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ON COMPLETE CONDITIONS IN
ENUMERATIVE GEOMETRY

Ruud Pellikaan

§0 Introduction.

In enumerative geometry one deals with geometrical figures on which one imposes conditions. If
the set of geometrical figures is a variety then one says that a condition is r-fold if the variety of
figures which satisfy this condition has codimension . In particular if one imposes an n-fold con-
dition on geometrical figures of dimension » then one expects a finite number of solutions and
one seeks to compute this number. Moreover varying this condition continuously, the "principle
of continuity" also called the "principle of conservation of number", says that this number
counted with appropriate multiplicities stays constant.

The first example of the above is Bézout’s theorem [2]. Geometers like Chasles [4], Halphen [12]
gave an abundance of examples culminating in Schubert’s book "Kalkiil der abzihlenden
Geometrie"” [31], see also Zeuthen and Pieri [45], [46].

Hilbert poses as his 15" problem the question how the principles used by the enumerative geom-
eters could be justified and whether the numbers obtained by them were correct, see [18].

After the foundational work of Severi {34], Van der Waerden [41], Weil [44] and Grothendieck
[11] algebraic geometry got a rigorous basis. Algebraic varieties were defined and the language of
schemes was developed to take account of non-reduced structures. In analogy with the cohomol-
ogy ring in algebraic topology [40], the Chow ring was developed and Schubert calculus could be
justified in any characteristic by doing the calculations in the Chow ring. Intersection theory was
strongly developed by Fulton, Kleiman and MacPherson [8], [21]. Although the basic notions are
well defined, it was still not clear whether all the principles underlying enumerative geometry
were justified. This was clearly stressed by Kleiman [18]. For instance it is not obvious that the
number one computes is obtained by taking the condition figures in general position, nor whether
the "principle of conservation of number" is valid. Kleiman justified these for the class of
enumerative problems where an algebraic group acts transitively on the geometrical figures [17].
The paradigm of enumerative geometry where a naive approach fails, are the plane conics. They
are parametrized by P 3 and the condition for a conic to be tangent to a given conic defines a
hypersurface of degree 6 in P, Hence one concludes, like Steiner did, that there are 6° conics
tangent to 5 given conics, by Bézout’s theorem. But the double lines are tangent to any given
conic, hence one always has infinitely many solutions for any choice of the 5 given conics.
Remark that the group of projective transformations does not act transitively on the plane conics,
in fact one has three orbits: non-singular conics, the union of two lines and double lines.

One can proceed in two different ways. One can try to compute residual or excess intersections,
that is an intersection theory where the intersections are not proper and one seeks to compute



-2

those solutions which are outside a base locus of degenerate solutions. Classical geometers like
Severi developed a dynamic intersection theory. A modern treatment is given by Fulton and Mac-
Pherson [8] by their method of deforming to the normal cone and by Vogel and Stiickrad [36],
[38]. The link between them is given by Van Gastel [9]; he also gives a historical account of
excess intersection theory. Up to now this approach only works if the geometrical figures are
lying in projective n-space. Classically one remedied the naive approach by considering the col-
lection of so called "complete conics”, that is to say by considering a conic together with its dual.
Chasles obtained the correct number 3264 of conics tangent to 5 given conics in case the charac-
teristic is not 2. There are a lot of examples of complete geometrical figures, see (2.1), but no
general definition seems to be known.

The primary aim of this paper is not to compute the numbers of a specific enumerative problem
but to see which properties of a condition imply that the numbers one computes make sense, that
is to say they are obtained by taking a generic choice of the condition figures, and the intersection
of two conditions have again this property.

In Section 1 we define the notion of a condition and construct the sum and the intersection of two
conditions and the pull back under a morphism of a condition and pose the question whether they
are again conditions. In Section 2 we consider the construction of complete conics. In Section 3
we define the class of proper conditions which satisfies the sum, intersection and pull back pro-
perty. In Section 4 we introduce the notion of a flat condition and show that it satisfies the inter-
section and pull back property. In Section 5 we prove that a condition has a flattening. In Section
6 we define Cohen-Macaulay conditions and show that they satisfy the intersection and pull back
property and the principle of conservation of number. In Section 7 we give examples of condi-
tions and consider their properties. In Section 8 we sketch a Schubert calculus on singular
varieties.

§1 r-fold conditions.
Let & be an algebraically closed field. All schemes considered will be of finite type over .

(1.1) Definition. Let X be a scheme of finite type over k. An r-fold condition on X is a triple
(X, T',Y), where Y is a scheme of finite type over k and I is a closed subscheme of X XY, such that
all its irreducible components have codimension 7.

(1.2) Some terminology. Let f: V — W be a morphism of schemes over k. Let w be a point of W
and k(w) the residue field at w and let Spec k(w) — W be the natural morphism. Then we define
the fibre f~1(w) of fover the point w to be the scheme

1 w) =V xw Spec k(w) ,

see [13] I1.3.3.

Let (X,I,Y) be an r-fold condition on X. We have two projections ¢ : X XY — X and
y:XXY > Y. If I is a subscheme of X XY then we denote the restrictions of ¢ and y to I" by ¢r
and yr respectively. If y is a point of ¥ then we denote the fibre yf (y) of yr by I'y. By abuse of
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notation we denote (X XY), by X,. Now T is a subscheme of X,,. Similarly, if x is a point of X
then define I'* to be the fibre ¢F (x) and denote (X x ¥)* by Y*. In enumerative problems X and Y
will parametrize geometrical figures in some scheme Z. For instance, take for Z projective -
space and for the geometrical figures subschemes of a given dimension and degree or with a
given Hilbert polynomial and take for I' a relation between these figures like incidence or
tangency. We abstract from this and forget that X and Y are parameter schemes of certain
geometrical figures in some Z. We call X the scheme of geometrical figures and Y the scheme of
condition figures and I'" a condition on X imposed by Y. For a point y of Y we call T, the speciali-
zation of the condition I" at y.

(1.3) Proposition. Let f : V — W be a flat morphism of schemes of finite type over k, and assume
that W is irreducible. Then the following conditions are equivalent:

(i) Every irreducible component of V has dimension dim W + n.

(i) For any point w of W every irreducible component of the fibre f~ (w) has dimension n.

(iii) There exists an open dense subset U of W such that for any closed point w of U, every
irreducible component of the fibre f~ 1(w) has dimension #.

Proof. See [13] III Corollary 9.6. and [11] IV, 6.9.1.

