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Introduction

Decoding problem

Complete decoding: Given y ∈ Fn
q and a code C ⊆ Fn

q, so that
y is at distance d(y,C ) from the code, find
c ∈ C : d(y, c) = d(y,C ).

Bounded up to half the minimum distance: Additional
assumption d(y,C ) ≤ (d(C )− 1)/2. Then a codeword with
the above property is unique.



Introduction

Decoding via systems solving

One distinguishes between two concepts:

Generic decoding: Solve some system S(C ) and obtain some
”closed” formulas F . Evaluating these formulas at data
specific to a received word y should yield a solution to the
decoding problem. For example for f ∈ F : f (syndrome(y), x)
= poly(x). The roots of poly(x) = 0 yield error positions –
general error-locator polynomial f .

Online decoding: Solve some system S(C , y). The solutions
should solve the decoding problem.

Computational effort

Generic decoding. Preprocessing: very hard. Decoding:
relatively simple.

Online decoding. Preprocessing: – . Decoding: hard.



Quadratic system method

Unknown syndrome

Let b1, . . . ,bn be a basis of Fn
q and let B be the n × n matrix with

b1, . . . ,bn as rows. The unknown syndrome u(B, e) of a word e
w.r.t B is the column vector u(B, e) = BeT with entries
ui (B, e) = bi · e for i = 1, . . . , n.

Structure constants

For two vectors x, y ∈ Fn
q define x ∗ y = (x1y1, . . . , xnyn). Then

bi ∗ bj is a linear combination of b1, . . . ,bn, so there are constants

µij
l ∈ Fq such that bi ∗ bj =

∑n
l=1 µij

l bl . The elements µij
l ∈ Fq are

the structure constants of the basis b1, . . . ,bn.

MDS matrix

Let Bs be the s × n matrix with b1, . . . ,bs as rows (B = Bn).
Then b1, . . . ,bn is an ordered MDS basis and B an MDS matrix if
all the s × s submatrices of Bs have rank s for all s = 1, . . . , n.



Quadratic system method

Check matrix

Let C be an Fq-linear code with parameters [n, k, d ]. W.l.o.g
n ≤ q. H is a check matrix of C . Let h1, . . . ,hn−k be the rows of
H. One can express hi =

∑n
j=1 aijbj for some aij ∈ Fq. In other

words H = AB where A is the (n − k)× n matrix with entries aij .

Known syndrome

Let y = c + e be a received word with c ∈ C and e an error vector.
The syndromes of y and e w.r.t H are equal and known:
si (y) := hi · y = hi · e = si (e). They can be expressed in the
unknown syndromes of e w.r.t B: si (y) =

∑n
j=1 aijuj(e) since

hi =
∑n

j=1 aijbj and bj · e = uj(e).



Quadratic system method

Linear forms

Let B be an MDS matrix with structure constants µij
l . Define Uij

in the variables U1, . . . ,Un by Uij =
∑n

l=1 µij
l Ul .

Quadratic system

The ideal J(y) in Fq[U1, . . . ,Un] is generated by∑n
l=1 ajlUl − sj(y) for j = 1, . . . , r

The ideal I (t,U ,V ) in Fq[U1, . . . ,Un,V1, . . . ,Vt ] is generated by∑t
j=1 UijVj − Uit+1 for i = 1, . . . , n

Let J(t, y) be the ideal in Fq[U1, . . . ,Un,V1, . . . ,Vt ] generated by
J(y) and I (t,U ,V ).



Quadratic system method

Main result

Let B be an MDS matrix with structure constants µij
l . Let H be a

check matrix of the code C such that H = AB as above. Let
y = c + e be a received word with c ∈ C the codeword sent and e
the error vector. Suppose that wt(e) 6= 0 and
wt(e) ≤ b(d(C )− 1)/2c. Let t be the smallest positive integer
such that J(t, y) has a solution (u, v) over Fq. Then

wt(e) = t and the solution is unique satisfying u = u(e).

the reduced Gröbner basis G for the ideal J(t, y) w.r.t any
monomial ordering is{

Ui − ui (e), i = 1, . . . , n,
Vj − vj , j = 1, . . . , t,

where (u(e), v) is the unique solution.



