Polynomial invariants of geometric structures

Ruud Pellikaan
g.r.pellikaan@tue.nl

Castellon
2016 May 4
Characteristic polynomial

- Knots and links and its (multi variable) Alexander polynomial
- Complement of projective curve and its Alexander polynomial
- Arrangement and its (two variable) characteristic polynomial
- Milnor fibre of an isolated singularity and its characteristic polynomial of the monodromy
Zeta function

- Number field and its zeta function
- Algebraic variety over a finite field and its (two variable) zeta function, characteristic polynomial of Frobenius
- Error-correcting codes and its (two variable) zeta function
- Graph and its zeta function
Weight enumerator

- Code and its weight enumerator
- Code and its extended weight enumerator
- Code and its generalized weight enumerator
Chromatic, Tutt\'e and characteristic polynomial

- Graph and its chromatic polynomial
- Matroid and its characteristic polynomial
- Matroid and its two variable Tutte polynomial
- Matroid its (two variable) zeta function
Content

1. Error-correcting codes
2. Weight enumerator
3. Arrangements and codes
4. Arrangements and weight enumerators
5. Extended weight enumerator
6. Matroids
7. Tutte-Whitney polynomial
References

• T. Britz, Higher support matroids

• T. Britz, Code enumerators and Tutte polynomials

• Relinde Jurrius
 Codes, arrangements, matroids, and their polynomial links

• Relinde Jurrius and Ruud Pellikaan
 Codes, arrangements and matroids
 in Series on Coding Theory and Cryptology vol. 8
 Algebraic geometry modelling in information theory, pp. 219–325, 2013
(Generalized) weight enumerator
Let C be a code of length n

A_w denotes the number of codewords in C of weight w

$A_w^{(r)}$ denotes the number of subspaces of C of dimension r weight w

The weight enumerator is:

$$W_C(X, Y) = \sum_{w=0}^{n} A_w X^{n-w} Y^w.$$

The r-th generalized weight enumerator is:

$$W_C^{(r)}(X, Y) = \sum_{w=0}^{n} A_w^{(r)} X^{n-w} Y^w.$$
Theorem

Let C be a $[n, k]$ code over \mathbb{F}_q
Then

$$W_{C^*}(X, Y) = q^{-k}W_C(X + (q - 1)Y, X - Y)$$

Proof
Several proofs are known
Proposition

Let $W_C(X, Y)$ be the weight enumerator of C

Then the probability of undetected error on a q-ary symmetric channel with cross-over probability p is given by

$$P_{ue}(p) = W_C \left(1 - p, \frac{p}{q-1} \right) - (1 - p)^n.$$
Arrangements and codes
Let C and D be linear codes in \mathbb{F}_q^n

Then C is called \textbf{permutation equivalent} to D
if there exists a permutation matrix Π such that $\Pi(C) = D$
If moreover $C = D$, then Π is called an \textbf{permutation automorphism} of C

The code C is called \textbf{generalized} or \textbf{monomial equivalent} to D
if there exists a monomial matrix M such that $M(C) = D$
If moreover $C = D$, then M is called a \textbf{monomial automorphism} of C
An arrangement in \(\mathbb{F}^k \) is an \(n \)-tuple \((H_1, \ldots, H_n) \) of hyperplanes in \(\mathbb{F}^k \).

The arrangement is called simple if all the \(n \) hyperplanes are mutually distinct.

The arrangement is called central if \(0 \in H_j \) for all \(j \).

If the arrangement is central one considers the hyperplanes in \(\mathbb{P}^{k-1}(\mathbb{F}) \).

A central arrangement is called essential if \(\cap_j H_j = \{0\} \).

Projective systems and essential arrangements are dual notions.
Let $G = (g_{ij})$ be a generator matrix of a nondegenerate code C of dimension k.
So G has no zero columns.

Let H_j be the linear hyperplane in \mathbb{F}_q^k with equation

$$g_{1j}X_1 + \cdots + g_{kj}X_k = 0.$$

\mathcal{A}_G is the arrangement (H_1, \ldots, H_n) associated with G.

There is a one-to-one correspondence between:

1. generalized equivalence classes of nondegenerate $[n, k]$ codes over \mathbb{F}_q

2. equivalence classes of essential arrangements of n hyperplanes in $\mathbb{P}^{k-1}(\mathbb{F}_q)$
Proposition
Let C be a nondegenerate code over \mathbb{F}_q with generator matrix G.
Let c be a codeword $c = xG$ for the unique $x \in \mathbb{F}_q^k$.

