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Abstract

Decoding geometric Goppa codes can be reduced to solving the key congruence of a received
word in an affine ring. If the code length is smaller than the number of rational points on
the curve, then this method can correct up to 1

2(d∗ − 1)− s errors, where d∗ is the designed
minimum distance of the code and s is the Clifford defect. The affine ring with respect to
a place P is the set of all rational functions which have no poles except at P , and it is
somehow similar to a polynomial ring. For a special kind of geometric Goppa codes, namely
CΩ(D,mP ), the decoding algorithm is reduced to solving the key equation in the affine ring,
which can be carried out by the subresultant sequence in the affine ring with complexity
O(n3), where n is the length of codewords.
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I Introduction

After Goppa’s idea [7],[8],[9],[10] to use algebraic curves over finite fields to construct linear
codes and the result of Tsfasman, Vlăduţ and Zink [28], who showed that in this way one
can improve the Gilbert-Varshamov bound, it was for some years an open question to find an
efficient decoding algorithm for these codes. Justesen, Larsen, Elbrønd Jensen, Havemose and
Høholdt [12] found a decoding algorithm for a class of codes on plane curves. This algorithm
was generalized by Skorobogatov and Vlăduţ [23] and independently by Krachkovskii [14], to
codes on arbitrary curves. We call these codes geometric Goppa codes in this paper, these
codes are also called algebraic-geometric. That is if P1, . . . , Pn are n rational points on the
curve and D = P1+ . . .+Pn and G is a divisor with disjoint support with D, then the geomet-
ric Goppa code CΩ(D,G) is the vector space of all words of the form (resP1(ω), . . . , resPn(ω)),
where ω is a differential form in Ω(G −D). The designed minimum distance of this code is
m − 2g + 2, where m is the degree of G and g is the genus of the curve, and is denoted by
d∗. This decoding algorithm is called the basic algorithm in [23],[29, p.332] and it decodes
1
2bd

∗ − 1 − gc errors. The complexity of the basic algorithm is O(n3), where n is the length
of the code, since their method comes down to solving linear equations over a finite field. To
correct more errors Skorobogatov and Vlăduţ gave the modified algorithm for a certain class
of codes [23], which was extended by Duursma [4] to all geometric Goppa codes. The main
idea is to apply the basic algorithm several times untill the correct codeword is obtained.
This method can correct up to 1

2(d∗ − 1) − s errors with complexity O(n4), where s is the
Clifford defect of a set of special divisors [4]. Using the existence of certain divisors Pellikaan
[16] showed how the basic algorithm executed in parallel can decode 1

2bd
∗ − 1c errors with

complexity O(n4), if the code comes from a maximal curve. Vlăduţ [30] proved that the
restriction to maximal curves is superfluous. It is still a problem to find certain divisors
explicitly. In order to decrease the complexity of the algorithm Justesen et al. [13] and Dahl
Jensen [11] used Sakata’s algorithm, a generalization of the Berlekamp-Massey algorithm to
more than one variable.

Around the same time as Justesen et al. [12], Porter found another decoding algorithm,
which is a generalization of solving the key equation of classical Goppa codes by Euclid’s
algorithm in the ring of polynomials in one variable. One can view the ring of polynomials
in one variable as the ring of rational functions on the projective line with only poles at the
point at infinity. The ring of polynomials in one variable is replaced by the ring K∞(P ) of
rational functions on the curve with only poles at a fixed place P , where P is not equal to
one of the rational points used to construct the geometric Goppa code. Euclid’s algorithm is
replaced by an algorithm using the subresultant sequence, see also Shen [21]. The proofs in
the thesis of Porter contain several mistakes and gaps. In this paper we give a correct account
of the results of Porter, in more generality and with a greater error correcting capacity. That
is to say we can correct up to 1

2(d∗ − 1) − s errors with complexity O(n3), if the codelength
is smaller than the number of rational points on the curve. Ehrhard [5] also showed that the
results of Porter are correct, moreover he gave the connection between the basic algorithm
and the decoding by solving the key equation. Shen [22] computed explicit formulas for the
syndromes of codes on Hermitian curves and decreased the complexity of solving the key
equation for these codes, using the ideas of Sakata.
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Outline of the paper

In section II we give the definition of the ring K∞(P ) and prove that this is an affine ring,
using properties of Weierstrass gaps, and prove a division theorem. In section III we show
how to get a decoding algorithm of a code from a decoding algorithm for a code isometric to
the first one. Furthermore we prove that for every place P not in the support of D, every
geometric Goppa code CΩ(D,G) is isometric to the code CΩ(D,E − µP ), for some effective
divisor E and positive integer µ. In section IV we show that there exist n independent
differentials ε1, . . . , εn ∈ Ω(−D− µP ) such that for every differential ω ∈ Ω(E − µP −D) we
have

ω =
∑

resPi(ω)εi.

