Error-correcting Pairs for a Public-key Cryptosystem

Ruud Pellikaan
g.r.pellikaan@tue.nl
joint work with
Irene Márquez-Corbella

Code-based Cryptography Workshop 2012
Lyngby, 9 May 2012
Introduction and content

- Error-correcting pair
 - Generalized Reed-Solomon codes
 - Alternant codes
 - Goppa codes
- t-error-correcting pair corrects t-errors
- Algebraic geometry codes
- Code-based cryptography
Error-correcting codes

C linear block code: \mathbb{F}_q-linear subspace of \mathbb{F}_q^n

parameters $[n, k, d]$:
- $n = \text{length}$
- $k = \text{dimension of } C$
- $d = \text{minimum distance of } C$

$$d = \min \{|d(x, y)| \mid x, y \in C, x \neq y\}$$

$t = \text{error-correcting capacity of } C$

$$t = \left\lfloor \frac{d(C) - 1}{2} \right\rfloor$$
Inner and star product

The standard inner product is defined by

$$a \cdot b = a_1 b_1 + \cdots + a_n b_n$$

For two subsets A and B of \mathbb{F}_q^n

$A \perp B$ if and only if $a \cdot b = 0$ for all $a \in A$ and $b \in B$

Let a and b in \mathbb{F}_q^n

The star product is defined by coordinatewise multiplication:

$$a \ast b = (a_1 b_1, \ldots, a_n b_n)$$

For two subsets A and B of \mathbb{F}_q^n

$$A \ast B = \{a \ast b \mid a \in A \text{ and } b \in B\}$$
Error-correcting pairs

Let C be a linear code in \mathbb{F}_q^n

The pair (A, B) of linear subcodes of $\mathbb{F}_{q^m}^n$ is called a t-error correcting pair (ECP) over \mathbb{F}_{q^m} for C if

E.1 $(A \ast B) \perp C$
E.2 $k(A) > t$
E.3 $d(B^\perp) > t$
E.4 $d(A) + d(C) > n$
Generalized Reed-Solomon codes

Let \(a = (a_1, \ldots, a_n) \) be an \(n \)-tuple of \textit{mutually distinct} elements of \(\mathbb{F}_q \).

Let \(b = (b_1, \ldots, b_n) \) be an \(n \)-tuple of \textit{nonzero} elements of \(\mathbb{F}_q \).

Evaluation map:

\[
ev_{a,b}(f(X)) = (f(a_1)b_1, \ldots, f(a_n)b_n)
\]

\(GRS_k(a, b) = \{ \ev_{a,b}(f(X)) \mid f(X) \in \mathbb{F}_q[X], \deg(f(X)) < k \} \)

Parameters: \([n, k, n - k + 1]\) if \(k \leq n \)

Furthermore

\[
ev_{a,b}(f(X)) \ast ev_{a,c}(g(X)) = ev_{a,b}(f(X)g(X)) \ast c
\]

\[
\langle GRS_k(a, b) \ast GRS_l(a, c) \rangle = GRS_{k+l-1}(a, b \ast c)
\]
t-ECP for $\text{GRS}_{n-2t}(a, b)$

Let $C = \text{GRS}_{n-2t}(a, b)$

Then C has parameters: $[n, n - 2t, 2t + 1]$

and $C^\perp = \text{GRS}_{2t}(a, c)$ for some c

Let $A = \text{GRS}_{t+1}(a, 1)$ and $B = \text{GRS}_{t}(a, c)$

Then $A \ast B \subseteq C^\perp$

A has parameters $[n, t + 1, n - t]$

B has parameters $[n, t, n - t + 1]$

So B^\perp has parameters $[n, n - t, t + 1]$

Hence (A, B) is a t-error-correcting pair for C

Conversely an $[n, n - 2t, 2t + 1]$ code that has a t-ECP is a GRS code
Alternant codes