Quadratic system method

Features

No field equations.

The same result holds for the complete decoding.

The solution lies in the field Fq.

The equations are at most quadratic.

After solving J(t, y) decoding is simple:
B−1u(B, e) = B−1BeT = eT .



Quadratic system method

Analysis

From J(y) one can express some n − k U-variables via k others.
Substitution of those in I (t,U ,V ) yields a systems of n quadratic
equations in k + t variables, thus obtaining overdetermined system.
Easier to solve when

With constant k and t, n increases.

With constant n and t, k decreases.

Simulations

For example for random binary codes with n = 120 and
k = 10, . . . , 40 one can correct 5− 20 errors in ≤ 1000 sec. via
computing the reduced Gröbner basis in SINGULAR or
MAGMA.



Quadratic system method

Generic solving

Generic relation between known and unknown syndromes for
arbitrary linear code:

gij(S1, . . . ,Sn−k)Ui = fij(S1, . . . ,Sn−k),

where gij , fij ∈ Fq[X1, . . . ,Xn−k ] for all i , j are defined over an MDS
extension Fq. We conjecture that for cyclic codes the relation is

Ui = fi (S1, . . . ,Sn−k).



Complexity issues

Diagonal representation (joint with S.Ovsienko)

Our system is equivalent to

HXT = s
XiYi = 0, i = 1, . . . , n

ĤtY
T = ŝ,

where H is a check matrix of the code C , s a known syndrome,
X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) are new variables, Ĥt is a
check matrix of a code with the generator matrix Bt , ŝ is a
syndrome of the vector bt+1 w.r.t to Ĥt .



Complexity issues

Macaulay matrix

Like above one can obtain a system Sys with n quadratic equations
and k + t variables, w.l.o.g X1, . . . ,Xk ,Y1, . . . ,Yt . The monomials
that appear in the system are XiYj , 1 ≤ i ≤ k, 1 ≤ j ≤ t,
X1, . . . ,Xk ,Y1, . . . ,Yt . The total number of monomials appearing
in the system is kt + k + t = (k + 1)(t + 1)− 1. One can consider
the Macaulay matrix of Sys: rows are indexed by the equations,
columns by the monomials. Denote the matrix by M(Sys).

Linearization

If n ≥ kt + k + t and M(Sys) is full-rank, one can find Ui ’s by
applying Gaussian elimination to M(Sys).



Complexity issues

Macaulay matrix is full-rank

Let C be a random [n, k] code over Fq, defined e.g. by a random
full-rank (n − k)× n check matrix H and let e be a random error
vector over Fq of weight t. Let Sys = Sys(n, k, t) be the
corresponding system as above. Then the probability of the fact
that M(Sys) has full-rank tends to 1 as n tends to infinity.

Idea of the proof

Degeneracy of M(Sys) is reduced to the fact that

el + Cl ⊆ (B̃t+1)
⊥

Here el and Cl are the vector e and the code C resp. restricted to

some l positions from {1, . . . , n} and B̃t+1 is a code equivalent to
the code Bt+1 restricted to the same l positions as before.



Complexity issues

Nice behavior

Macaulay matrix M(Sys) is almost always full-rank already for the
moderate values of n and k, e.g. already for n = 20, . . . , 30 and
k = 3, . . . , 6 the probability of being full-rank is ≥ 70%.

Polynomial-time decoding

Suppose that n ≥ kt + k + t. Then complexity of finding
U1, . . . ,Uk via Gaussian elimination applied to M(sys) is

max{(kt + k + t + 1)3, n(kt + k + t + 1)dlog2 ne},

due to the fact that M(Sys) has many non-degenerate square
submatricies. As a consequence, if k = O(nα) and t = O(nβ) for
0 < α + β ≤ 1, α > 0, β > 0 then the complexity of the algorithm
above is O(n3(α+β)).