(1.4) Proposition. Let X and Y be schemes of finite type over k. Suppose X is equidimensional
and Y is integral. If (X,I',Y) is an r-fold condition on X then there exists an open dense subset V
of Y such that T’ is empty for all points y of V or yr is flat above V and all irreducible com-
ponents of I'y have codimension r in X, for all points y of V.

Proof, This follows from [11] IV, 6.9.1 and Proposition (1.3).

(1.5) Remark. Let V be the open dense subset of ¥ mentioned in Proposition (1.4) and suppose
Wyt (V) is not empty. Define similarly the corresponding open dense subset U of X in case x is
integral, after interchanging the roles of X and Y and suppose o7 (U) is not empty. Let ¢ =dim X,
b=a-r,c=dimY and d =c—r. Then b =dimT, for all y of V and d =dim I'* for all x of U.
Thus

dimI'=a+d=c+5b.

This is called: Prinzip der Konstantenzdhlung, see [43].
(1.6) Definition. Let (X, I',Y) and (X, A,Z) be r-fold, respectively s-fold, conditions on X. Let

1:YXXXZ -5 XXYXZ

be the isomorphism which interchanges the factors X and Y. Define the sum (X,T'+A,Y XZ) of
X, I,Y) and (X,A,Z) by

IF'+A=IXZ) U 1Y XA)).

Define the product or intersection (X,I"o A, Y xZ) of (X,T',Y) and (X, A,Z) by



IF'o A=(TXZ) N 1Y XA)).
Define by induction
Ir=T and (n+)T=@ID)+T

IN=T and "' =T"6T.

(1.7) Proposition. Let (X, I',Y) and (X, A,Z) be r-fold, respectively s-fold, conditions on X and let
x,y and z be closed points of X,Y and Z respectively. Then

6)) To Ngyn=TyNA,;
(i) To A ET*XA”
where the schemes are considered as subschemes of X and Y, after identifying X, and X, with X
and Y* with Y.
Proof. (i) We have that (I'e A) =(I"XZ) N 1(Y XA).
Hence
(To Ngy,z) =TXZ) N (Y XA) N X X{(¥,2)}
=Ty x{(2)} N A, x{(,2)}
=[N A) X {(,2)}.
We get the desired equality after the above mentioned identification.
(i) To A =ITxXZ)N 1Y XA)N (x}xYxZ
= (I xZ) N (Y XAY)
=T* X A%

(1.8) Remark. The underlying sets of (I'+A), ;) and I, U A, are the same for all closed points y
and z of Y and Z respectively, but it is not true in general that (F+A&§ I, U A, as schemes, see
Example (7.1). The underlying sets of (I'+A)* and (I* XZ) U (Y XA*) are the same for all
closed points of X.

(1.9) Proposition. If (X,T',Y) and (X, A,Z) are both r-fold conditions on X then (X,'+A,Y X2Z) is
an r-fold condition on X.

Proof. All irreducible components of I" have codimension r in X XY, hence all irreducible com-
ponents of I'XZ have codimension r in X XY XZ, the same holds for (Y X A), since 71 is an iso-
morphism. Therefore all irreducible components of (I'xXZ) U ©(¥Y X A)) have codimension r in
X XY XZ. Thus (X,I'+A,Y XZ) is an r-fold condition on X. This proves the proposition.

(1.10) Remark. If (X,TI',Y) and (X, A,Z) are r-fold, respectively s-fold, conditions on X then it is
not in general true that (X, "o A,Y XZ) is an (r +s)-fold condition. Take for example a subvariety
V of X of codimension r > 0. Let I'=V xY. Then (X,I,Y) and (X,T o I',Y XY) are both r-fold
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conditions on X, but (X,I'o I',Y XY) is not an (r +r)-fold condition, see (1.15) and Propositions
(3.5), (4.7) and (6.6).

(1.11) Definition. Let (X,T,Y) be an r-fold condition on X. Let f: X" — X be a morphism of
schemes of finite type over &. Define

£ =(Fxidp)™ @).
Then we call (X',f‘1 (M),Y) the pull back of (X,T,Y) under f.
(1.12) Definition. Let Z be a closed subscheme of a scheme X of finite type over k. If V is an

irreducible component of Z then Oy z is an Artinian local ring. Define the multiplicity of Z at V to
be the length Oy z

m(V,Z)= length OV,Z-
Define the cycle [Z] associated to Z by
[Z]1=2m(V,Z)V,

where the summation runs over all irreducible components V of Z, see [8] 1.1.5. If Z is a zero
dimensional subscheme of X then define

[z=2m®z),

where the summation runs over all closed points P of Z. If (X,I',Y) is an n-fold condition on a
scheme X of dimension » then T, is called the solutions of the condition I" on X at the point y of
Y, in case T, is a zero dimensional subscheme of X,. If moreover Y is irreducible then J'l"y is
called the generic number of solutions.

(1.13) Remark. In case X and Y are smooth varieties over k, and (X,I,Y) is an n-fold condition
on X, and X has dimension », we could associate to the points of I, the intersection multiplicities,
according to Severi [33], [34], [35] which was made rigorous by Van der Waerden [39], [42] and
Weil [44]. They proved the principle of conservation of number with their assignment of multi-
plicities. The disadvantage of this way is that one has to look at the number of solutions which
emerge from a special solution to the generic solutions. So one has saved the principle of conser-
vation of number, but one has to know the generic solutions in order to compute the multiplici-
ties, whereas the classical geometers used the principle to get the number of generic solutions by
specializing, where it is easier to compute the number of solutions. Another approach is to assign
multiplicities according to Serre’s Tor formula [32], of the intersection Iy =I'n X, in X XY for
every closed point y in Y. Then the number of solutions would be constant for varying y in Y in
case Y is irreducible, but this will not justify the methods used in the enumerative geometers,
since this was not their way of assigning multiplicities to solutions. So one can say that our
assignment of multiplicities is the naive one.

(1.14) Proposition. Let X and Y be varieties over & and let n =dim X. Let (X,T,Y) be an n-fold
condition X. If char(k) =0 and I is reduced then there exists an open dense subset V of Y such
that all solutions of I, have multiplicity 1 forall y in V.
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Proof. T is reduced, hence there exists a closed subscheme A of T" such that INA is smooth and
open dense in I'. Let Z be the closure of yr-(A) in Y. Then Y\Z is open dense in ¥ and there exists
an open dense subset V of Y\Z such that all the fibres of y- over V are smooth, by [11] IV3.9.9.4,
since char(k) = 0. Hence all the points of I, have multiplicity 1 for all y in V. This proves the pro-
position.