If we let ε(x) =
∑

xiεi, then

ε(x) ∈ Ω(E − µP −D) if and only if x ∈ CΩ(D,E − µP ).

This generalizes the description of classical Goppa codes as follows. Let L be a subset of Fq

and h a Goppa polynomial. Let L = {α1, . . . αn}. Suppose h is not zero at αi, for all i. The
classical Goppa code Γ(L, h) is defined by

Γ(L, h) = {x|
∑ xi

X − αi
≡ 0(mod h)}.

If we let εi = dX/(X −αi), and take for P the point at infinity on the projective line and for
E the divisor of zeros of h, then Γ(L, h) = CΩ(D,E − P ) and

x ∈ Γ(L, h) if and only if
∑ xi

X − αi
dX ∈ Ω(E − P −D)

In section V we define the syndrome of a received word. In order to represent the syndrome
as a rational function we prove the existence of a particular differential η first. For Goppa
polynomial h, the syndrome S(x) of a received word x is now defined as follows.

S(x)η =
∑

xi
h(Pi)− h

h(Pi)
εi.

The syndrome is an element of the ring K∞(P ), and if E is the divisor of zeros of h ∈ K∞(P ),
then

x ∈ CΩ(D,E − µP ) if and only if S(x) ≡ 0(mod h).

In section VI we show how to decode (d∗ − 1)/2− s errors, where s is the Clifford defect, by
solving the key equation

fS(x) = r + qh,

under a constraint in terms of the degrees of f and r. If the number of errors is at most
(d∗ − 1)/2 − s and if (f, r) is a minimal valid solution of the key equation, then resPi(rη/f)
is the error value at place i. In section VII we apply it to codes isometric to CΩ(D,mP ).
Finally in section VIII we give an example showing that in this way one can not in general
decode more than the above mentioned number of errors.
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Notation

In this paper, F is a finite field. X is always a projective, non-singular, absolutely irre-
ducible curve defined over F, and F(X ) is the function field of X over F. We denote the
vector space of rational differential forms on X over F by Ω. P1, . . . , Pn are n distinct F
-rational points on X , and D is the divisor P1 + · · · + Pn. Let G =

∑
mQQ be a divisor

on X , then G0 =
∑

mQ>0 mQQ and G∞ =
∑

mQ<0 mQQ. If f is a rational function, then
(f) =

∑
vQ(f)Q, (f)0 =

∑
vQ(f)>0 vQ(f)Q and (f)∞ =

∑
vQ(f)<0 vQ(f)Q. Let O be a finite

set of places on X , then we define (f)O =
∑

Q∈O vQ(f)Q. Let G1 and G2 be divisors on X , if
there exists a rational function f such that G1 = G2 + (f), then we say that, G1 and G2 are
linear equivalent and denote it by G1 ∼ G2.

II Affine ring K∞(P )

Definition 1 Let P be a place of X , define

K∞(P ) = {f ∈ F(X )|supp((f)∞) ⊆ {P}},

we call K∞(P ) the affine ring with respect to P .

Remark 1 . It is easy to see that K∞(P ) is a subalgebra of the function field F(X ) over F.

