O(1/m2) is going to be large, but the variance term O(m/n) is going to be
small, and vice-versa. This two conflicting goals provide a tradeoff that directs
our choice of m (as a function of n). In Figure 2 we depict this tradeoff. In
Figure 2(a) we considered a large m value, and we see that the approximation of
f by a function in the class Fm can be very accurate (that is, our estimate will
have a small bias), but when we use the measured data our estimate looks very
bad (high variance). On the other hand, as illustrated in Figure 2(b), using a
very small m allows our estimator to get very close to the best approximating
function in the class Fm, so we have a low variance estimator, but the bias of
our estimator (the difference between f̄ and f) is quite considerable.
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Figure 2: Approximation and estimation of f (in blue) for n = 60. The function

f̄ is depicted in green and the function f̂n is depicted in red. In (a)we have
m = 60 and in (b) we have m = 6.

1The notation xn = O(yn) (that reads “xn is big-O yn”, or “xn is of the order of yn
as n goes to infinity”) means that xn ≤ Cyn, where C is a positive constant and yn is a
non-negative sequence.
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We need to balance the two terms in the right-hand-side of (3) in order to
maximize the rate of decay (with n) of the expected risk. This implies that
1

m2 ≈ m
n therefore m = n1/3 and the Mean Squared Error (MSE) is

E[‖f̂n − f‖2] = O(n−2/3) .

It is interesting to note that the rate of decay of the MSE we obtain with
this strategy cannot be further improved by using more sophisticated estimation
techniques. In fact we have the following minimax lower bound :

inf
f̂n

sup
f∈Fm

E[‖f̂n − f‖2] ≥ c(L, σ2)n−2/3 ,

where c(L, σ2) > 0, and the infimum is taken over all possible estimators (i.e.,
all measurable functions of the data).

Also, rather surprisingly, we are considering classes of models Fm that are
actually not Lipschitz, therefore our estimator of f is not a Lipschitz function,
unlike f itself.

Exercise 2 Suppose that the true regression function f was not really a Lip-
schitz smooth function, but instead a piecewise Lipshitz functions. These are
functions that are composed by a finite number of pieces that are Lipschitz.
An example of such a function is g(t) = f1(t)1{t ∈ [0, 1/3]} + f2(t)1{t ∈
(1/3, 1/2)}+ f3(t)1{t ∈ (1/2, 1]}, where f1, f2, f3 ∈ FL.

Let G(M,L,R) denote the class of bounded piecewise Lipschitz functions.
Each piece belongs to class FL, there are at most M pieces, and any function
f ∈ G(M,L,R) is bounded in the sense that |f(x)| ≤ R for all x ∈ [0, 1]. Study
the performance of the above estimator when f ∈ G(M,L,R). Identify the best
rate of error decay of the estimator risk.

Exercise 3 Suppose you want to remove noise from an image (e.g., a medical
image). An image can be thought of as a function f : [0, 1]2 → R. Let’s suppose
it satisfies a 2-dimensional Lipschitz condition

|f(x1, y1)− f(x2, y2)| ≤ Lmax (|x1 − x2|, |y1 − y2|) ,∀x1, y1, x2, y2 ∈ [0, 1] .

1. Do you think this is a good model for images? Why and why not.

2. Assume n, the number of samples you get from the function, is the square
of an integer, therefore

√
n ∈ N. Let f be a function satisfying the above

condition let the observation model be

Yij = f(i/
√
n, j/

√
n) +Wij , i, j ∈ {1, . . . ,

√
n} ,

where as before the noise variables are mutually independent and again
E[Wij ] = 0 and E[W 2

ij ] ≤ σ2 <∞.

Using a similar approach to the one in class construct an estimator f̂n
for f . Using this procedure what is the best rate of convergence attainable
when f is a 2-dimensional Lipschitz function?
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