(1.15) Definition. Let X be a scheme of finite type over k. Define
CX)={X,T,Y) | X,TI,Y) is an r—fold condition on X }
cex)=U {cT@) 1 0<r< n}, wheren=dimX.
If (X,T,Y) is an r-fold condition then define
V(@)= {y e Y | all irreducible components of I, have codimension 7 in Xy}.

If S is a subset of C(X) then define S"(X) =S C"(X).
In this paper we are concerned with finding subsets S of C(X) which have one or more of the fol-
lowing properties:
(i) Sum property.
If(X,I,Y), X,A,Z)e §" then X,T+A,YxZ)e §".
(ii) Intersection property.
IfX,T,Y)e §" and (X,A,Z) e S$*then(X,T'o A,YxZ)e §"*.
(iii) Principle of conservation of number.
If (X,T,Y) e §” and n =dim X then the number of solutions of I" at y stays constant for all
yin Y as long as it is finite, that is to say fl"y is the same for all y in V(I').

If moreover f : X’ — X is a morphism of schemes of finite type over k£ and T is a subset of C(X’)
then we are interested in the following property of § and T:
(iv) Pull back property.

IfX,T,Y)e § then X,/ (M), Y)e T.

(1.16) Remark. C(X) has the sum property by Proposition (1.9) but not the intersection property,
by (1.10) nor does it satisfy the principle of conservation of number, by (7.1).

§2 Complete conics.

(2.1) Example. A suggestion to an answer of the above questions is given by the paradigm of
enumerative geometry: plane conics, see Kleiman [20] for a historical survey of Chasles’s work
and Casas and Xambd [3] for an account of Halphen’s work. Assume char(k) is not 2. The plane
conics are parametrized by /P> and the lines in /P2 are parametrized by IP2. Consider the 1-fold
condition (IP°,A, IP?), where A is the subscheme of P° x IP? defining the tangency between a
conic and a line. So if /is a line then A, is as a set the collection of all conics g which are tangent
to 1. If ¢ is a double line then g is tangent to every line. Let D be the subscheme of P>
parametrizing all double lines. Then A* contains the subscheme D x(/P2)*), which has
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dimension 10. But for a 4-fold condition (P5 ,l",(ﬂ’z)“) irreducible components of T" have
dimension 9. Thus A* is not a 4-fold condition on /P>, The problem is that the double lines are
too often a solution of the imposed condition A, that is to say

| e 1incaseq€P5\D
dim A, =dim ¢ (¢) = 2 incase g € D.

To remedy this one classically considers the variety of complete conics. Let g be a (3x3)-
symmetric matrix and define § by §;; = (—)'*/ determinant of the submatrix of ¢ obtained by
deleting the i™ row and the j % column. Now if we consider g as a point of IP? then § =0 if and
only if ¢ is an element of D. We have a map

f:P\D - PP?,
sending g to ¢. Define
X = closure of the graph of fin IP> x IP>.

Geometrically X consists of 4 kinds of complete conics:
(i) non-singular conics

(i) union of two different lines

(iii) a double line with two different points on it

(iv) adouble line with a double point on it.

Let A be the subscheme of X x IP? defining the tangency correspondence between complete con-
ics and lines. In the first two cases we already know what tangency means. If ¢ is a double line
with two points p; and p, on it then the line 1 is tangent to § if and only if p; or p, belongs to 1.
We now have that all the fibres of the map ¢, : A — X have dimension 1. For a conic being
tangent to a line is dual to going through a point and there are no degenerate conics with respect
to this last condition, see (3.1). But the condition for a conic to be tangent to a given conic is self
dual and one can complete the conics in the above way in order to get a sensible answer.

(2.2) Remark. In a lot of enumerative problems one has to complete the scheme of geometrical
figures in order to get a sensible answer. One considers for instance complete quadrics, see (7.7),
complete collineations, complete correlations, see Laksov {23}, [24], [26] and the references
given there, complete triangles [30], complete twisted cubics [1], [27], [28] and complete sym-
metric varieties [5], [6]. It seems that the name giving "completeness"” in this context is rather ad
hoc. Of course there is the notion of a complete scheme [13] I1.4.10, but this is not the only pro-
perty of complete geometrical figures, since IP3 parametrizing the plane conics is a complete
scheme. In our opinion completeness is a property of the condition (X,I,Y) rather than of the
scheme of geometrical figures, and sometimes one has to replace the degenerate figures, see (3.1),
by new figures to get a scheme X’ and a condition (X’,I",Y) such that I is "complete", see (5.1).
Halphen pointed out that no matter how one completes the non-degenerate conics, there is always
a condition whose number of solutions makes no sense for the completed object, [12], [3] 14.8. In
the sequel we will investigate proper, flat and Cohen-Macaulay conditions and whether the
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classical enumerative conditions have these properties. We will not propose a definition for a
complete condition and leave it as a classical terminology, but we think that a flat condition and a
flattening of a condition are most close to what should be a complete condition and a completion
of a condition.

§3 Proper conditions.

(3.1) Definition. Let X be a scheme of finite type over k and (X, I',Y) an r-fold condition on X.
Define the degeneracy locus D(I") or D for short, of the condition by

D) = {x € X | T* is empty or has not codimension r in Y*}.

We call the condition non-degenerate or proper if the degeneracy locus is empty, that is, for all x
in X the subscheme I'* of Y* is not empty and has codimension r.

(3.2) Example. Let X be a variety and G an algebraic group over & acting transitively on the
closed points of X. Let ¥ be a scheme of finite type over & such that G also acts on Y. Let (X, T',Y)
be an r-fold condition on X such that the action of G on the product X XY leaves I invariant.
Then (X,I,Y) is a proper condition, see [17] and see (7.6).

(3.3) Example. Let C(r,d,n) be the Chow variety of effective cycles of dimension r and degree d
in P" and T the subscheme of C(r,d,n)x IP" defined by

(c,p) e T if and only if p is in the support of ¢ ,
where ¢ and p are closed points of C(r,d,n) and IP" respectively. Then (C(r,d,n),T, IP") is a
proper (n —r)-fold condition.

(3.4) Remark. For the definition of a proper morphism and a complete variety we refer to [13]
I1.4.6 and I1.4.10 respectively.

(3.5) Proposition. Let X,Y and Z be smooth varieties over k. Suppose Y and Z are complete. If
X, T,Y) and (X,A,Z) are r-fold, respectively s-fold, proper conditions on X, then (X,T'e A,YXZ)
is an (r +s)-fold proper condition on X. If r =5 then (X,T"+ A,Y XZ) is a proper r-fold condition
onX.

(3.6) Remark. Let X be a smooth variety over . Define
PX)={XT,Y) ! (X,T,Y)is a proper r~fold and Y is a
smooth complete variety}
PX) = (P"(X) 1 0< r< n}, wheren =dim X.