Remark 2 . Let X be embedded in Pr, the projective space of dimension r over F. Let H
be a hyperplane in Pr such that H ∩ X = {P}. This is always possible by the embedding
of X in the linear system of (2g + 1)P . As we know there exists a projective change of
coordinates T such that T (H) = {(x0 : . . . : xr) ∈ Pr|x0 = 0} , and T (H) and T (X ) intersect
in T (P∞), so we may assume H = {(x0 : . . . : xr) ∈ Pr|x0 = 0} and H ∩X = {P∞}. Suppose
the vanishing ideal I(X ) of X in Pr is equal to (F1, . . . , Fs), where Fi is a homogeneous
polynomial in F[X0, . . . , Xr] for every i. Now let I∗ = (F1∗ , . . . , Fs∗) where Fi∗(X1, . . . , Xr) =
Fi(1, X1, . . . , Xr), then X∗ = V (I∗) is an affine curve in Ar, the affine space of dimension
r over F. For every place Q of X if Q is not equal to P , then Q∗ is a place of X∗, where
Q∗ = (x1/x0, . . . , xr/x0) if Q = (x0 : . . . : xr). Let Γ(X∗) be the affine coordinate ring of X∗,
then

F[X1, . . . , Xr]/I∗ = Γ(X∗) =
⋂

RQ,

where Q runs over all the places of X except P , and RQ is the local ring at Q, that is
RQ = {f ∈ F(X )|vQ(f) ≥ 0}, so⋂

RQ = {f ∈ F(X )|vQ(f) ≥ 0 for every place Q of X , Q 6= P} = K∞(P ).

Therefore K∞(P ) = Γ(X∗).

Since our decoding algorithm will work on K∞(P ), it is worth to know some details about
this ring. In the following, we will give the construction of K∞(P ) and a division theorem
for K∞(P ), in the case that P is a place of degree one, that is a rational point.

Definition 2 Let P be a place of X of degree one, let n be a non-negative integer. If
l(nP ) = l((n− 1)P ), then n is called a (Weierstrass) gap of P .
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Proposition 1 Let X be a curve of genus g ≥ 1 and let P be a place of degree one of X .
then

a) 1 = l(0) ≤ l(P ) ≤ · · · ≤ l((2g − 1)P ) = g. So there are exactly g gaps of P .
b) Let m ∈ N. Then m is a non-gap of P if and only if there exists an f ∈ L(mP ), such

that vP (f) = −m.
c) If m1 and m2 are non-gaps of P , then m1 + m2 is also a non-gap of P .

Proof. See [6]

Lemma 1 If r is a gap of P , then there exists an integer t with 1 ≤ t ≤ b(2g + 1 − r)/2c,
such that 2g + 1− t and r + t are both non-gaps.

Proof. Let n1, . . . , ng be all gaps of P . For all s ∈ {1, . . . , br/2c} either s or r − s is a gap
by Proposition 1.c, since r is a gap. Suppose 1 ≤ s ≤ r/2 then r/2 ≤ r − s < r, so if
s1, s2 ∈ {1, . . . , br/2c} and s1 6= s2, then r − s1 6= s2. Thus

#{ni < r|1 ≤ i ≤ g} ≥ br
2
c.

If the assertion of this lemma is not true, then for all t ∈ {1, . . . , b(2g + 1− r)/2c} either
2g+1− t or r+ t is a gap. Suppose 1 ≤ t ≤ (2g+1−r)/2 then (2g+1+r)/2 ≤ 2g+1− t ≤ 2g
and r + 1 ≤ r + t ≤ (2g + 1 + r)/2. So if t1, t2 ∈ {1, . . . , b(2g + 1− r)/2c} and t1 6= t2, then
2g + 1− t1 6= r + t2. Thus

#{ni > r|1 ≤ i ≤ g} ≥ b2g + 1− r

2
c.

Therefore, by the above and the assumption that r is also a gap, one gets

g ≥ br
2
c+ b2g + 1− r

2
c+ 1 = g + 1,

a contradication. 2

Proposition 2 Let 0 = m0 < m1 < · · · < mg−1 < mg = 2g < mg+1 = 2g + 1 be all the
non-gaps of P between 0 and 2g + 1. If m ∈ N is a non-gap of P , then

m =
g+1∑
i=0

kimi,

where ki ∈ N for all i.