Let a be an n-tuple of mutually distinct elements of \mathbb{F}_{q^m}
Let b be an n-tuple of nonzero elements of \mathbb{F}_{q^m}

Let $GRS_k(a, b)$ be the GRS code over \mathbb{F}_{q^m} of dimension k

The **alternant code** $ALT_r(a, b)$ is the \mathbb{F}_q-linear restriction

$$ALT_r(a, b) = \mathbb{F}_q^n \cap (GRS_r(a, b))^\perp$$

Then $ALT_r(a, b)$ has parameters $[n, k, d]_q$ with

$$k \geq n - mr \text{ and } d \geq r + 1$$

Every linear code of minimum distance at least 2 is an alternant code!
Let $C = ALT_{2t}(a, b)$
Then C has minimum distance $d \geq 2t + 1$
and $C \subseteq (GRS_{2t+1}(a, b))^\perp$

Let $A = GRS_{t+1}(a, 1)$ and $B = GRS_{t}(a, b)$
Then $A \ast B \subseteq GRS_{2t+1}(a, b)$
Then $(A \ast B) \perp C$

A has parameters $[n, t + 1, n - t]$
B has parameters $[n, t, n - t + 1]$
So B^\perp has parameters $[n, n - t, t + 1]$

Hence (A, B) is a t-error-correcting pair over \mathbb{F}_{q^m} for C
Goppa codes

Let $L = (a_1, \ldots, a_n)$ be an n-tuple of n distinct elements of \mathbb{F}_{q^m}
Let g be a polynomial with coefficients in \mathbb{F}_{q^m} such that

$$g(a_j) \neq 0 \text{ for all } j$$

Then g is called **Goppa polynomial** with respect to L

Define the \mathbb{F}_q-linear **Goppa code** $\Gamma(L, g)$ by

$$\Gamma(L, g) = \left\{ c \in \mathbb{F}_q^n \mid \sum_{j=1}^{n} \frac{c_j}{X - a_j} \equiv 0 \text{ mod } g(X) \right\}$$
Goppa codes are alternant codes

Let $L = a = (a_1, \ldots, a_n)$
Let g be a Goppa polynomial of degree r

Let $b_j = 1/g(a_j)$
Then

$$\Gamma(L, g) = \text{ALT}_r(a, b)$$

Hence $\Gamma(L, g)$ has parameters $[n, k, d]_q$ with

$$k \geq n - mr \text{ and } d \geq r + 1$$

and has an $\lfloor r/2 \rfloor$-error-correcting pair
Binary Goppa codes

Let $L = a = (a_1, \ldots, a_n)$

Let g be a Goppa polynomial with coefficients in \mathbb{F}_{2^m} of degree r

Suppose moreover that g has no square factor

Then

$$\Gamma(L, g) = \Gamma(L, g^2)$$

Hence $\Gamma(L, g)$ has parameters $[n, k, d]_q$ with

$$k \geq n - mr \text{ and } d \geq 2r + 1$$

and has an r-error-correcting pair
Theory of error-correcting pairs

Let C be a linear code in \mathbb{F}_q^n

The pair (A, B) of linear subcodes of $\mathbb{F}_{q^m}^n$ is called a t-error correcting pair (ECP) over \mathbb{F}_{q^m} for C if

E.1 $(A \ast B) \perp C$
E.2 $k(A) > t$
E.3 $d(B^\perp) > t$
E.4 $d(A) + d(C) > n$

Let (A, B) be linear subcodes of $\mathbb{F}_{q^m}^n$ that satisfy E.1, E.2, E.3 and