Then P(X) satisfies the sum and the intersection property, by Proposition (3.5) and since the pro-
duct of two complete smooth varieties over k is again a complete smooth variety over &, by [11]
IV, 6.8.5.

Proof of (3.5). The irreducible components of I'XZ and 7(Y X A) have codimension r and s
respectively in X XY XZ. Hence all irreducible components of (I'XZ) N (Y XA) have
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codimension at most 7 +s, by [32] since X XY XZ is smooth. Let Z be an irreducible component
of I"'e A. Then

dimX=2l+m+n—-(@+s),

where [ =dim Z, m =dim Y and n = dim X. Let x be a closed point of X. Then (e A)* =T” XA*,
by (1.7), and dim I = m —r and dim A* = —s, since I" and A are both proper conditions. Hence
("o A)* has dimension [ +m —(r +s) for all closed points x of X. Y and Z are complete, so ¥ XZ is
complete. X is a closed subscheme of X XY X Z, hence ¢(Z) is closed in X. Therefore

dmEZ<l+m—(+s)+dim¢E)<I+m+n—(r+s).

Hence equality holds and ¢(Z) =X, since X is irreducible and X and ¢(Z) have the same dimen-
sion. Furthermore dim ¢§1 x)=I1+m—(r+s) for all closed points x of X, so (I'e A)* has codi-
mension 7 +s for all closed points x of X. Thus (X,I"o A,Y XZ) is a proper (r +s)-fold condition
onX.

In case r = s we know already that (X,T+A,Y xZ) is an r-fold condition. The fibre (I'+A)* has
the same underlying set as (I'* X Z) U (¥ X A*), see Remark (1.8), which has constant codimen-
sion r in ¥ x Z for all closed points x in X. Hence the condition is proper. This proves the proposi-
tion.

(3.7) Proposition. Let X and Y be smooth varieties over k. Suppose Y is complete. Let (X,I',Y) be
a proper r-fold condition on X and Z a subvariety of X. Then (Z,I'n (ZxY),Y) is a proper r-fold
condition on Z.

Proof. All irreducible components of I' have codimension r in X XY and Z XY has codimension s
in X XY, if Z has codimension s in X. Further X XY is smooth, hence all irreducible components
of I' " (Z X Y) have codimension at most r +s in X XY, by [32]. Let Z be such an irreducible com-
ponent, then

dimX=2m+n—-(r+s),

where dim X = n and dim Y = m. Then dim ¢3! (x) < m — r, since dim ¢1' (x) = m — r for all closed
points in ¢(X). X is closed in X XY and Y is complete, hence ¢(Z) is closed in X and contained in
Z. Hence

dmX<m-r+dimo¢E)<m—-r+n-s.

Hence equality holds. Z and ¢(X) have the same dimension, Z is irreducible and ¢(Z) is a closed
subvariety, hence ¢(X)=Z. Furthermore dim ¢§;‘ (x)=m —r for all closed points in Z. Thus
(Z,T N (ZxY),Y) is a proper r-fold condition on Z. This proves the proposition.

(3.8) Definition. A scheme is called pure dimensional if all its components have the same dimen-
sion and it has no embedded components. Let V and W be two subschemes of a smooth variety X
of pure codimension r and s respectively. Then the intersection VN W is called proper if it is
empty or of pure codimension r +s in X.
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(3.9) Corollary. Under the same assumptions as in Proposition (3.7) we have that there exists an
open dense subset U of Y such that T'y N Z is a proper intersection for all closed points y in U.

Proof. This follows from the Propositions (1.4) and (3.7).

(3.10) Corollary. Let X and Y be smooth varieties over &. Suppose Y is complete and n =dim X.
Let (X,T,Y) be a proper rn-fold condition on X and Z a subvariety of X, not equal to X. Then there
exists an open dense subset U of Y such that the solutions of I" at y are disjoint from Z, for all
closed points y of U.

Proof. This follows from Corollary (3.9), since I'n (Z X Y) is an n-fold condition on Z which has
dimension less than n.

§4 Flat conditions.
(4.1) Definition. An r-fold condition (X, T',Y) is called flat if the map ¢r : I’ - X is flat.

(4.2) Remark. The idea of considering flat conditions and the flattening of a condition stems
from Piene and Schlessinger [28] where they consider flat specializations of non-degenerate
twisted cubics and the Hilbert scheme to make a completion.

(4.3) Example. (3.2) is also an example of a flat condition, since the map ¢r is flat over an open
dense subset U of X, by Proposition (1.4) after interchanging the r6les of X and Y, and the group
G acts transitively on the closed points of X, [17].

(4.4) Proposition. Let X and Y be schemes of finite type over k. Suppose X and Y are irreducible.
If (X,T,Y) is a flat r-fold condition then all irreducible components of I** have codimension 7 in
Y* for all points x of X, in particular (X, I',Y) is a proper condition.

Proof. I" and X are schemes of finite type over k. The morphism ¢r is flat and X is irreducible and
all irreducible components of I" have the same codimension r in X XY, hence all irreducible com-
ponents of I'* have codimension r in Y* for all points x in X, by Proposition (1.3). Hence (X,T,Y)
is a proper condition. This proves the proposition.

(4.5) Remark. We give in (7.2) an example of a condition which is proper but not flat.

(4.6) Remark. Let Y be a projective scheme over £ and X a scheme of finite type over k. If
(X,T',Y) be a flat r-fold condition on X and X is irreducible then the Hilbert polynomial of I'’* in
Y”* is the same for all points x of X, by [11] II1.2.2.1. Conversely, if (X,T,Y) is an r-fold condition
on X and the Hilbert polynomial of I'™* in Y* is the same for all x of X then (X, T,Y) is a flat condi-
tion, by [14]. Let P be a polynomial in one variable with rational coefficients. Let Hilb” (Y) be the
Hilbert scheme of subschemes of Y with Hilbert polynomial P, see [10] expos€ 221. The Hilbert
scheme has the following universal property. Let A(P) be the subscheme of Hilb”(Y)xY such
that A* is the subscheme of Y* corresponding to the point / of Hilb” (¥). Then ¢,y is flat. More-
over, for every flat condition (X, T',Y) such that I'* has Hilbert polynomial P in Y* for all points x
of X, there exists a unique map f : X — Hilb” (¥) such that T¥ = APY @ for all x of X.