Proof. If 0 ≤ m ≤ 2g +1 then the result is trivial. Now we consider the case that m ≥ 2g +2.
Let m = k(2g + 1) + r, where 0 ≤ r ≤ 2g and k ≥ 1, then

i) if r is a non-gap, then there is an i such that r = mi. Thus m = mi + kmg+1.
ii) if r is a gap, then by Lemma 1 there exists a t ∈ N with 1 ≤ t ≤ b(2g + 1− r)/2c, such

that 2g− t + 1 and r + t are non-gaps of P . So there exist i, j with 1 ≤ i, j ≤ g + 1 such that
r + t = mi and 2g + 1− t = mj . Thus 2g + 1 + r = r + t + 2g + 1− t = mi + mj . Therefore
m = (k − 1)(2g + 1) + (2g + 1 + r) = (k − 1)mg+1 + mi + mj . 2
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Proposition 3 Let 0 = m0 < m1 < · · · < mg−1 < mg = 2g < mg+1 = 2g + 1 be all the
non-gaps of P between 0 and 2g + 1. Let fi ∈ L(miP ) with vP (fi) = −mi. Then for every
m ∈ N, the vector space L(mP ) is generated by

g+1∏
i=0

fki
i |

g+1∑
i=0

kimi ≤ m, with ki ∈ N for all i

 ,

Proof. If m is a gap of P , then there exists an mi such that L(mP ) = L(miP ) by the definition
of a gap. So we may assume that m is a non-gap of P .

We first order all the non-gaps as follows 0 = m0 < m1 < m2 < · · · < mg−1 < mg = 2g <
mg+1 = 2g +1 < · · · < mg+l = 2g + l < · · · . For every k ∈ N, let the vector space generated
by 

g+1∏
i=0

fki
i |

g+1∑
i=0

kimi ≤ mk, with ki ∈ N for all i

 ,

be denoted by Lk, in particular Lk ⊆ L(mkP ).
Now we prove the proposition by induction on k.
1) If k = 0, then m0 = 0, so L(m0P ) = L(0) = F = L0.
2) Suppose L(mkP ) = Lk. Then

L(mk+1P ) ⊇ Lk+1 ⊇ Lk = L(mkP ),

by the induction hypothesis. Now we consider the dimension of Lk+1. Since mk+1 is a non-gap,
there esist non negative integers k0, . . . , kg+1 such that mk+1 =

∑g+1
i=0 kimi, by Proposition 2.

Put f =
∏g+1

i=0 fki
i , then vP (f) = −mk+1. Thus f ∈ Lk+1 but f 6∈ L(mkP ), therefore

l(mk+1P ) ≥ dim(Lk+1) ≥ l(mkP ) + 1.

But l(mk+1P ) ≤ l(mkP ) + 1 by the definition of the sequence {mk}∞i=0. So l(mk+1P ) =
dim(Lk+1). Thus finally L(mk+1P ) = Lk+1. 2

Theorem 1 Let m0 < · · · < mg+1 be all the non-gaps of P between 0 and 2g + 1, let
fi ∈ L(miP ) such that vP (fi) = −mi for i = 0, . . . , g + 1. Then

K∞(P ) = F[f1, f2, . . . , fg+1].

So that
K∞(P ) ∼= F[X1, . . . , Xg+1]/I,

where I is some ideal of the polynomial ring F[X1, . . . , Xg+1].

Proof. One has K∞(P ) =
⋃∞

m=0 L(mP ), which is generated by the elements
∏g+1

i=0 fki
i ,

by Proposition 3 and f0 ∈ F. Thus K∞(P ) ⊆ F[f1, f2, . . . , fg+1]. On the other hand,
F[f1, . . . , fg+1] ⊆ K∞(P ) since fi ∈ K∞(P ) for all i = 1, . . . , g + 1 and K∞(P ) is a ring.
Therefore

K∞(P ) = F[f1, f2, . . . , fg+1].

2
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Example 1 The projective line P1 over F. If P = (1 : 0) and 1/x is a local parameter at P ,
then K∞(P ) = F[x].

Example 2 The Hermitian curve H(q) is defined by the equation

U q+1 + V q+1 + W q+1 = 0

over GF (q2) ( for the details we refer to [24, 27]). Let a, b ∈ GF (q2) such that aq+a = bq+1 =
−1 and P = (1 : b : 0). The set of non-gaps of P is {iq + j(q + 1)|i, j ∈ N}. Let u = U/W
and v = V/W . Define x = b/(v − bu) and y = ux − a. Hence we have K∞(P ) = F[x, y],
where xq+1 = yq + y.