E.5 $d(A^\perp) > 1$
E.6 $d(A) + 2t > n$

Then $d(C) \geq 2t + 1$ and (A, B) is a t-ECP for C
Kernel of a received word

Let A and B be linear subspaces of \mathbb{F}_q^n

Let $r \in \mathbb{F}_q^n$ be a received word

Define the kernel

$$K(r) = \{ a \in A \mid (a \ast b) \cdot r = 0 \text{ for all } b \in B \}$$

Lemma

Let C be an \mathbb{F}_q-linear code of length n

Let r be a received word with error vector e

So $r = c + e$ for some $c \in C$

If $A \ast B \subseteq C^\perp$, then

$$K(r) = K(e)$$
Kernel for a GRS code

Let $A = GRS_{t+1}(a, 1)$ and $B = GRS_t(a, 1)$ and $C = \langle A \ast B \rangle^\perp$

Let

$a_i = ev_{a, 1}(X^{i-1})$ for $i = 1, \ldots, t + 1$
$b_j = ev_{a, 1}(X^j)$ for $j = 1, \ldots, t$
$h_l = ev_{a, 1}(X^l)$ for $l = 1, \ldots, 2t$

Then

a_1, \ldots, a_{t+1} is a basis of A
b_1, \ldots, b_t is a basis of B
h_1, \ldots, h_{2t} is a basis of C^\perp

Furthermore

$a_i \ast b_j = ev_{a, 1}(X^{i+j-1}) = h_{i+j-1}$
Matrix of syndromes for a GRS code

Let \(r \) be a received word and \(s = rH^T \) its syndrome. Then

\[(b_j \ast a_i) \cdot r = s_{i+j-1}.\]

To compute the kernel \(K(r) \) we have to compute the null space of the matrix of syndromes

\[
\begin{pmatrix}
s_1 & s_2 & \cdots & s_t & s_{t+1} \\
s_2 & s_3 & \cdots & s_{t+1} & s_{t+2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
s_t & s_{t+1} & \cdots & s_{2t-1} & s_{2t}
\end{pmatrix}
\]
Error location

Let \((A, B)\) be a \(t\)-ECP for \(C\)
Let \(J\) be a subset of \(\{1, \ldots, n\}\)
Define the subspace of \(A\)

\[
A(J) = \{ a \in A \mid a_j = 0 \text{ for all } j \in J \}
\]

Lemma
Let \((A \ast B) \perp C\)
Let \(e\) be an error vector of the received word \(r\)
If \(I = \text{supp}(e) = \{ i \mid e_i \neq 0 \}\), then

\[
A(I) \subseteq K(r)
\]

If moreover \(d(B^\perp) > \text{wt}(e)\), then \(A(I) = K(r)\)
Basic algorithm

Let \((A, B)\) be a \(t\)-ECP for \(C\) with \(d(C) \geq 2t + 1\)
Suppose that \(c \in C\) is the code word sent and \(r = c + e\) is the received word for some error vector \(e\) with \(\text{wt}(e) \leq t\)

The basic algorithm for the code \(C\):
- Compute the kernel \(K(r)\)
 This kernel is nonzero since \(k(A) > t\)
- Take a nonzero element \(a\) of \(K(r)\)
 \(K(r) = K(e)\) since \((A \ast B) \perp C\)
- Determine the set \(J\) of zero positions of \(a\)
 \(\text{supp}(e) \subseteq J\) since \(d(B^\perp) > t\)
 \(|J| < d(C)\) since \(d(A) + d(C) > n\)
- Compute the error values by erasure decoding
Theorem

Let C be an \mathbb{F}_q-linear code of length n
Let (A, B) be a t-error-correcting pair over \mathbb{F}_{q^m} for C

Then the basic algorithm corrects t errors for the code C with complexity $\mathcal{O}((mn)^3)$
Algebraic geometry codes

Let X be an algebraic variety over \mathbb{F}_q with a subset P of $X(\mathbb{F}_q)$ enumerated by P_1, \ldots, P_n.

Suppose that we have a vector space L over \mathbb{F}_q of functions on X with values in \mathbb{F}_q.

So $f(P_i) \in \mathbb{F}_q$ for all i and $f \in L$.

In this way we have an evaluation map

$$ ev_P : L \longrightarrow \mathbb{F}_q^n $$

defined by $ev_P(f) = (f(P_1), \ldots, f(P_n))$.

