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Extension codes

\Weight The number of nonzero coordinates of a vector.

Linear [n. k| code Linear subspace C C GF(q)" of dimension k. Elements
are called (code)words, n is called the length.

Generator matrix The rows of this k x n matrix form a basis for C.
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Extension codes

\Weight The number of nonzero coordinates of a vector.

Linear [n. k| code Linear subspace C C GF(q)" of dimension k. Elements
are called (code)words, n is called the length.

Generator matrix The rows of this k x n matrix form a basis for C.

Extension code [n, k] code C ® GF(g™) over some extension field
GF(g™) generated by the words of C.

Generator matrix All the extension codes of C have the same generator
matrix G.
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Coset leader weight enumerator

Coset Translation of the code by a vector y € GF(q)".
Weight The minimum weight of all vectors in the coset.

Coset leader A vector of minimum weight in the coset.
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Coset leader weight enumerator

Coset Translation of the code by a vector y € GF(q)".
Weight The minimum weight of all vectors in the coset.

Coset leader A vector of minimum weight in the coset.

Extended coset leader weight enumerator

The homogeneous polynomial counting the number of cosets of a given
weight “for all extension codes”, notation:

n
ac(X,Y,T)=> ai(T)X"'Y".
i=0
Note that we have ac(X, Y, q™) = acgcr(gm) (X, Y).
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List weight enumerator

Extended list weight enumerator

The homogeneous polynomial counting the number of coset leaders of a
given weight “for all extension codes”, notation:

n
Ac(X, Y, T) =Y N(T)X" Y7,
i=0

Note that we have A\c(X, Y, q") = Acacr(gm (X, Y).
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List weight enumerator

Extended list weight enumerator

The homogeneous polynomial counting the number of coset leaders of a
given weight “for all extension codes”, notation:

n
Ac(X, Y, T) =Y N(T)X" Y7,
i=0

Note that we have A\c(X, Y, q") = Acacr(gm (X, Y).

In general, we have
ai(T) < Xi(T),

with equality iff all cosets of weight i have a unique coset leader.
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Why do we study this?

The extended coset leader weight enumerator is interesting because:

o Determines the probability of correct decoding in coset leader
decoding.

o Determines the average of changed symbols in steganography
(information hiding).

o Not determined by the extended weight enumerator.

The extended list weight enumerator is interesting because:
o Determines the size of lists in list decoding.

o Determines the probability of correct decoding in list decoding.

...and of course because they are invariants of linear codes.
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Hyperplane arrangements and projective systems

Arrangement of hyperplanes n-tuple of hyperplanes in GF(q)k.

Essential arrangement Intersection of all hyperplanes is {0},
hyperplanes are in PG(k — 1, q).

Projective system n-tuple of points in PG(k — 1, q).

Projective systems are the geometric duals of hyperplane arrangements.
Both induce the same geometric lattice.
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Hyperplane arrangements and projective systems

Arrangement of hyperplanes n-tuple of hyperplanes in GF(q)¥.

Essential arrangement Intersection of all hyperplanes is {0},
hyperplanes are in PG(k — 1, q).

Projective system n-tuple of points in PG(k — 1, q).

Projective systems are the geometric duals of hyperplane arrangements.
Both induce the same geometric lattice.

Columns of a generator matrix G of a linear [n, k] code form a hyperplane
arrangement / projective system.

o One-to-one correspondence between equivalence classes.
o Independent of choice of G, so notation: A¢ or Pc.

o Also valid over an extension field GF(g™).
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Determination of coset weights

Parity check matrix (n— k) x n matrix H such that GHT = 0.
Syndrome of y The vector s = Hy T, zero for codewords.

Syndrome weight Minimal number of columns whose span contains s.
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Determination of coset weights

Parity check matrix (n— k) x n matrix H such that GHT = 0.
Syndrome of y The vector s = Hy, zero for codewords.

Syndrome weight Minimal number of columns whose span contains s.

@ Isomorphism between cosets and syndromes, because
H(y +¢c)" = Hy" + Hc™ = Hy'.

o Syndrome weight is equal to corresponding coset weight (weight of
coset leader).