Example 3 The curve X (l, q) in Pl is defined by the equations

Xq+1
i −X2

i Xq−1
0 + Xi+1X

q
0 −Xq

i+1X0 = 0 for i = 1, . . . , l − 1

over GF (q2) (see [17]). From [17] we know that L(mP̃∞) is generated by the set

{zk1
1 · · · zkl

l |
l∑

i=1

kiq
l−i(q + 1)i−1 ≤ m},

where zi = yi ◦ n, and n is the normalization of X (l, q) and P̃∞ is the unique rational point
of n−1(P∞), and yi = Xi/X0. Hence K∞(P∞) = F[z1, . . . , zl].

Definition 3 Define the map

deg : K∞(P ) −→ N ∪ {−∞}

by deg(f) = −vP (f) and deg(f) = −∞ if and only if f = 0.

Remark 3 Notice that we now have an abuse of notation, deg is a map on the set of divisors
and on K∞(P ). If f is a rational function, then

deg((f)) = 0 and deg((f)0) = deg((f)∞).

Hence for every f ∈ K∞(P ), deg(f) = deg((f)∞) = deg((f)0).

Remark 4 If P is a rational point, then

N \ Image(deg) = {n1, . . . , ng},

is the set of gaps of P .

Lemma 2 If f, h ∈ K∞(P ) then
i) deg(fh) = deg(f) + deg(h);
ii) deg(f + h) ≤ max{deg(f),deg(h)}, furthermore deg(f + h) = deg(f) if deg(f) > deg(h).

Proof. This follows immediately from the corresponding properties of the discrete valuation
vP . 2
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Remark 5 . If P is a rational point and the genus is not zero, then K∞(P ) with the map
deg is not an Euclidean domain. In fact, given an f ∈ K∞(P ) with deg(f) > 0, there
exists a gap n such that deg(f) + n is not a gap. So there exists an f ′ ∈ K∞(P ) such that
deg(f ′) = deg(f)+n. Suppose K∞(P ) is an Euclidean domain, then there exist q, r ∈ K∞(P )
such that f ′ = qf + r with 0 ≤ deg(r) < deg(f). Hence q 6= 0 and deg(f ′) = deg(q) + deg(f).
Thus n = deg(q) is not a gap, which is a contradiction.

Although K∞(P ) with the map deg is not an Euclidean domain in case P is a rational
point and the genus is not zero, we still can prove a division theorem. We need a lemma and
a definition first.

Lemma 3 Let P be a rational point. Suppose f, h ∈ K∞(P ), and n = deg(f) = deg(h), then
there exists a unique α ∈ F, such that deg(f − αh) < n.

Proof. The vector space L(nP )/L((n−1)P ) is at most one dimensional. f and h are elements
of L(nP ) and not of L((n − 1)P ), since deg(f) = deg(h) = n. Hence f + L((n − 1)P ), h +
L((n− 1)P ) are linearly dependent and not equal to L((n− 1)P ). Thus there exists a unique
α ∈ F such that f − αh ∈ L((n− 1)P ). Therefore deg(f − αh) < n. 2

Definition 4 . Let P be a rational point. Let m ∈ N. Define

gap(m) = {0, 1, . . . ,m− 1,m + n1, . . . ,m + ng},

where n1, . . . , ng are the gaps of P . For a nonzero element h of K∞(P ) we define

gap(h) = gap(deg(h)).

Theorem 2 (Division Theorem). Let P be a rational point. For every f, h ∈ K∞(P ),
h 6= 0, there exist q, r ∈ K∞(P ), such that f = qh + r and r = 0 or deg(r) ∈ gap(h).
Moreover, deg(r) is unique, that is, if there are another q′, r′ ∈ K∞(P ) such that f = q′h+r′,
and r′ = 0 or deg(r′) ∈ gap(h), then deg(r′) = deg(r) or r = r′ = 0.

Proof. We prove the existence by induction on deg(f).
1) If f = 0 then take q = r = 0.
2) If deg(f) ∈ gap(h), then take q = 0 and r = f .
3) If deg(f) 6∈ gap(h), then deg(f) ≥ deg(h) and deg(f) − deg(h) is not a gap. Hence

there exists a q0 ∈ K∞(P ) such that deg(q0) = deg(f)−deg(h), so deg(f) = deg(q0h). Hence
deg(f − αq0h) < deg(f) for some α ∈ F, by Lemma 3. By the induction hypothesis there
exist q1, r ∈ K∞ such that f − αq0h = q1h + r, and deg(r) ∈ gap(h). Therefore f = qh + r
where q = q1 + αq0 and deg(r) ∈ gap(h), or r = 0.

