Decoding linear codes via systems solving: complexity issues and generalized Newton identities

Stanislav Bulygin (joint work with Ruud Pellikaan)

University of Valladolid Valladolid, Spain

March 14, 2008

Introduction

Decoding problem

- Complete decoding: Given $\mathbf{y} \in \mathbb{F}_q^n$ and a code $C \subseteq \mathbb{F}_q^n$, so that \mathbf{y} is at distance $d(\mathbf{y}, C)$ from the code, find $\mathbf{c} \in C : d(\mathbf{y}, \mathbf{c}) = d(\mathbf{y}, C)$.
- Bounded up to half the minimum distance: Additional assumption $d(\mathbf{y},C) \leq (d(C)-1)/2$. Then a codeword with the above property is unique.

Introduction

Decoding via systems solving

One distinguishes between two concepts:

- Generic decoding: Solve some system S(C) and obtain some "closed" formulas F. Evaluating these formulas at data specific to a received word \mathbf{y} should yield a solution to the decoding problem. For example for $f \in F$: $f(syndrome(\mathbf{y}), x) = poly(x)$. The roots of poly(x) = 0 yield error positions general error-locator polynomial f.
- Online decoding: Solve some system $S(C, \mathbf{y})$. The solutions should solve the decoding problem.

Computational effort

- Generic decoding. Preprocessing: very hard. Decoding: relatively simple.
- Online decoding. Preprocessing: . Decoding: hard.

Unknown syndrome

Let $\mathbf{b}_1, \dots, \mathbf{b}_n$ be a basis of \mathbb{F}_q^n and let B be the $n \times n$ matrix with $\mathbf{b}_1, \dots, \mathbf{b}_n$ as rows. The *unknown syndrome* $\mathbf{u}(B, \mathbf{e})$ of a word \mathbf{e} w.r.t B is the column vector $\mathbf{u}(B, \mathbf{e}) = B\mathbf{e}^T$ with entries $u_i(B, \mathbf{e}) = \mathbf{b}_i \cdot \mathbf{e}$ for $i = 1, \dots, n$.

Structure constants

For two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{F}_q^n$ define $\mathbf{x} * \mathbf{y} = (x_1 y_1, \dots, x_n y_n)$. Then $\mathbf{b}_i * \mathbf{b}_j$ is a linear combination of $\mathbf{b}_1, \dots, \mathbf{b}_n$, so there are constants $\mu_I^{ij} \in \mathbb{F}_q$ such that $\mathbf{b}_i * \mathbf{b}_j = \sum_{l=1}^n \mu_l^{ij} \mathbf{b}_l$. The elements $\mu_l^{ij} \in \mathbb{F}_q$ are the *structure constants* of the basis $\mathbf{b}_1, \dots, \mathbf{b}_n$.

MDS matrix

Let B_s be the $s \times n$ matrix with $\mathbf{b}_1, \dots, \mathbf{b}_s$ as rows $(B = B_n)$. Then $\mathbf{b}_1, \dots, \mathbf{b}_n$ is an *ordered MDS basis* and B an *MDS matrix* if all the $s \times s$ submatrices of B_s have rank s for all $s = 1, \dots, n$.

Check matrix

Let C be an \mathbb{F}_q -linear code with parameters [n,k,d]. W.l.o.g $n \leq q$. H is a check matrix of C. Let $\mathbf{h}_1,\ldots,\mathbf{h}_{n-k}$ be the rows of H. One can express $\mathbf{h}_i = \sum_{j=1}^n a_{ij}\mathbf{b}_j$ for some $a_{ij} \in \mathbb{F}_q$. In other words H = AB where A is the $(n-k) \times n$ matrix with entries a_{ij} .

Known syndrome

Let $\mathbf{y} = \mathbf{c} + \mathbf{e}$ be a received word with $\mathbf{c} \in C$ and \mathbf{e} an error vector. The syndromes of \mathbf{y} and \mathbf{e} w.r.t H are equal and known: $s_i(\mathbf{y}) := \mathbf{h}_i \cdot \mathbf{y} = \mathbf{h}_i \cdot \mathbf{e} = s_i(\mathbf{e})$. They can be expressed in the unknown syndromes of \mathbf{e} w.r.t B: $s_i(\mathbf{y}) = \sum_{j=1}^n a_{ij} u_j(\mathbf{e})$ since $\mathbf{h}_i = \sum_{j=1}^n a_{ij} \mathbf{b}_j$ and $\mathbf{b}_j \cdot \mathbf{e} = u_j(\mathbf{e})$.