This evaluation map is linear, so its image is a linear code.
The classical example:
Generalized Reed-Solomon codes

The geometric object X is the affine line over \mathbb{F}_q
The points are n distinct elements of \mathbb{F}_q
L is the vector space of polynomials of degree at most $k - 1$
and with coefficients in \mathbb{F}_q

This vector space has dimension k
Such polynomials have at most $k - 1$ zeros
so nonzero codewords have at least $n - k + 1$ nonzeros

This code has parameters $[n, k, n - k + 1]$ if $k \leq n$
Let \mathcal{X} be an algebraic curve over \mathbb{F}_q of genus g

$\mathbb{F}_q(\mathcal{X})$ is the function field of the curve \mathcal{X} with field of constants \mathbb{F}_q

Let f be a nonzero rational function on the curve

The divisor of zeros and poles of f is denoted by (f)

Let E be a divisor of \mathcal{X} of degree m

Then

$$L(E) = \{ f \in \mathbb{F}_q(\mathcal{X}) \mid f = 0 \text{ or } (f) \geq -E \}$$

The dimension of the space $L(E)$ is denoted by $l(E)$

Then $l(E) \geq m + 1 - g$ and equality holds if $m > 2g - 2$

by the Theorem of Riemann-Roch
Codes on curves

Let $\mathcal{P} = (P_1, \ldots, P_n)$ an n-tuple of mutual distinct points of $\mathcal{X}(\mathbb{F}_q)$

If the support of E is disjoint from \mathcal{P}, then the evaluation map

$$\text{ev}_{\mathcal{P}} : L(E) \to \mathbb{F}_q^n$$

where $\text{ev}_{\mathcal{P}}(f) = (f(P_1), \ldots, f(P_n))$, is well defined.

The algebraic geometry code $C_L(\mathcal{X}, \mathcal{P}, E)$ is the image of $L(E)$ under the evaluation map $\text{ev}_{\mathcal{P}}$

If $m < n$, then $C_L(\mathcal{X}, \mathcal{P}, E)$ is an $[n, k, d]$ code with

$$k \geq m + 1 - g \text{ and } d \geq n - m$$

$n - m$ is called the designed minimum distance of $C_L(\mathcal{X}, \mathcal{P}, E)$
Information rate

Information rate $R = k / n$
Relative minimum distance $\delta = d / n$
Singleton $R + \delta \leq 1$
Gilbert-Varshamov $R \geq 1 - H_q(\delta)$
q-ary entropy function H_q
Goppa for AG codes $R + \delta \geq 1 - \gamma$
Relative genus $\gamma = g / n$
Ihara-Tsfasman-Vladut-Zink $\gamma = \frac{1}{\sqrt{q-1}}$
Figuur: Bounds on R as a function of δ for $q = 49$ and $\gamma = \frac{1}{6}$.
Let ω be a differential form with a simple pole at P_j with residue 1 for all $j = 1, \ldots, n$

Let K be the canonical divisor of ω
Let m be the degree of the divisor E on X
with disjoint support from P

Let $E^\perp = D - E + K$ and $m^\perp = \deg(E^\perp)$
Then $m^\perp = 2g - 2 - m + n$ and

$$C_L(X, P, E)^\perp = C_L(X, P, E^\perp)$$

$m - 2g + 2$ is called the designed minimum distance of $C_L(X, P, E)^\perp$
Let F and G be divisors
Then there is a well defined linear map

$$L(F) \otimes L(G) \longrightarrow L(F + G)$$

given on generators by

$$f \otimes g \mapsto fg$$

Hence

$$C_L(\mathcal{X}, \mathcal{P}, F) \ast C_L(\mathcal{X}, \mathcal{P}, G) \subseteq C_L(\mathcal{X}, \mathcal{P}, F + G)$$
Let $C = C_L(\mathcal{X}, \mathcal{P}, E)^\perp$