Now we prove the uniqueness. If there are another q′, r′ ∈ K∞(P ) such that f = q′h + r′

with r′ = 0 or deg(r′) ∈ gap(h), then (q − q′)h = r′ − r. If r = 0 and r′ 6= 0 then
deg(r′) = deg(h) + deg(q − q′) which is not an element of gap(h), since deg(q − q′) is not a
gap, a contradiction. Thus r = 0 if and only if r′ = 0. If both r and r′ are nonzero and
deg(r′) 6= deg(r), say deg(r) > deg(r′), then deg(r) = deg(q − q′) + deg(h) 6∈ gap(h) since
deg(q − q′) is not a gap, a contradiction. Thus deg(r) = deg(r′). 2
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III Geometric Goppa codes and isometry

Let Ω be the vector space of rational differential forms on X over F.

Definition 5 . Define the map
αΩ : Ω −→ Fn

by
ω 7→ (resP1(ω), . . . , resPn(ω)).

Definition 6 Let G be a divisor on X such that supp(G)∩ supp(D) = ∅, then the geometric
Goppa code CΩ(D,G) is defined by Image(αΩ|Ω(G−D)).

Theorem 3 (Goppa). If m = deg(G) ≥ 2g − 1, then the restriction of αΩ to Ω(G − D) is
injective, and CΩ(D,G) is a linear [n, k, d] code with

k ≥ n−m− 1 + g, and d ≥ m− 2g + 2,

If moreover m < n, then k = n − m − 1 + g. We call m − 2g + 2 the designed minimum
distance of CΩ(D,G) and denote it by d∗. Furthermore, if ω1, . . . , ωk is a basis of Ω(G−D),
and

A =

 resP1(ω1) . . . resPn(ω1)
...

. . .
...

resP1(ωk) . . . resPn(ωk)

 ,

then A has rank k and is a generator matrix of CΩ(D,G).

Proof. See [7, 8, 9, 10, 15] and [29].

Definition 7 Let C be a linear code in Fn and σ a permutation of {1, . . . , n}. Define
σx = (xσ(1), . . . , xσ(n)) and σC = {σx|x ∈ C}. Two linear codes C1 and C2 in Fn are called
equivalent if C2 = σC1 for some permutation σ of {1, . . . , n}. Let λ = (λ1, . . . , λn) be an
n-tuple of non zero elements in F. Define λx = (λ1x1, . . . , λnxn) and λC = {λx|x ∈ C}.
The codes C1 and C2 are called generalized equivalent or isometric if there is an n-tuple
λ = (λ1, . . . , λn) of nonzero elements in F and a permutation σ such that C2 = λσC1. We
call λ the scaling factor.

Remark 6 We can view λσ as a linear map of Fn which leaves the Hamming metric invariant.
Note that a linear map of Fn leaves the Hamming metric invariant if and only if it is of the
form λσ.

Definition 8 Let C1 and C2 be two isometric codes in Fn, that is C2 = λσC1 for some
permutation σ and scaling factor λ. Suppose A(C1) is a decoding algorithm of C1, the
induced decoding algorithm λσA(C1) is defined as follows,
(1) input x;
(2) y := σ−1(x1/λ1, . . . , xn/λn);
(3) run A(C1) with input y to get c′ ∈ C1;
(4) output c := λσc′;
(5) stop.
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The following proposition follows immediately from the above definition.

Proposition 4 Let C1 and C2 be isometric codes in Fn, that is C2 = λσC1 for some permu-
taion σ and scaling factor λ. Suppose the algorithm A(C1) decodes C1 upto e errors. Then
the induced algorithm λσA(C1) decodes C2 upto e errors too.

Remark 7 By the above definition and Proposition 4, we see that, as soon as a decoding
algorithm of one of the codes in an isometry class is given, all the decoding algorithms of the
codes in this class are given by the induced algorithms and they correct the same number of
errors. In the rest of this section, we will give a special class leader of every isometry class
for which a decoding algorithm will be given later. First, the following proposition gives a
sufficient condition for two geometric Goppa codes to be isometric.

Proposition 5 Let G1 and G2 be two linear equivalent divisors such that Gi and D have
disjoint support, where i = 1, 2. Suppose there is a rational function f with disjoint support
with D, such that G1 = G2 + (f). Then

CΩ(D,G2) = λCΩ(D,G1),

where λ = (f(P1), . . . , f(Pn)).