Linear forms

Let B be an MDS matrix with structure constants μ_I^{ij} . Define U_{ij} in the variables U_1, \ldots, U_n by $U_{ij} = \sum_{l=1}^n \mu_l^{ij} U_l$.

Quadratic system

The ideal $J(\mathbf{y})$ in $\mathbb{F}_q[U_1,\ldots,U_n]$ is generated by

$$\sum_{l=1}^{n} a_{jl} U_l - s_j(\mathbf{y})$$
 for $j = 1, \dots, r$

The ideal $I(t,\mathcal{U},V)$ in $\mathbb{F}_q[U_1,\ldots,U_n,V_1,\ldots,V_t]$ is generated by

$$\sum_{j=1}^{t} U_{ij}V_{j}$$
 - U_{it+1} for $i=1,\ldots,n$

Let $J(t, \mathbf{y})$ be the ideal in $\mathbb{F}_q[U_1, \dots, U_n, V_1, \dots, V_t]$ generated by $J(\mathbf{y})$ and $I(t, \mathcal{U}, V)$.

Main result

Let B be an MDS matrix with structure constants μ_I^y . Let H be a check matrix of the code C such that H=AB as above. Let $\mathbf{y}=\mathbf{c}+\mathbf{e}$ be a received word with $\mathbf{c}\in C$ the codeword sent and \mathbf{e} the error vector. Suppose that $\mathrm{wt}(\mathbf{e})\neq 0$ and $\mathrm{wt}(\mathbf{e})\leq \lfloor (d(C)-1)/2\rfloor$. Let t be the smallest positive integer such that $J(t,\mathbf{y})$ has a solution (\mathbf{u},\mathbf{v}) over $\overline{\mathbb{F}_q}$. Then

- wt(e) = t and the solution is unique satisfying u = u(e).
- the reduced Gröbner basis G for the ideal $J(t, \mathbf{y})$ w.r.t any monomial ordering is

$$\begin{cases} U_i - u_i(\mathbf{e}), i = 1, \dots, n, \\ V_j - v_j, j = 1, \dots, t, \end{cases}$$

where $(\mathbf{u}(\mathbf{e}), \mathbf{v})$ is the unique solution.

Features

- No field equations.
- The same result holds for the complete decoding.
- The solution lies in the field \mathbb{F}_q .
- The equations are at most quadratic.
- After solving $J(t, \mathbf{y})$ decoding is simple: $B^{-1}\mathbf{u}(B, \mathbf{e}) = B^{-1}B\mathbf{e}^T = \mathbf{e}^T$.

Analysis

From $J(\mathbf{y})$ one can express some n-k U-variables via k others. Substitution of those in $I(t,\mathcal{U},V)$ yields a systems of n quadratic equations in k+t variables, thus obtaining *overdetermined* system. Easier to solve when

- With constant *k* and *t*, *n* increases.
- With constant *n* and *t*, *k* decreases.

Simulations

For example for random binary codes with n=120 and $k=10,\ldots,40$ one can correct 5-20 errors in ≤ 1000 sec. via computing the reduced Gröbner basis in SINGULAR or MAGMA.

Generic solving

Generic relation between known and unknown syndromes for arbitrary linear code:

$$g_{ij}(S_1,\ldots,S_{n-k})U_i=f_{ij}(S_1,\ldots,S_{n-k}),$$

where $g_{ij}, f_{ij} \in \mathbb{F}_q[X_1, \dots, X_{n-k}]$ for all i, j are defined over an MDS extension \mathbb{F}_q . We conjecture that for cyclic codes the relation is

$$U_i = f_i(S_1, \ldots, S_{n-k}).$$

Diagonal representation (joint with S.Ovsienko)

Our system is equivalent to

$$HX^T = \mathbf{s}$$

 $X_i Y_i = 0, i = 1, ..., n$
 $\hat{H}_t Y^T = \hat{\mathbf{s}},$

where H is a check matrix of the code C, \mathbf{s} a known syndrome, $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$ are new variables, \hat{H}_t is a check matrix of a code with the generator matrix B_t , $\hat{\mathbf{s}}$ is a syndrome of the vector \mathbf{b}_{t+1} w.r.t to \hat{H}_t .