Choose a divisor F with support disjoint from \mathcal{P}
Let $A = C_L(\mathcal{X}, \mathcal{P}, F)$
Let $B = C_L(\mathcal{X}, \mathcal{P}, E - F)$

Then
- $A \ast B \subseteq C^\perp$
- If $t + g \leq \text{deg}(F) < n$, then $k(A) > t$
- If $\text{deg}(G - F) > t + 2g - 2$, then $d(B^\perp) > t$
- If $\text{deg}(G - F) > 2g - 2$, then $d(A) + d(C) > n$
Proposition

An algebraic geometry code of designed minimum distance d from a curve over \mathbb{F}_q of genus g has a t-error-correcting pair over \mathbb{F}_q where

$$t = \left\lfloor \frac{d - 1 - g}{2} \right\rfloor$$
Proposition

An algebraic geometry code of designed minimum distance d from a curve over \mathbb{F}_q of genus g has a t-error-correcting pair over \mathbb{F}_{q^m} where

$$t = \left\lfloor \frac{d - 1}{2} \right\rfloor$$

if

$$m > \log_q \left(2 \binom{n}{t} + 2 \binom{n}{t+1} + 1 \right)$$

By randomnization - Not constructive!
Koblitz:

At the heart of any public-key cryptosystem is a one-way function - a function

\[y = f(x) \]

that is easy to evaluate but for which is computationally infeasible (one hopes) to find the inverse

\[x = f^{-1}(y) \]
PKC systems use **trapdoor one-way functions**

by mathematical problems that are (supposedly) **hard**

RSA, **factoring integers**: given $n = pq$ find (p, q)

Diffie-Hellman, **discrete-log problem** in \mathbb{F}_q: given $b = a^n$ find n

Elliptic curve PKC, **addition on elliptic curve**: given $Q = nP$, find n

Code based PKC systems, decoding of codes

McEliece (Goppa codes)

Niederreiter with parity check matrix instead of generator matrix

Janwa-Moreno (Algebraic geometry codes)
Decoding up to half the minimum distance

Decoding arbitrary linear codes

Exponential complexity $\approx q^{e(R)n}$

x-axis: information rate $R = k/n$

y-axis: complexity exponent $e(R)$
McEliece:
Let C be a class of codes that have efficient decoding algorithms correcting t errors with $t \leq (d - 1)/2$

Secret key: (S, G, P)
S an invertible $k \times k$ matrix
G a $k \times n$ generator matrix of a code C in C.
P an $n \times n$ permutation matrix

Public key: $G' = SGP$

Message: m in \mathbb{F}_q^k
Encryption: $y = mG' + e$ with random chosen e in \mathbb{F}_q^n of weight t
Decryption: $yP^{-1} = mSG + eP^{-1}$ and eP^{-1} has weight t
Decoder gives $c = mSG$ as closest codeword
Code based PKC systems - 2

G, S and P are kept secret
$G' = SGP$ is public

The (trapdoor) one-way function of the McEliece public cryptosystem is given by

$$x = (m, e) \mapsto y = mG' + e$$

where $m \in \mathbb{F}_q^k$ is the plaintext
$e \in \mathbb{F}_q^n$ is a random error vector with hamming weight at most t
Let C_{ECP} be the set of pairs (A, B) that satisfy $E.2$, $E.3$, $E.5$ and $E.6$

The McEliece cryptosystem on codes $C \subseteq (A \ast B) \perp$ with (A, B) in C_{ECP} is based on the inherent tractability of finding an inverse on the one-way function

$$x = (A, B) \mapsto y = (A \ast B)$$

where (A, B) is in C_{ECP}
State of the art

- GRS codes: solved by Sidelnikov-Shestakov
- Alternant codes: open
- Goppa codes: open
- AG codeds: work in progress by

Irene Márquez-Corbella
Edgar Martínez-Moro
Ruud Pellikaan
Diego Ruano