Proof. See [26]. 2

Proposition 6 Let H be an effective divisor such that H ∩ {P1, . . . , Pn} = ∅, where H =
supp(H). Let P be a place of X which is not in H ∪ {P1, . . . , Pn}. Then there exists an
h ∈ K∞(P ), such that (h)H = H and supp((h)) ∩ {P1, . . . , Pn} = ∅.

Proof. Suppose H =
∑m

i=1 b′iQi, where b′i ≥ 0 for i = 1, . . . ,m, so H = {Q1, . . . , Qm}.
Define Qm+i = Pi for i = 1, . . . , n, and define bi = b′i + 1 if i = 1, . . . ,m and bi = 1 if
i = m + 1, . . . ,m + n. Now choose an integer k, such that

k deg(P )−
m+n∑
i=1

bi deg(Qi) ≥ 2g − 1.

So

k deg(P )−
m+n∑
i=1

bi deg(Qi) + deg(Qj) > 2g − 1,

for every j. Hence

l(kP −
m+n∑
i=1

biQi + Qj) = l(kP −
m+n∑
i=1

biQi) + deg Qj ,

for every j, by the Riemann-Roch Theorem. Therefore L(kP −
∑m+n

i=1 biQi + Qj) contains
L(kP −

∑m+n
i=1 biQi) as a proper subspace. Thus for every j there exists an hj in the first

mentioned space and not in the last one. So hj ∈ K∞(P ), and vQj (hj) = bj − 1 and
vQi(hj) ≥ bi if i 6= j. Now define h =

∑m+n
j=1 hj , then h ∈ K∞(P ) and

(h)H′ =
m+n∑
i=1

(bi − 1)Qi =
m∑

i=1

b′iQi = H ,where H′ = {Q1, . . . , Qm+n}.
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Hence (h)H = H and vPi(h) = vQm+i(h) = 0 for i = 1, . . . , n, that is

supp((h)) ∩ {P1, . . . , Pn} = ∅.

2

Lemma 4 Let G be a nonzero divisor such that G and D have disjoint support. Let P be a
place not in {P1, . . . , Pn}. Then there exists a rational function f , such that G′ and D + P
have disjoint support, G′ = G+(f) is a non-effective divisor and vPi(f) = 0 for i ∈ {1, . . . , n}

Proof. Suppose vP (G) = v. Choose a place Q, such that Q 6∈ {P1, . . . , Pn, P} ∪ supp(G).
There exists a rational function f such that vQ(f) = −1, vP (f) = −v and vPi(f) = 0 for all
i = 1, . . . , n , by the independence of valuations, see [1, p. 11]. Hence G′ := G + (f) is a
non-effective divisor since vQ(G + (f)) = vQ(f) = −1 and supp(G′) ∩ {P1, . . . , Pn, P} = ∅. 2

Proposition 7 Let P be an extra place, that is a place not in {P1, . . . , Pn}. Let G be a
divisor such that G and D have disjoint support. Then there exist an effective divisor E and
a positive integer µ, such that CΩ(D,G) and CΩ(D,E − µP ) are isometric.

Proof. First there exists a rational function f such that if we define G′ = G+(f), then G′
∞ 6= 0,

supp(G′) ∩ {P1, . . . , Pn, P} = ∅ and vPi(f) = 0 for i ∈ {1, . . . , n} by Lemma 4. Hence f(Pi)
exists and is not equal to zero for every i ∈ {1, . . . , n} . Now by Proposition 6, there exists an
h ∈ K∞(P ) such that (h)H = G′

∞ , where H = supp(G′
∞) and supp((h)) ∩ {P1, . . . , Pn} = ∅.

Thus h(Pi) exists and h(Pi) 6= 0 for all i = 1, . . . , n. Now define E = G′ + (h)0, then
E ≥ G′

0 − G′
∞ + (h)H ≥ 0, this means that E is an effective divisor. Moreover E and D

have disjoint support, since supp(E) ⊆ supp(G′) ∪ supp((h)0) and G′ and (h)0 have disjoint
support with D. Take µ = −vP (h), then µ ≥ deg(G′

∞) > 0 and

E − µP = G′ + (h)0 − (h)∞ = G + (fh),

since h ∈ K∞(P ). Therefore CΩ(D,G) ' CΩ(D,E − µP ) by Proposition 5. This proves our
proposition. 2

Proposition 8 Let P be an extra place. Let m be an integer. Then there exists an h ∈
K∞(P ) and a positive integer µ, such that CΩ(D,mP ) and CΩ(D, (h)0 − µP ) are isometric.