Then $n - \text{wt}(c)$ is equal to the number of hyperplanes of A_G through x.

Proof
Now $c_j = \sum_i g_{ij}x_i$.
So $c_j = 0$ if and only if $x \in H_j$.
Hence

$$n - \text{wt}(c) = |\{ j \mid c_j = 0 \}| = |\{ j \mid x \in H_j \}|$$
Arrangements
and
weight enumerator
A_w the number of codewords of weight w equals
the number of points that are on exactly $n - w$ of the hyperplanes of \mathcal{A}_G

In particular A_n is equal to the number of points that is in
the complement of the union of these hyperplanes in \mathbb{F}_q^k

This number can be computed by the principle of inclusion/exclusion:

$$A_n = q^k - |H_1 \cup \cdots \cup H_n|$$

$$= q^k + \sum_{w=1}^{n} (-1)^w \sum_{i_1 < \cdots < i_w} |H_{i_1} \cap \cdots \cap H_{i_w}|.$$
\[G = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{pmatrix} \]
Let C be the code over \mathbb{F}_q with generator matrix G
For $q = 2$, this is the simplex code $S_2(2)$
The columns of G represent also the coefficients of the lines of A_G

Assume q is even
$A_0 = 1$
$A_4 = 7(q - 1)$ there are 7 points on exactly 3 lines
$A_6 = 7(q - 1)[(q + 1) - 3] = 7(q - 1)(q - 2)$ there are 7 lines
and $(q + 1) - 3$ points of such a line is exactly on one of these
$A_7 = q^3 - A_0 - A_4 - A_6 = (q - 1)(q - 2)(q - 4)$
So

$$W_C(X, Y) = X^7 + 7(q - 1)X^3Y^4 + 7(q - 1)(q - 2)XY^6 + (q - 1)(q - 2)(q - 4)Y^7$$
Assume q is odd, then similarly

$$W_C(X, Y) =$$

$$X^7 + 6(q-1)X^3Y^4 + 3(q-1)X^2Y^5 + (q-1)(7q-17)XY^6 + (q-1)(q-3)^2Y^7$$
The following method is based on Katsman-Tsfasman. Later we will encounter another method: matroids and the Tutte polynomial by Greene.

Definition
For a subset J of $[n] := \{1, 2, \ldots, n\}$ define

$$C(J) = \{ c \in C | c_j = 0 \text{ for all } j \in J \}$$
$$l(J) = \dim C(J)$$
$$B_J = q^{l(J)} - 1$$
$$B_t = \sum_{|J|=t} B_J$$
The encoding map \(\mathbf{x} \mapsto \mathbf{x}G = \mathbf{c} \) from vectors \(\mathbf{x} \in \mathbb{F}_q^k \) to codewords gives the following isomorphism of vector spaces

\[
\bigcap_{j \in J} H_j \cong C(J)
\]

Furthermore \(B_J \) is equal to the number of nonzero codewords \(\mathbf{c} \) that are zero at all \(H_j \) in \(J \)

\[
B_J = |C(J) \setminus \{0\}| = \left| \bigcap_{j \in J} H_j \setminus \{0\} \right|
\]
Lemma

Let C be a linear code with generator matrix G.

Let $J \subseteq [n]$ and $|J| = t$.

G_J is the $k \times t$ submatrix of G existing of the columns of G indexed by J.

Let $r(J)$ be the rank of G_J.

Then $l(J) = k - r(J)$.
Lemma

Let C be an \mathbb{F}_q-linear code of dimension k

Let d and d^\perp be the minimum distance of C and C^\perp, respectively

Let $J \subseteq [n]$ and $|J| = t$

Then

$$l(J) = \begin{cases}
k - t & \text{for all } t < d^\perp \\
0 & \text{for all } t > n - d \end{cases}$$

and

$$B_t = \begin{cases}
\binom{n}{t}(q^{k-t} - 1) & \text{for all } t < d^\perp \\
0 & \text{for all } t > n - d \end{cases}$$
Proposition