Macaulay matrix

Like above one can obtain a system Sys with n quadratic equations and k+t variables, w.l.o.g $X_1,\ldots,X_k,Y_1,\ldots,Y_t$. The monomials that appear in the system are $X_iY_j, 1\leq i\leq k, 1\leq j\leq t,$ $X_1,\ldots,X_k,Y_1,\ldots,Y_t$. The total number of monomials appearing in the system is kt+k+t=(k+1)(t+1)-1. One can consider the *Macaulay matrix* of Sys: rows are indexed by the equations, columns by the monomials. Denote the matrix by M(Sys).

Linearization

If $n \ge kt + k + t$ and M(Sys) is full-rank, one can find U_i 's by applying Gaussian elimination to M(Sys).

Macaulay matrix is full-rank

Let C be a random [n,k] code over \mathbb{F}_q , defined e.g. by a random full-rank $(n-k)\times n$ check matrix H and let \mathbf{e} be a random error vector over \mathbb{F}_q of weight t. Let $\mathrm{Sys}=\mathrm{Sys}(n,k,t)$ be the corresponding system as above. Then the probability of the fact that $M(\mathrm{Sys})$ has full-rank tends to 1 as n tends to infinity.

Idea of the proof

Degeneracy of M(Sys) is reduced to the fact that

$$\mathbf{e}_I + C_I \subseteq (\widetilde{B_{t+1}})^{\perp}$$

Here \mathbf{e}_I and C_I are the vector \mathbf{e} and the code C resp. restricted to some I positions from $\{1,\ldots,n\}$ and $\widetilde{B_{t+1}}$ is a code equivalent to the code B_{t+1} restricted to the same I positions as before.

Nice behavior

Macaulay matrix M(Sys) is almost always full-rank already for the moderate values of n and k, e.g. already for $n = 20, \ldots, 30$ and $k = 3, \ldots, 6$ the probability of being full-rank is $\geq 70\%$.

Polynomial-time decoding

Suppose that $n \ge kt + k + t$. Then complexity of finding U_1, \ldots, U_k via Gaussian elimination applied to M(sys) is

$$\max\{(kt+k+t+1)^3, n(kt+k+t+1)\lceil \log_2 n \rceil\},\$$

due to the fact that $M(\operatorname{Sys})$ has many non-degenerate square submatricies. As a consequence, if $k=\mathcal{O}(n^{\alpha})$ and $t=\mathcal{O}(n^{\beta})$ for $0<\alpha+\beta\leq 1, \alpha>0, \beta>0$ then the complexity of the algorithm above is $\mathcal{O}(n^{3(\alpha+\beta)})$.

Extended linearization

One can try to go further and apply extended linearization. Consider binary case, so $X_i^2 = X_i$ for all i. Multiply the system Sys with all monomials in X_1, \ldots, X_k of degree s < k. A system, call it Sys_s , obtained in this way has $n(1+\binom{k}{1}+\cdots+\binom{k}{s})$ equations and $C_s := C_{s-1} + \binom{k}{s+1}(t+1)$ monomials. Denote $\binom{k}{0} + \binom{k}{1} + \cdots + \binom{k}{s} =: f(k,s)$. If we assume that $M(\operatorname{Sys}_s)$ is full-rank, then if

$$n(1+\binom{k}{1}+\cdots+\binom{k}{s}) = nf(k,s) \ge C_s-1 = (t+1)f(k,s+1)-1,$$

then successfull application of Gaussian elimination to M(Sys) is possible. Study this further!

Comparing with different random systems

Consider different types of random systems

- R_1 is a system of n quadratic equations that has the same monomials as Sys, but the corresponding coefficients are randomly taken from \mathbb{F}_q . Require that R_1 has a unique solution in $\overline{\mathbb{F}_q}$.
- R_2 is a system that has the same properties as R_1 , but the requirement on uniqueness of a solution is dropped out.
- R_3 is a fully random system of n quadratic equations, i.e. it has all possible monomials of degree ≤ 2 and the corresponding coefficients are random from \mathbb{F}_q

Note that R_2 and R_3 do not have solutions in general.