Complexity issues

Extended linearization

One can try to go further and apply extended linearization.
Consider binary case, so X 2

i = Xi for all i . Multiply the system Sys
with all monomials in X1, . . . ,Xk of degree s < k. A system, call it
Syss , obtained in this way has n(1 +

(k
1

)
+ · · ·+

(k
s

)
) equations and

Cs := Cs−1 +
( k
s+1

)
(t + 1) monomials. Denote(k

0

)
+

(k
1

)
+ · · ·+

(k
s

)
=: f (k, s). If we assume that M(Syss) is

full-rank, then if

n(1+

(
k

1

)
+· · ·+

(
k

s

)
) = nf (k, s) ≥ Cs−1 = (t+1)f (k, s+1)−1,

then successfull application of Gaussian elimination to M(Sys) is
possible. Study this further!



Complexity issues

Comparing with different random systems

Consider different types of random systems

R1 is a system of n quadratic equations that has the same
monomials as Sys, but the corresponding coefficients are
randomly taken from Fq. Require that R1 has a unique
solution in Fq.

R2 is a system that has the same properties as R1, but the
requirement on uniqueness of a solution is dropped out.

R3 is a fully random system of n quadratic equations, i.e. it
has all possible monomials of degree ≤ 2 and the
corresponding coefficients are random from Fq

Note that R2 and R3 do not have solutions in general.



Complexity issues

Experiments

Using some experimental evidence we conjecture that there are
following relations between the complexities for solving Sys,R1,R2,
and R3 with ”general methods”

Compl(Sys) ≈ Compl(R1) ≈ Compl(R2) � Compl(R3).

Semi-regular sequences

Solving R3-systems has to do with the semi-regular sequences
introduced by M.Bardet et.al. Complexity estimates for the F5
algorithm are available. Note that these estimates would only give
a poor upper bound in our situation.



Generalized Newton identities

Background on cyclic codes

Assume (q, n) = 1. Let F = Fqm be the splitting field of X n − 1
over Fq. Let a be a primitive n-th root of unity Denote by SC a
defining set of a cyclic code C of length n, so that
SC = {i1, . . . , ir} ⊆ {1, . . . , n}. Then a check matrix H of C can
be represented as a matrix with entries in F:

H =


1 ai1 a2i1 . . . a(n−1)i1

1 ai2 a2i2 . . . a(n−1)i2

...
...

...
. . .

...

1 air a2ir . . . a(n−1)ir

 .



Generalized Newton identities

Background on cyclic codes

Let y = c + e, vectors are also seen as polynomials. Define
si = y(ai ) for all i = 1, . . . , n. Then si = e(ai )∀i ∈ SC , and these
si are the known syndromes. If the error vector is of weight t, then
it is of the form

e = (0, . . . , 0, ej1 , 0, . . . , 0, ejl , 0, . . . , 0, ejt , 0, . . . , 0),

more precisely there are t indices jl with 1 ≤ j1 < · · · < jt ≤ n such
that ejl 6= 0 for all l = 1, . . . , t and ej = 0 for all j not in
{j1, . . . , jt}. We obtain
sim = y(aim) = e(aim) =

∑t
l=1 ejl (a

im)jl , 1 ≤ m ≤ n − k.

aj1 , . . . , ajt and also the j1, . . . , jt are called the error locations

ej1 , . . . , ejt are called the error values.



Generalized Newton identities

GNI for cyclic codes

Define zl = ajl and yl = ejl . Then sim =
∑t

l=1 ylz
im
l , 1 ≤ m ≤ r .

Error-locator polynomial:

σ(Z ) =
t∏

l=1

(Z − zl) = Z t + σ1Z
t−1 + · · ·+ σt−1Z + σt ,

where

σi = (−1)i
∑

1≤j1<j2<···<ji≤t

zj1zj2 . . . zji , 1 ≤ i ≤ t,

Generalized Newton identities (GNI):

si +
t∑

j=1

σjsi−j = 0, for all i ∈ Zn.



Generalized Newton identities

GNI for cyclic codes

GNI give rise to several decoding algorithms

Polynomial-time up to designed minimum distance: APGZ,
Berlekamp-Massey

Exponential up to true minimum distance: Chen et.al., Augot
et.al.