B_t relates to the weight distribution as follows:

$$B_t = \sum_{w=d}^{n-t} \binom{n-w}{t} A_w$$

Proof

Count in two ways the number of elements of the set

$$\{ (J, c) \mid J \subseteq [n], |J| = t, c \in C(J), c \neq 0 \}$$
Theorem
The generalized weight enumerator is given by the following formula:

\[W_C(X, Y) = X^n + \sum_{t=0}^{n} B_t(X - Y)^t Y^{n-t} \]

Proof
Use the previous proposition
the fact that \(B_t = 0 \) for \(t > n - d \)
change the order of summation and
use the binomial expansion:

\[X^{n-w} = ((X - Y) + Y)^{n-w} \]
Proposition

The following formula holds:

\[A_w = \sum_{t=n-w}^{n} (-1)^{n+w+t} \binom{t}{n-w} B_t. \]
Proposition
The weight distribution of an MDS code of length n, dimension k and minimum distance $d = n - k + 1$

$$A_w = \binom{n}{w} \sum_{j=0}^{w-d} (-1)^j \binom{w}{j} (q^{w-d+1-j} - 1)$$

for $w \geq d = n - k + 1$
Extended weight enumerator
Let G be the generator matrix of a linear $[n, k]$ code C over \mathbb{F}_q.

\mathbb{F}_q is a subfield of \mathbb{F}_{q^m}.

Consider the code $C \otimes \mathbb{F}_{q^m}$ over \mathbb{F}_{q^m} by taking all \mathbb{F}_{q^m}-linear combinations of the codewords in C. This is called the extension code of C over \mathbb{F}_{q^m}.

G is also a generator matrix for the extension code $C \otimes \mathbb{F}_{q^m}$.

Hence $C \otimes \mathbb{F}_{q^m}$ has dimension k over \mathbb{F}_{q^m}.
Remember:

Definition

For a subset J of $[n] := \{1, 2, \ldots, n\}$ define

$$C(J) = \{ \mathbf{c} \in C \mid c_j = 0 \text{ for all } j \in J \}$$

$$l(J) = \dim C(J)$$

Lemma

Let C be a linear code with generator matrix G

Let $J \subseteq [n]$ and $|J| = t$

G_J is the $k \times t$ submatrix of G existing of the columns of G indexed by J

Let $r(J)$ be the rank of G_J

Then $l(J) = k - r(J)$
\[l(J) = k - r(J) \text{ by the previous lemma} \]
\[r(J) \text{ is independent of the extension field } \mathbb{F}_{q^m} \]

Therefore

\[\dim_{\mathbb{F}_q} C(J) = \dim_{\mathbb{F}_{q^m}} (C \otimes \mathbb{F}_{q^m})(J) \]

This motivates the usage of \(T \) as a variable for \(q^m \) in the next definition
Remember:
Let C be a linear code over \mathbb{F}_q

$$B_J = q^{l(J)} - 1$$

$$B_t = \sum_{|J|=t} B_J$$

Extend: Definition

$$B_J(T) = T^{l(J)} - 1$$

$$B_t(T) = \sum_{|J|=t} B_J(T)$$

Note that $B_J(q^m)$ is the number of nonzero codewords in $(C \otimes \mathbb{F}_{q^m})(J)$
Remember:

\[W_C(X, Y) = X^n + \sum_{t=0}^{n} B_t(X - Y)^t Y^{n-t} \]

Define the extended weight enumerator by

\[W_C(X, Y, T) = X^n + \sum_{t=0}^{n} B_t(T)(X - Y)^t Y^{n-t} \]

Is well-defined for any linear subspace \(C \) of \(\mathbb{F}^n \) over any field \(\mathbb{F} \)
Theorem

The following holds:

\[W_C(X, Y, T) = \sum_{w=0}^{n} A_w(T) X^{n-w} Y^w \]

\[A_0(T) = 1, \text{ and } A_w(T) = \sum_{t=n-w}^{n} (-1)^{n+w+t} \binom{t}{n-w} B_t(T) \]

for \(0 < w \leq n\) and

\[B_t(T) = \sum_{w=d}^{n-t} \binom{n-w}{t} A_w(T) \]