Experiments

Using some experimental evidence we **conjecture** that there are following relations between the complexities for solving Sys, R_1 , R_2 , and R_3 with "general methods"

$$Compl(Sys) \approx Compl(R_1) \approx Compl(R_2) \ll Compl(R_3).$$

Semi-regular sequences

Solving R_3 -systems has to do with the *semi-regular sequences* introduced by M.Bardet *et.al.* Complexity estimates for the F5 algorithm are available. Note that these estimates would only give a poor upper bound in our situation.

Background on cyclic codes

Assume (q, n) = 1. Let $\mathbb{F} = \mathbb{F}_{q^m}$ be the splitting field of $X^n - 1$ over \mathbb{F}_q . Let a be a *primitive n-th root of unity* Denote by S_C a defining set of a cyclic code C of length n, so that $S_C = \{i_1, \ldots, i_r\} \subseteq \{1, \ldots, n\}$. Then a check matrix H of C can be represented as a matrix with entries in \mathbb{F} :

$$H = \begin{pmatrix} 1 & a^{i_1} & a^{2i_1} & \dots & a^{(n-1)i_1} \\ 1 & a^{i_2} & a^{2i_2} & \dots & a^{(n-1)i_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a^{i_r} & a^{2i_r} & \dots & a^{(n-1)i_r} \end{pmatrix}.$$

Background on cyclic codes

Let $\mathbf{y} = \mathbf{c} + \mathbf{e}$, vectors are also seen as polynomials. Define $s_i = y(a^i)$ for all $i = 1, \dots, n$. Then $s_i = e(a^i) \forall i \in S_C$, and these s_i are the known syndromes. If the error vector is of weight t, then it is of the form

$$\mathbf{e} = (0, \dots, 0, e_{j_1}, 0, \dots, 0, e_{j_l}, 0, \dots, 0, e_{j_t}, 0, \dots, 0),$$

more precisely there are t indices j_l with $1 \le j_1 < \cdots < j_t \le n$ such that $e_{j_l} \ne 0$ for all $l = 1, \ldots, t$ and $e_j = 0$ for all j not in $\{j_1, \ldots, j_t\}$. We obtain $s_{i_m} = y(a^{i_m}) = e(a^{i_m}) = \sum_{l=1}^t e_{j_l}(a^{i_m})^{j_l}, 1 \le m \le n-k$.

- a^{j_1}, \ldots, a^{j_t} and also the j_1, \ldots, j_t are called the *error locations*
- e_{i_1}, \ldots, e_{i_t} are called the *error values*.

GNI for cyclic codes

Define $z_l = a^{j_l}$ and $y_l = e_{j_l}$. Then $s_{i_m} = \sum_{l=1}^t y_l z_l^{i_m}, \ 1 \le m \le r$. Error-locator polynomial:

$$\sigma(Z) = \prod_{l=1}^{t} (Z - z_l) = Z^t + \sigma_1 Z^{t-1} + \cdots + \sigma_{t-1} Z + \sigma_t,$$

where

$$\sigma_i = (-1)^i \sum_{1 \le j_1 < j_2 < \dots < j_i \le t} z_{j_1} z_{j_2} \dots z_{j_i}, \ 1 \le i \le t,$$

Generalized Newton identities (GNI):

$$s_i + \sum_{i=1}^t \sigma_j s_{i-j} = 0$$
, for all $i \in \mathbb{Z}_n$.

GNI for cyclic codes

GNI give rise to several decoding algorithms

- Polynomial-time up to designed minimum distance: APGZ, Berlekamp-Massey
- Exponential up to true minimum distance: Chen *et.al.*, Augot *et.al.*

It is of interest to find some analogue for arbitrary linear codes.

RS matrix as a special case of MDS

Suppose $n \leq q$. Let $\mathbf{x} = (x_1, \dots, x_n)$ be an n-tuple of mutually distinct elements in \mathbb{F}_q . Define $\mathbf{b}_i = (x_1^{i-1}, \dots, x_n^{i-1})$. Then $\mathbf{b}_1, \dots, \mathbf{b}_n$ is an MDS basis. In particular, if $a \in \mathbb{F}_q^*$ is an element of order n and $x_j = a^{j-1}$ for all j, then $\mathbf{b}_1, \dots, \mathbf{b}_n$ is called a Reed-Solomon (RS) basis and the corresponding matrix is called a RS matrix and denoted by B(a).