(4.7) Proposition. Let X,Y and Z be schemes of finite type over k. Suppose X,Y and Z are irredu-
cible. Let (X,I,Y) and (X,A,Z) be flat r-fold, respectively s-fold, conditions on X. Then
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(X,To A, YxZ)is a flat (r +5)-fold condition on X.
(4.8) Remark. Let X be an irreducible scheme of finite type over k. Define

FFX)={X,T,Y) | (X,T.Y) is aflat r—fold condition on X and Y is irreducible}
Fx)=U {F"X) 1 0< r<n}, wheren =dimX.

Then F(X) satisfies the intersection property by Proposition (4.7).
Before we proof the proposition we need a lemma.

Proof of (4.7). Consider the following commutative diagrams of schemes of finite type over k

ToA - Y XA - A

l d d TeA 5 A
I'xZ - XXYXZ — XXxZ f ol Ll oa
l l ) r % x

r - XxY - X

, where the morphisms in the left diagram are the obvious inclusions or projections, g is the com-
position of the two morphisms in the top row and f is the composition of the two morphisms in
the left column. The four squares in the left diagram are fibred, hence the right diagram is fibred
by diagram chasing.. Now ¢, is flat, hence fis flat by the base change property of flatness [13] III
Proposition 9.2.b. Further ¢r and f are flat, so the composition ¢r, 5 of ¢r and fis flat, by transi-
tivity [13] III Proposition 9.2.c. Let x be a closed point of X, then

(TCo AF =T*XA*,

by (1.7.i). The irreducible components of I'* have codimension r in Y and the irreducible com-
ponents of A* have codimension s in Z, by Proposition (4.4). Hence all irreducible components of
(T"o A)* have codimension r +s in Y XZ. Hence all irreducible components of I'o A have codi-
mension r +s in X XY XZ, by Proposition (1.3). Thus (X,I"e A,Y XZ) is a flat (r +s)-fold condi-
tion on X. This proves the proposition.

(4.9) Proposition. Let ¥ and X’ be irreducible schemes of finite type over k and f : X" — X a mor-
phism of schemes over . If (X,T,Y) is a flat r-fold condition on X then (X’,f~ 1(1"),Y) is a flat r-
fold condition on X”.

(4.10) Remark. In this case F(X) and F(X’) have the pull back property.

Proof of (4.9). Let A=f I(T). The morphism ¢r is flat. The following diagram is a fibered
square

on L Loor
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Hence ¢, is a flat morphism, by the base change property [13] IHII Proposition 9.2.b. The fibre A
is isomorphic to TY*? for all x” in X’. All irreducible components of I'* have the same dimension
for all x in X, by Proposition (4.4). Hence all irreducible components of A* have the same dimen-
sion for all x” in X’. Furthermore the map ¢, is flat and X’ is irreducible. Thus all irreducible
components of £} (I") have codimension 7 in X’ XY, by Proposition (1.3). Thus (X’,f 1(IN,Y) is a
flat -fold condition on X’. This proves the proposition.

§5 Flattening of a condition.

(5.1) Definition. Let (X,T,Y) be an r-fold condition on X. A flat r-fold condition (X", I",Y) on X’
together with a morphism = : X’ — X is called a flattening of (X,T,Y) if there exists an open
dense subset U of X such that

n:n(U)> U and
axidy : TV (@ (U)XY) > T N (UXY)

are isomorphisms.

A flattening (X’,T",Y) with a morphism n: X’ — X is called universal if for every flattening
X”,I',Y) together with a morphism =’ : X” — X there exists a unique morphism f:X” — X’
such that i’ =no fand I'” is the pull back of T” under f.

(5.2) Remark. It is clear that the universal flattening is unique up to canonical isomorphisms, if it
exists.

(5.3) Proposition. Let X be a scheme of finite type over k. Let (X,T,Y) be an r-fold condition on
X. Then there exists a flattening of (X, I,Y).

Proof. The existence of a flattening is a result of Raynaud and Gruson [29]. We give a Hilbert
scheme proof of the existence under the assumption that X is integral and Y is projective. The
existence proof is in the same spirit as the way one constructs a completion of geometrical
figures, see (2.1) and (7.5). If no irreducible component of I" dominates X then we take X’ =X and
I =@. Otherwise there exists an open dense subset U of X such that ¢r is flat over U and the
irreducible components of I have codimension r in ¥* for all x in U, by Proposition (1.4). The
Hilbert polynomial P of I in Y* is constant for all x in U, by Remark (4.5). Let H = Hilb”(Y).
Then there exists amap g : U — H, where g(x) is the point in H corresponding to the subscheme
™ of Y* for all x in U. Consider the graph I, in U X H of the map g. Let X" be the closure of I,
in XxH. Let n : X’ — X be the restriction to X’ of the projection X xH — X andlet g’ : X’ > H
be the restriction to X" of the projection X xH — H. Then = : 7 l(U) - Uis an isomorphism and
g’ and g o & are the same on n‘l(U). Let A(P) be the subscheme of H XY as defined in Remark
(4.6). Let I” be the pull back of A(P) via g’. Then ¢r is flat, by Proposition (4.9) and using the
fact that ¢, py is flat, by Remark (4.5). Further

nxid, : ' N @ ({U)XY) > TN (UXY)

is an isomorphism, since I* = A(PY¥® for all x in U, and g’ and g o = are the same on n~' (U),
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hence T* = ™" for all x’ in n")(U). All irreducible components of I'* have codimension  in
Y* for all points x’ in " (U), since this holds for I™*?, Furthermore n~!(U) is an open dense
subset of X’ and ¢~ is flat. Hence all irreducible components of I'"" have codimension r in X XY,
by Proposition (1.3). Thus (X’,I",Y) is a flat r-fold condition on X’, together with the map = it
gives a completion of (X,I',Y). This proves the proposition.

(5.4) Remark. If (X,I},Y;),i=1,..., ris a finite collection of conditions on X then there exists
a scheme X’ and a morphism = : X’ — X and conditions (X’,I',Y;), i =1, ..., r such that they
are flattenings of the original conditions. One can do this inductively by first making a flattening
XD, T{D,¥,) of the first condition and pulling back conditions I, fori=2,..., rto XV and
then making a flattening of the second condition on XV, etc. Another way is doing it in one step
by taking the closure of the map g=g; X +-- g U - H X -+ XH,, where H; =Hile"(Y,-)
and g; : U — H; is defined by g;(x) is the point in H; corresponding to the subscheme I'j in ¥7.
(5.5) Proposition. Let X and Y be smooth varieties over & and let n =dim X. Suppose Y is com-
plete. Let (X,T,Y) be an r-fold condition and (X’,I",Y) together with a morphism n: X’ > X a
flattening such that n : n~'(U) — U is an isomorphism for an open dense subset U of X. Then
there exists an open dense subset V of ¥ such that all the solutions of I, lie in (V).