Proof is similar to the proof relating the \(A_w\)'s and \(B_t\)'s
Proposition
The weight distribution of an MDS code of length n and dimension k is given by

$$A_w(T) = \binom{n}{w} \sum_{j=0}^{w-d} (-1)^j \binom{w}{j} (T^{w-d+1-j} - 1)$$

for $w \geq d = n - k + 1$

Proof
Similar to the proof for A_w
Proposition

Let C be a linear $[n, k]$ code over \mathbb{F}_q

Then

$$W_C(X, Y, q^m) = W_{C \otimes \mathbb{F}_{q^m}}(X, Y)$$

The number of codewords in $C \otimes \mathbb{F}_{q^m}$ of weight w

is equal to $A_w(q^m)$

Proof

Substituting $T = q^m$ in $B_t(T)$ gives $B_t(q^m)$ which is equal to the B_t of $C \otimes \mathbb{F}_{q^m}$
Theorem
Let C be an $[n, k]$ code over \mathbb{F}_q
Then
\[W_{C^\perp}(X, Y, T) = T^{-k}W_C(X + (T - 1)Y, X - Y, T) \]

Proof
Substituting $T = q^m$ gives the MacWilliams identity for $C \otimes \mathbb{F}_{q^m}$
\[W_{C^\perp}(X, Y, q^m) = q^{-mk}W_C(X + (q^m - 1)Y, X - Y, q^m) \]
which holds for all m
Now $A_w(T)$ is a polynomial in T with coefficient in \mathbb{Z}
Giving infinitely many identities for the weight distributions of $C \otimes \mathbb{F}_{q^m}$ and $C^\perp \otimes \mathbb{F}_{q^m} = (C \otimes \mathbb{F}_{q^m})^\perp$
The following formula will be useful later in identifying the extended weight enumerator with the Tutte polynomial

Proposition
Let C be a linear $[n, k]$ code over \mathbb{F}_q

$$W_C(X, Y, T) = \sum_{t=0}^{n} \sum_{|J|=t} T^{l(J)}(X - Y)^t Y^{n-t}$$

Proof
Use the description of $W_C(X, Y, T)$ in terms of the $B_t(T)$ and the definition of $B_t(T)$ in terms of the $l(J)$
Matroids
Matroids were introduced by Whitney in axiomatizing and generalizing the concepts of independence in linear algebra and cycle in graph theory.

Definition
A matroid M is a pair (E, \mathcal{I}) consisting of a finite set E and a collection \mathcal{I} of subsets of E such that:

1. (I.1) $\emptyset \in \mathcal{I}$.
2. (I.2) If $J \subseteq I$ and $I \in \mathcal{I}$, then $J \in \mathcal{I}$.
3. (I.3) If $I, J \in \mathcal{I}$ and $|I| < |J|$, then there exists a $j \in (J \setminus I)$ such that $I \cup \{j\} \in \mathcal{I}$.

A subset I of E is called **independent** if $I \in \mathcal{I}$, otherwise it is called **dependent**

Condition (I.2) is called the **independence augmentation axiom**
If J is a subset of E, then J has a maximal independent subset if there exists an $I \in \mathcal{I}$ such that $I \subseteq J$ and I is maximal with respect to this property and the inclusion

If I_1 and I_2 are maximal independent subsets of J then $|I_1| = |I_2|$ by condition (I.3)

The rank or dimension $r(J)$ of a subset J of E is the number of elements of a maximal independent subset of J

An independent set of rank $r(M)$ is called a basis of M The collection of all bases of M is denoted by \mathcal{B}
Let n and k be non-negative integers such that $k \leq n$

Let $[n] = \{1, \ldots, n\}$

Let $\mathcal{I}_{n,k} = \{ I \subseteq U_{n,k} \mid |I| \leq k \}$

Then $([n], \mathcal{I}_{n,k})$ is a matroid and it is denoted by $U_{n,k}$

It is called the uniform matroid of rank k on n elements

A subset B of $[n]$ is a basis of $U_{n,k}$ iff $|B| = k$

The matroid $U_{n,n}$ has no dependent sets and is called free
Let G be a $k \times n$ matrix with entries in a field \mathbb{F}

Let E be the set $[n]$ indexing the columns of G
Let \mathcal{I}_G be the collection of all subsets I of E
such that the columns of G_I are independent
Then $M_G = (E, \mathcal{I}_G)$ is a matroid

A matroid that is isomorphic with an M_G is called **representable** over the field \mathbb{F}
Suppose that \mathbb{F} is a finite field and G_1 and G_2 are generator matrices of a code C. Then $(E, \mathcal{I}_{G_1}) = (E, \mathcal{I}_{G_2})$.