@ «; is the number of vectors that are in the span of / columns of H but
not in the span of i — 1 columns of H.
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Determination of coset weights

The [7,4] binary Hamming code has
parity check matrix
1101100
H=|1 011010
0111001

This is a projective system of seven
points in the projective plane.

The extended coset leader weights are given by
ap(T)=1

The code itself.
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Determination of coset weights

The [7,4] binary Hamming code has
parity check matrix
1101100
H=11011010
0111001
This is a projective system of seven
points in the projective plane.
The extended coset leader weights are given by
ar(T)=7(T - 1)

Seven projective points.
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Determination of coset weights

The [7,4] binary Hamming code has
parity check matrix

1101100
H=|1 011010
0111001

This is a projective system of seven
points in the projective plane.

The extended coset leader weights are given by
ax(T)=7(T —1)(T —2)

(T + 1) — 3 extra points on 7 projective lines.
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Determination of coset weights

The [7,4] binary Hamming code has
parity check matrix

1101100
H=|1 011010
0111001

This is a projective system of seven
points in the projective plane.

The extended coset leader weights are given by
a3(T) = (T = 1)(T = 2)(T - 4)

ao(T) 4+ a1(T) 4+ aa(T) 4+ a3(T) = T3 total number of cosets.
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Determination of coset weights

This kind of inclusion/exclusion counting is formalized by the geometric
lattice associated to a projective system and its Mébius function.

Example (continued)

The geometric lattice associated to the [7, 4] binary Hamming code is
visualized by

abcdefg

I NS
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Determination of coset weights

1 coset with 3 cosets with
3 coset leaders 2 leaders each

Projective systems with equal geometric lattices may have different coset
leader weight enumerators!

Relinde Jurrius (VUB) Coset leader weight enumerator Fqll July 24, 2013 10 / 16



o Start with [n, k] code.
o Consider the projective system Pc.

o Look at all hyperplanes spanned by k — 1 points of Pc.
(Ignore k — 1 points that span spaces of lower dimension.)

o Remove (multiple) copies of hyperplanes.
o These hyperplanes form an arrangement A.
o The derived code D(C) is the code such that A = Ap(c).
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Extended coset leader weight enumerator

o The lattice of Pc, upside-down, is contained in the lattice of Apc).

o This gives an injection ¥ : L(Pc) — L(Ap(c))-

o All elements that are not in the image ¥(L(Pc)) should be counted
similar to the largest element below it that is in ¢(L(P¢)).

o Therefore, define r*(x) = max{r(y) : y € ¥(L(Pc)),y < x}.
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Extended coset leader weight enumerator

o The lattice of Pc, upside-down, is contained in the lattice of Apc).

o This gives an injection 1 : L(Pc) — L(Ap(c))-

o All elements that are not in the image ¥(L(Pc)) should be counted
similar to the largest element below it that is in ¢ (L(Pc¢)).

o Therefore, define r*(x) = max{r(y) : y € ¥(L(Pc)),y < x}.

The extended coset leader weight enumerator is equal to

ac(X, Y, T)= > plxy) T rxkrtdyn=kert,
x,y€L(Ap(c))
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o The extended coset leader weight enumerator is an important
invariant of linear codes.

o Determining coset weights is equivalent to counting points in spans of
points.

o Counting points can be formalized by using the geometric lattice of
the derived code.
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Further questions

o Does the extended coset leader weight enumerator determine the
extended weight enumerator?

o Can we define a derived lattice?

o Taking D(D(D(---(C)---))) eventually gives all hyperplanes in
PG(k — 1, q). How fast?

o Dependencies between dependencies are known as second order
syzygies in computational geometry. Can this interpretation help?

o Can we determine ac(X, Y, T) for concrete classes of codes?
(For example: generalized Reed-Solomon codes)

o Can we classify codes using their coset leader weight enumerator?

Relinde Jurrius (VUB) Coset leader weight enumerator Fqll July 24, 2013 15 / 16



Thank you for your attention.
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