Proof. This follows from Corollary (3.10) by taking Z=X "\n"Y(U), since the condition I" is
proper, by Proposition (4.4).

(5.6) Corollary. The generic number of solutions of a flattening is independent of the chosen
flattening.

§6 Cohen-Macaulay conditions.

(6.1) Definition. An r-fold condition (X, T,Y) is called Cohen-Macaulay, or CM for short, if the
condition is proper and I" is a Cohen-Macaulay scheme.

(6.2) Proposition. Let f : V — W be a morphism of irreducible schemes of finite type over .

(i) If Vis CM and W is smooth then the map f is flat if and only if the fibres of f~!(w) have
constant dimension dim V —dim W for all (closed) points w of W.

(i) If the map is flat then V is CM if and only if W is CM and the fibres f~}(w) are CM for all
(closed) points w of W.
Proof. See [26] 5.1 and 23.1 for (i) and the corollary of 23.3 for (ii).

(6.3) Lemma. Let X and Y be irreducible smooth schemes of finite type over k. Suppose X is
smooth. Then the following are equivalent:

i) X, T,Y)is an r-fold CM condition.
(ii)) (X,T.Y)is a flat r-fold condition and I'* is a CM scheme for all points x of X.
(iii) (X,T,Y) is a flat r-fold condition and I'™* is a CM scheme for all closed points x of X.

Proof. (i) = (ii). If (X,I',Y) is an r-fold CM condition then I' is CM and the condition is proper
hence the fibre I'* of ¢r at x has constant dimension dim I"'—dim X for all closed points x of X and
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X is smooth, thus the map ¢r is flat, by Proposition (6.2.i), and (X, T’,Y) is a flat r-fold condition.
Furthermore I'* is CM for all points x of X, by Proposition (6.2.ii).

(i) = (iii) is trivial.

(iii) = (@@).If X, I,Y)is a flat r-fold condition then it is a proper r-fold condition, by Proposition
(4.4) since X is irreducible. Furthermore X is CM and the fibres I'* of ¢r at x are CM for all
closed points x of X by assumption, and the map ¢r is flat, hence I" is CM, by Proposition (6.2.ii).
Thus (X, T',Y) is an r-fold CM condition. This proves the lemma.

(6.4) Remark. In (7.4) we give an example of a flat condition which is not CM.

(6.5) Proposition. Let X and Y be smooth varieties and I a hypersurface in X XY, If (X,T,Y) is a
proper 1-fold condition then it is CM.

Proof. This follows immediately, since a hypersurface in a smooth scheme is CM.

(6.6) Proposition. Let X and Y be irreducible smooth schemes of finite type over k. Suppose X is
smooth. If (X,I.,Y) and (X,A,Z) are r-fold, respectively s-fold, CM conditions, then
X,T'o A,YxZ)is an (r +5)-fold CM condition.

(6.7) Remark. Let X and Y be irreducible smooth schemes of finite type over k. Suppose X is
smooth. Define

CM X)={X,I,Y) | (X,TY)is an r-fold CM condition on X }
CM(X)=U {CM"(X) 1 0<r< n}, where n =dim X.

Then CM(X) satisfies the intersection property by Proposition (6.6). In general CM(X) does not
satisfy the sum property, see example (7.3).

Proof of (6.6). (X,TI,Y) and (X, A,Z) are flat r-fold respectively s-fold conditions, by Lemma
(6.3). Hence (X,I'o A,YXZ) is a flat (r +s)-fold condition, by Proposition (4.7), and ¢r, 4 is a
flat map. The fibers I™* and A* of ¢r and ¢, respectively are CM for all closed points x of X. The
fibre ("o A)* of ¢ . a) is isomorphic with the product I'* x A¥, by (1.7.ii) and is therefore also
CM, for all closed points x of X. Thus (X,I"o A,Y XZ) is an (r +s)-fold CM condition on X, by
Lemma (6.3) since we assumed X to be irreducible and smooth. This proves the proposition.

(6.8) Proposition. Let X,Y and X’ be irreducible schemes of finite type over kand f: X’ > X a
morphism. Suppose X and X’ are smooth. If (X,I',Y) is an r-fold CM condition on X then
X’,f~1(),Y) is an r-fold CM condition on X”.

(6.9) Remark. In this case CM(X) and CM(X”) have the pull back property.

Proof. If (X,T',Y) is a r-fold CM condition then this condition is flat and I'"* is CM for all closed
points of X, by Lemma (6.3). Hence (X,f~ WD),Y) is flat, by Proposition (4.10) and
U =17¢) is CM for all closed points x” of X’. Thus (X’,f"'(I,Y) is an r-fold CM condi-
tion, by Lemma (6.3) since X" is irreducible and smooth. This proves the proposition.

(6.10) Proposition. Let X be a complete variety over £ of dimension # and Y an irreducible

smooth variety over k. If (X, I,Y) is an n-fold CM condition then the principle of conservation of
number holds.
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Proof. T is a closed subscheme of X xY and X is complete, hence the map v is closed and yr is a
proper map. We define V(I') = {y € Y I T}, is zero dimensional} in (1.15). Let U =y (VD).
Then yr : U — V(I) is a finite map. Moreover U is CM since it is an open subscheme of I which
is CM by assumption. The sheaf yr. (Oy) is a coherent on V(I') and depth yr. (Oy), =dim,, Y for
all points p of Y. Furthermore Y is smooth, hence

depth M, + projdim M, =dim, Y ,

for all points p of ¥, by [32]. Thus yr. (Op) is a locally free sheaf on V(I) of constant rank, say
N, since Y is irreducible. Thus for every y in V(I') one has that

N=ZXZlength O,y ,

where p runs through all the points in the fibre il (y), which is equal to _[T‘y. Hence the number
of solutions '[I"), is constant and equal to N for all points y of V(I'). Thus the principle of conser-
vation of number holds. This proves the proposition.

§7 Examples.