So the matroid $M_C = (E, \mathcal{I}_C)$ of a code C is well defined by (E, \mathcal{I}_G) for some generator matrix G of C.
Let $M = (E, \mathcal{I})$ be a matroid.
Let \mathcal{B} be the collection of all bases of M.

Define $B^\perp = (E \setminus B)$ for $B \in \mathcal{B}$
and $\mathcal{B}^\perp = \{B^\perp | B \in \mathcal{B}\}$

Define $\mathcal{I}^\perp = \{I \subseteq E | I \subseteq B \text{ for some } B \in \mathcal{B}^\perp\}$
Then (E, \mathcal{I}^\perp) is called the dual matroid of M and is denoted by M^\perp
The dual matroid is indeed a matroid.
Let C be a code over a finite field
Then $(M_C)\perp$ is isomorphic with $M_C\perp$ as matroids
Tutte-Whitney polynomial
Definition
Let $M = (E, \mathcal{I})$ be a matroid
The Whitney rank generating function $R_M(X, Y)$ is defined by

$$R_M(X, Y) = \sum_{J \subseteq E} X^{r(E) - r(J)} Y^{|J| - r(J)}$$

and the Tutte-Whitney or dichromatic Tutte polynomial by

$$t_M(X, Y) = \sum_{J \subseteq E} (X - 1)^{r(E) - r(J)} (Y - 1)^{|J| - r(J)}$$

Hence

$$t_M(X, Y) = R_M(X - 1, Y - 1)$$
Proposition
Let C be a $[n, k]$ code over \mathbb{F}_q
Then the Tutte polynomial t_C of the matroid M_C of the code C is

$$t_C(X, Y) = \sum_{t=0}^{n} \sum_{|J|=t} (X - 1)^{l(J)} (Y - 1)^{l(J)-(k-t)}$$

Proof

$$t_C(X, Y) = \sum_{J \subseteq E} (X - 1)^{r(E)-r(J)} (Y - 1)^{|J|-r(J)}$$

Now $r(E) = k$, $t = |J|$ and $l(J) = k - r(J)$
Theorem
Let C be a $[n, k]$ code over any field \mathbb{F}
Then the Tutte polynomial t_C of the matroid M_C of the code C
and the extended weight enumerator $W_C(X, Y, T)$
determine each other

$$t_C(X, Y) = Y^n(Y - 1)^{-k}W_C(1, Y^{-1}, (X - 1)(Y - 1))$$

and

$$W_C(X, Y, T) = (X - Y)^kY^{n-k}t_C\left(\frac{X + (T - 1)Y}{X - Y}, \frac{X}{Y}\right)$$

Second identity proved by Greene (1976) in case $T = \mathbb{F}_q$
Similar result holds the generalized weight enumerators $W_C^{(r)}(X, Y)$
by Britz (2007, 2010)
Theorem
Let $t_M(X, Y)$ be the Tutte polynomial of a matroid M
Let M^\perp be the dual matroid
Then
$$t_{M^\perp}(X, Y) = t_M(Y, X)$$
Theorem
Let C be a $[n, k]$ code over \mathbb{F}_q
Then
$$W_{C\perp}(X, Y, T) = T^{-k}W_C(X + (T - 1)Y, X - Y, T)$$

Proof Use

- $t_{M\perp}(X, Y) = t_M(Y, X)$
- $M_{C\perp} = (M_C)^\perp$
- $t_C(X, Y)$ and $W_C(X, Y, T)$ determine each other
The following polynomials determine each other:

\[W_C(X, Y, T) \quad \text{extended weight enumerator of } C \]

\[\{ W_C^r(X, Y) | r = 1, \ldots, k \} \quad \text{generalized weight enumerators of } C \]

\[t_C(X, Y) \quad \text{dichromatic Tutte polynomial of matroid } M_C \]

\[\chi_C(S, T) \quad \text{coboundary or two variable char.pol. of geometric lattice } L_C \]

\[\zeta_C(S, T) \quad \text{two variable zeta function of } C \text{ by Duursma} \]

But

\[W_C(X, Y) \text{ is weaker than } W_C(X, Y, T) \]