Structure relations for RS

The above construction gives an RS basis $\mathbf{b}_1,\ldots,\mathbf{b}_n$ of \mathbb{F}_q^n over \mathbb{F}_q such that

$$\mathbf{b}_i * \mathbf{b}_j = \mathbf{b}_{i+j-1}$$
 and $u_{ij}(\mathbf{e}) = u_{i+j-1}(\mathbf{e}) \ \forall i, j \ \text{mod} \ n$.

GNI for linear codes

Suppose that (n,q)=1 and let a be a primitive n-th root of unity in $\mathbb F$, where $\mathbb F$ is splitting field of X^n-1 over $\mathbb F_q$. Note that $\mathbb F=\mathbb F_{q^m}$, where m is the smallest positive integer such that $n|(q^m-1)$. As an MDS matrix we choose an RS-matrix B(a). Now $I(t,\mathcal U,V)$ is generated by

$$\sum_{j=1}^{t} U_{i+j-1} V_j - U_{i+t}, 1 \le i \le n,$$

where indices are taken modulo n. So $I(t, \mathcal{U}, V)$ has the form of GNI up to renumbering of indices.

Consistency with GNI for cyclic codes

For the cyclic code C and received vector $\mathbf{y}=\mathbf{c}+\mathbf{e}$ let $s_i, i\in\mathbb{Z}_n$ be the syndromes (both known and unknown) and let $\sigma_j, 1\leq j\leq t$ be the coefficients of $\sigma(Z)$. Let $J(t,\mathbf{y})$ be the ideal that corresponds to C and \mathbf{y} constructed w.r.t the RS-matrix B(a). Assume $t\leq (d(C)-1)/2$, so that $J(t,\mathbf{y})$ has a unique solution $(\mathbf{u}(\mathbf{e}),\mathbf{v})$. Then the following hold:

$$u_i(\mathbf{e}) = s_{i-1}, v_j = -\sigma_{t-j+1}, \forall i, j,$$

where $s_0 = s_n$.

Linear part

We also have that $J(\mathbf{y})$ is $U_{i+1} - s_i, i \in S_C$.

Eliminating U-variables

For the case of binary codes it is possible to use Waring function to eliminate U-variables in $J(t, \mathbf{y})$. If U- and V-variables are connected via GNI, we have

$$U_{i+1} = W_i(V_t, \ldots, V_1), 1 \leq i \leq n-1, U_1 = W_n(V_t, \ldots, V_1),$$

where W_i are Waring functions (polynomials). Thus substituting the above to $J(\mathbf{y})$ we have the system purely in V-variables

$$a_{j1}W_n(V_t,\ldots,V_1) + \sum_{l=2}^n a_{jl}W_{l-1}(V_t,\ldots,V_1) = s_j(\mathbf{y}), j=1,\ldots,r.$$

General error-locator polynomial

Existence of the following polynomial L_C from $\mathbb{F}_q[X_1,\ldots,X_r,Z]$ for a code C is of interest (here r=n-k). L_C should satisfy the following two properties:

- $L_C = Z^e + a_{t-1}Z^{e-1} + \cdots + a_0$ with $a_j \in \mathbb{F}_q[X_1, \dots, X_r], \ 0 \le j \le e-1$;
- given a syndrome $\mathbf{s}=(s_1,\ldots,s_r)\in\mathbb{F}_{q^m}^r$ corresponding to an error of weight $t\leq e$ and error locations $\{j_1,\ldots,j_t\}$, if we evaluate the $X_i=s_i$ for all $1\leq i\leq r$, then the roots of $L_C(\mathbf{s},Z)$ are exactly a^{j_1},\ldots,a^{j_t} and 0 of multiplicity e-t, in other words

$$L_C(\mathbf{s}, Z) = Z^{e-t} \prod_{i=1}^t (Z - a^{k_i})$$

Via an RS-extension \mathbb{F}_{q^m} it is possible to prove the existence of L_C over \mathbb{F}_{q^m} . Study further the possibility of generic decoding using GNI.

Further research

Further research

The possible directions of research:

- Study methods of solving $J(t, \mathbf{y})$ or its equivalents other than Gröbner basis (e.g. extended linearization).
- Complexity analysis of solving, e.g. via the analysis of R_2 systems.
- Algorithmic questions connected with the existence of GNI for arbitrary linear codes.
- Generic decoding and the existence of general error-locator polynomial.