(7.1) Example. Let (IPZ,I“, P2) be the condition defining the incidence between points and lines
in /P2, where the lines of P2 are parametrized by P2 T is defined by the bihomogeneous ideal

(Uoxo+1l1x1+12x2) in k[xo,x1,%2,10,11,12],

the bihomogeneous coordinate ring of /P2 x 1P2. The condition T is defined by the ideal (kx,mx)
in the trihomogeneous coordinate ring k[x,/,m] of IP? x (IP?)?, where we denote (xg,x1,X2) by x
and lgxg + 11 x1 + [2 x5 by Ix. The condition I +I'? is defined by the ideal

(Ix,mx) N (" x,m’ x) = ((Ix) (I’ x), (Ix) (m” x), (mx) (" x), (mx) (m"x)) ,

in the 5-homogeneous coordinate ring k[x,/,m,!’,m’] of IP?(IP?)*. Let [ and m be two different
lines in /P2 which intersect at P and let y = (I,m) then the scheme (I‘2 +1"2)(y,y) is supported at P
and has multiplicity 3, whereas 2 U T3 is equal to I'> and is supported at P with multiplicity 1.
Thus

@2 +T2)y T3 UTS,
and the principle of conservation does not hold for I'? + T2,
(7.2) Example. Let I be the closed subscheme of IP X IP? defined by the bihomogeneous ideal

0oy1) N oy2) N (xoyo+x1y1+Xx2Y3,¥1+Y2)

in the bihomogeneous coordinate ring k[xg,x;,%x2,Y0,Y1.Y2,y3] of P?x [P3. Then
(IP2,T, IP?) is a proper 2-fold condition, since I consists of three lines in /P2 for all closed
points x in /P2, If x = (0: 1:0) then T is defined by the ideal (yo,y1) N (Vg,¥2) N (¥1,¥2), S0 it
is the union of three lines going through (0: 0: 0: 1) and not lying in a plane, it has Hilbert polyno-
mial 3¢ +1. If x = (1:0: 0) then I'" is defined by the ideal (yg,y1) N (Vo,y2) N Vo,y1 +Y2), SO it
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is the union of three lines in a plane going through one point and it has Hilbert polynomial 3¢. So
the Hilbert polynomial of I'™* is not constant, hence the map ¢r is not flat, by Remark (4.6), and
the condition is not flat.

(7.3) Example. Let G(2.4) be the Grassmann variety of planes in P* and (G(2,4),T, IP*) the
condition such that (v,p) e T if and only if p is a point of v, for all v and p closed points of
G(2,4) and rt respectively. Then I is a 2-fold CM condition, see (7.6) and I"o I"is a 4-fold CM
condition, by Proposition (6.6). We have the following exact sequence of local rings

0—- 0p,F+F - Op,rxzp4 @ Op. PHT — Op,l‘oI‘ -0,

for every closed point p of I'e I. The middle term is a direct sum of two CM local rings of
dimension 12, hence it has depth 12. The third term is a CM local ring of dimension 10, so of
depth 10. Thus the first term has depth 11, whereas it has dimension 12. Therefore I'+T is not
CM.

(7.4) Example. Twisted cubics. Let P =3¢ + 1. Then Hilb” (PS) consists of two smooth irredu-
cible components H and H’ of dimensions 12 and 15 respectively and the intersection is smooth
of dimension 11. A point of Hy = H\H’ corresponds to a non-degenerate twisted cubic, a point of
H’\H corresponds to a plane cubic curve with a point outside the plane and a point of H " H’
corresponds to a singular plane cubic curve with an embedded point at a singular point. See Piene
and Schlessinger [28]. Let A be the pull back of A(P) under the inclusion of H in Hilb” (1P>).
Then (H, A, IP?) is a flat 2-fold condition, since the Hilbert polynomial of T* is constant 3 +1.
The scheme I™* has an embedded component for all points x of H n H’ and therefore is not CM.
Thus the condition is not CM, by Lemma (6.3).

(7.5) Example. Complete twisted cubics according to Piene [27]. Suppose char(k) is not 2 or 3.
Consider the conditions (H,T,G(1,3)) and (H,A’, IP3), where for ¢ € Hy and I € G(1,3), the
Grassmann variety of lines in /73, we have that

(c,]) e T if and only if the line / is tangent the curve ¢ ,

(c,h) € A’ if and only if 4 is an osculating plane of the curve c.

If ¢ € Hy then I is the tangent curve ¢* of ¢ in G(1,3), which is a rational normal curve of
degree 4 and has Hilbert polynomial 4z + 1, and (A")° is the dual curve ¢" of osculating planes in
IP3, which is again a twisted cubic with Hilbert polynomial 3¢+1. Let G = Hilb**(G (1,3)).
Thus we have morphisms ' ‘

g :Hy— G definedby g(c)=c*,
f:Hy— H defined by f(c)=c".

The closure T of the graph of g Xfin H XG X H is called the scheme of complete twisted cubics
by Piene [27]. The restrictions to T of the projections to the second and third factor we denote by
g’ and f* respectively. The pull backs of A(4¢+1) and A(3¢+ 1) under the morphisms g’ and f* we
denote by IV and A"’ respectively, they are flattenings of I" and A", by the proof of Proposition
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(5.3) and Remark (5.4).

(7.6) Example. Schubert conditions on Grassmannians. Let G(r,n) be the Grassmannian of all
r-planes in IP”", it is a smooth variety of dimension (r+1) (n—d). Let a=(ao,...,a,) be a
sequence of integers such that 0< a@g < - -+ < a, < n. Let F(a,n) be the flag variety of all flags A
in IP", where A=(Ag, ..., A,) and A; is an g;-dimensional linear subspace in IP" and A; < A; 4
foralli =0,..., r—1.Let (G(,n),L,F(a,n)) be the condition where

(B,A) e Q ifandonly if dim(BNnA;)2i foralli=0,...,r,

for closed points B in G(r,n) and A in F(a,n). Then 4 is called a Schubert variety and has codi-
mension X(a; —i). For every two flags A and B in F(a,n) there exists an invertible projective
transformation ¢ of P" which induces an isomorphism of G(r,n) and carries Q4 into Qg, see
[22]. Hence we are in the situation of Example (3.2) and (4.3) and the condition is flat Z(a; —i)-
fold. Moreover the Schubert varieties Q4 are CM, by [15], [16] thus the condition is even CM, by
Lemma (6.3).