It is of interest to find some analogue for arbitrary linear codes.



Generalized Newton identities

RS matrix as a special case of MDS

Suppose n ≤ q. Let x = (x1, . . . , xn) be an n-tuple of mutually
distinct elements in Fq. Define bi = (x i−1

1 , . . . , x i−1
n ). Then

b1, . . . ,bn is an MDS basis. In particular, if a ∈ F∗q is an element

of order n and xj = aj−1 for all j , then b1, . . . ,bn is called a
Reed-Solomon (RS) basis and the corresponding matrix is called a
RS matrix and denoted by B(a).

Structure relations for RS

The above construction gives an RS basis b1, . . . ,bn of Fn
q over Fq

such that

bi ∗ bj = bi+j−1 and uij(e) = ui+j−1(e) ∀i , j mod n.



Generalized Newton identities

GNI for linear codes

Suppose that (n, q) = 1 and let a be a primitive n-th root of unity
in F, where F is splitting field of X n − 1 over Fq. Note that
F = Fqm , where m is the smallest positive integer such that
n|(qm − 1). As an MDS matrix we choose an RS-matrix B(a).
Now I (t,U ,V ) is generated by

t∑
j=1

Ui+j−1Vj − Ui+t , 1 ≤ i ≤ n,

where indices are taken modulo n. So I (t,U ,V ) has the form of
GNI up to renumbering of indices.



Generalized Newton identities

Consistency with GNI for cyclic codes

For the cyclic code C and received vector y = c + e let si , i ∈ Zn

be the syndromes (both known and unknown) and let σj , 1 ≤ j ≤ t
be the coefficients of σ(Z ). Let J(t, y) be the ideal that
corresponds to C and y constructed w.r.t the RS-matrix B(a).
Assume t ≤ (d(C )− 1)/2, so that J(t, y) has a unique solution
(u(e), v). Then the following hold:

ui (e) = si−1, vj = −σt−j+1,∀i , j ,

where s0 = sn.

Linear part

We also have that J(y) is Ui+1 − si , i ∈ SC .



Generalized Newton identities

Eliminating U-variables

For the case of binary codes it is possible to use Waring function
to eliminate U-variables in J(t, y). If U− and V−variables are
connected via GNI, we have

Ui+1 = Wi (Vt , . . . ,V1), 1 ≤ i ≤ n − 1,U1 = Wn(Vt , . . . ,V1),

where Wi are Waring functions (polynomials). Thus substituting
the above to J(y) we have the system purely in V−variables

aj1Wn(Vt , . . . ,V1) +
∑n

l=2 ajlWl−1(Vt , . . . ,V1) = sj(y), j = 1, . . . , r .



Generalized Newton identities

General error-locator polynomial

Existence of the following polynomial LC from Fq[X1, . . . ,Xr ,Z ]
for a code C is of interest (here r = n − k). LC should satisfy the
following two properties:

LC = Z e + at−1Z
e−1 + · · ·+ a0 with aj ∈ Fq[X1, . . . ,Xr ], 0 ≤

j ≤ e − 1;

given a syndrome s = (s1, . . . , sr ) ∈ Fr
qm corresponding to an

error of weight t ≤ e and error locations {j1, . . . , jt}, if we
evaluate the Xi = si for all 1 ≤ i ≤ r , then the roots of
LC (s,Z ) are exactly aj1 , . . . , ajt and 0 of multiplicity e − t, in
other words

LC (s,Z ) = Z e−t
t∏

i=1

(Z − aki )

Via an RS-extension Fqm it is possible to prove the existence of LC

over Fqm . Study further the possibility of generic decoding using
GNI.



Further research

Further research

The possible directions of research:

Study methods of solving J(t, y) or its equivalents other than
Gröbner basis (e.g. extended linearization).

Complexity analysis of solving, e.g. via the analysis of R2

systems.

Algorithmic questions connected with the existence of GNI for
arbitrary linear codes.

Generic decoding and the existence of general error-locator
polynomial.
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