(7.7) Example. Complete quadrics, sce Laksov [24] and the references given there. Suppose
char(k) # 2. Let V be a vector space of dimension n+1 over k, with coordinates xg, . . ., x,. We
denote the projectivization of V by IP(V). A quadric ¢ in IP(V) is given by the zero locus of a
quadratic form

Zqijxixj N

where g =(q;j) is a non-zero symmetric (r+1) X (r+1)-matrix. Thus quadrics in P(V) are
parametrized by IP(S?V), where SV is the vector space of symmetric maps V — V*. We
denote a quadric in /P", its symmetric matrix and the point in IP(S 2y representing it, by the
same ¢. The Grassmann variety G(r,n) of r-planes in /P" can be embedded in P(A” *y) with
Pliicker coordinates (x;), where I = (ig, ..., i) and 0<ip < - - <i,< n. The 1-fold condition
(IP($*V), I'(r), G(r,n)) describing the tangency between a quadric ¢ and an r-plane x in IP" is
defined by the zero locus of the quadratic form

A @)X xp
where / and J are multi-indices I = (ig, ..., i) J =(o, ..., jy) suchthat 0 ip < -+ <i, < n,
0<jo< '+ <j,<nand (A1 q)rs is the determinant of the (r+1) X (r+1)-submatrix of g
consisting of the rows iy, .. ., i, and columns jyg, . .., j,. One can view A1 q as an element of

P(S 2 A7 y), the latter we will denote by M,. So the condition I'(r) is the pull back of A(r),
where (M, A(r), G(r,n)) is the 1-fold condition defined by the zero locus of the quadratic form

XQrrxrxy,

where (Q;7) € P(S? A1 V) =M,.
Let U, be the open dense set of quadrics which have rank at least r + 1. Then we have a morphism

AU oM, ,

defined by A,(q) = A" ¢q. Let U = U, and let
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AMU->SM{X - XM,_,

be the morphism defined by A =2X; X - - - XA,_;. Define the variety B of complete quadrics to be

the closure of the graph of A in Mo XM X - - - XM, _;. Let &, be the projection of B to M, and

I'(r)’ the pull back to B of A(r) under x,. The variety B can be obtained by a sequence of blowing

ups with smooth centers starting with M, which is smooth, hence B is smooth, see Vainsencher

[37].

A complete n-quadric is some k-tuple q =(q1,. . ., qi), where ¢ is a quadric in /P" of rank r,,

and ¢; is a quadric in the singular locus of ¢;.; of rank r;, for all i=2,...,k and

ri+--- +r,=n+1. The closed points of B are in one 1o one correspondence with complete n-

quadrics. Thus if q=(q,, ..., q;) is a complete n-quadric then @' =(q3, ..., g) is a complete

(n+1-rq)-quadric in the singular locus of ¢q;, see Finat [7]. The condition I'(*)’ can be

expressed inductively as follows. Let q be a complete n-quadric with ranks (rq, ..., r;) and x an

r-plane in /P". Then (q,x) € I'(r) if and only if

(i) xistangenttog,incaser <ry

@ii)) x intersects Sing(q) non-transversally or x intersects Sing(g;) transversally and
(q",x N Sing(g1) e I'(r—ry) incase r>ry.

From this description it follows by induction that all the fibres I'(r)q” at the closed point q of B

have codimension 1 in G(r,n). Hence (B,I'(r)’, G(r,n)) is a proper 1-fold condition. Moreover

the condition I'(r)” is a hypersurface in B XG(r,n) and B and G (r,n) are smooth, hence the condi-

tion is even CM, by Proposition (6.5).

Note that the complete quadrics are not obtained by the use of Hilbert scheme flattening as in the

proof of Proposition (5.3), although it is very similar to it. It would be interesting to know
whether these two completions are isomorphic, see also Kleiman’s question [21] page 362.

§8 Schubert calculus.

We sketch how to get an intersection theory on singular varieties.

Let X be an irreducible scheme of finite type over & of dimension n. Now F"(X) is the collection
of flat r-fold conditions (X, T’,Y) such that Y is irreducible. Then F’(X) satisfies the intersection
property, by Proposition (4.7). Let F"(X) be the free abelian group generated by F'(X) and

F*X)=@ {F'X) | r=0,...,n}.
Define the map
[:Frx->zZ,
by _[(X, F,Y)=ny, the generic number of solutions, see (1.15), on generators of F*(X) and

extend by linearity. The map j is a morphism of groups.
Define an intersection
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o tFTX) ®F(X) » F'™*(X)
by
X, T,Y) ® X,A,.Z) > (X,To A,YXZ)

on generators of F "(X) and F*(X), and extend by linearity.
Define the following numerical equivalence relation ~ on ¥ "(X) by

Eai(X, I‘,-,Y‘-) ~ Ebj(X, Aj,Zj)
if and only if
La; (@ T)Y)=2b; [@f(ADZ)

for all closed embeddings f:Z — X such that Z is irreducible of dimension r. This is well-
defined by the pull back property, see Proposition (4.9). Let N"(X) be the subgroup of F "(X) of
elements numerically equivalent to zero and let

N*X)=@®{N'X)1r=0,...,n}.
Define

S"(X)=F"(X)/N"(X)
and

S*X)=@{S"(X) | r=0,...,n}.

Then the intersection o is well-defined on §* (X) and this product is distributive with respect to +,
associative, commutative and has unit the class of (X,X XY,Y), where Y = Spec(k). Hence S*(X)
is a commutative ring with a unit. We call *(X) the Schubert ring of X.

If (X,T,Y), (X,A,Z) and (X,T+A,Y XZ) are elements of F(X) then

KLY +XAZ) = XT+AYXZ)mod N"(X).

So if we denote (X, T,Y) by T then the two meanings of I" + A are equal modulo N7 (X).

In case X is a smooth quasi projective variety we can associate to every condition (X,T,Y) the
cycle [Ty], with y some element of V(I'), which gives a well-defined cycle class modulo algebraic
equivalence, for every choice y in V(I'). An element of F*(X) which is numerically equivalent to
zero gives a cycle class in the Chow group A%,(X) modulo algebraic equivalence, which is
numerically equivalent to zero. Thus we have a well defined morphism of rings

S*(X) = ApumX).

It would be interesting to know what its image is.
For every r-fold condition (X,T,Y) and for every embedding f: Z — X of a variety Z of dimen-
sion r we have that
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[Z]- [T,1=[FM),]

in Af,’,g(X ), for all y e Y such that ZN Iy, consists of finitely many points. Hence the morphism
S*(X) — A¥,,(X) is injective.

We call a class in S”(X) effective if it has a representative X a;(X, T;,Y;) such that g; 2 0 for all i.
Let S;#(X) be the set of elements of S”(X) which are effective. It follows from the definition of
the product that if a € S;(X) and b € S;p(X) thenao b e S;}S(X).

Consequently, if X is the blow up of IP? at a point and E is the exceptional divisor then E has self
intersection -1, so its class in AL,,.(X) does not lie in the image of the map S!(X) — AL.(X).

It is not always possible to define a ring structure on the Chow group A* (X) in case X is singular,
see [13] appendix A, (1.1.2).

Thus we have defined a Schubert ring for every variety X over k, even in the case X is singular.
This is of some importance in enumerative geometry, since after flattening (completion) of
geometrical figures one may end up with a singular variety. It is for instance not known whether
the variety T of complete twisted cubics, example (7.5), is smooth.
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