Proof. By Proposition 6, there exists an h ∈ K∞(P ) such that (h) and D have disjoint
support and deg(h) > m. Let µ = deg(h)−m, then µ is a positive integer and

(h)0 − µP = (h) + mP.

Therefore CΩ(D, (h)0 − µP ) and CΩ(D,mP ) are isometric by Proposition 5. 2

IV The residue representation of differentials

Before we define the syndrome of the code CΩ(D,E − µP ), in this section we will give the
representation of every differential ω ∈ Ω(E−µP−D) by its residues at the points P1, . . . , Pn.
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Proposition 9 Let P be a place not in {P1, . . . , Pn} and let µ be a positive integer. Then

Ω(−D − µP )/Ω(−µP ) ∼= Fn .

Proof. The restriction of αΩ to Ω(−D − µP ) is an homomorphism from Ω(−D − µP ) to
Fn with kernel Ω(−µP ). Furthermore, by the Riemann-Roch Theorem we have that the
difference between the dimensions of Ω(−D − µP ) and Ω(−µP ) is n. 2

Proposition 10 Let P be a place not in {P1, . . . , Pn} and let µ be a positive integer. Then
for every i ∈ {1, . . . , n} there exists an εi ∈ Ω(−Pi − µP ) such that resPi(εi) = 1. Therefore
{εi := εi + Ω(−µP )}n

i=1 is a basis of Ω(−D−µP )/Ω(−µP ), and for every ω ∈ Ω(−D−µP ),

ω := ω + Ω(−µP ) =
n∑

i=1

resPi(ω)εi.

Proof. By Proposition 9, we have

Ω(−Pi − µP )/Ω(−µP ) ∼= F,

where i = 1, . . . , n. Hence there exists an ωi ∈ Ω(−Pi − µP ) such that ωi 6∈ Ω(−µP ), so
vPi(ωi) = −1. Now define the differential εi = ωi/resP (ωi), then εi ∈ Ω(−Pi − µP ) and
resPi(εi) = 1.

Now suppose there exist a1, a2, . . . , an ∈ F such that
∑n

i=1 aiεi = 0, that is
∑n

i=1 aiεi ∈
Ω(−µP ). We claim that all ai are zero. Otherwise there exists a j ∈ {1, . . . , n}, such
that aj 6= 0. So vPj (

∑n
i=1 aiεi) = −1, hence

∑n
i=1 aiεi 6∈ Ω(−µP ), a contradication. Thus

ε1, . . . , εn are linearly independent. Hence it is a basis of Ω(−D−µP )/Ω(−µP ), since this last
mentioned space has dimension n, by Proposition 9. Therefore, for every ω ∈ Ω(−D − µP ),
there exist a1, . . . , an ∈ F such that

ω =
n∑

i=1

aiεi.

This means that there exists an ω′ ∈ Ω(−µP ), such that

ω =
n∑

i=1

aiεi + ω′.

After calculating the residue of Pi on both sides, we get

resPi(ω) = ai.

Thus

ω =
n∑

i=1

resPi(ω)εi.

2

Proposition 11 Let P be a place not in {P1, . . . , Pn}. Let E be an effective divisor and let
µ be a positive integer, such that E and D have disjoint support and deg(E − µP ) ≥ 2g − 1.
Then there exist n differentials ε1, . . . , εn, which are independent modulo Ω(−µP ), such that
εi ∈ Ω(−Pi − µP ) and resPi(εi) = 1, and for every ω ∈ Ω(E − µP −D)

ω =
n∑

i=1

resPi(ω)εi.

If moreover µ = 1, then (εi)∞ = Pi + P for all i.
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Proof. By Proposition 10, there exist η1, . . . , ηn ∈ Ω(−D− µP ), such that ηi ∈ Ω(−Pi − µP )
and resPi(ηi) = 1 for i = 1, . . . , n, and η1, . . . , ηn is a basis of Ω(−D−µP )/Ω(−µP ). Now let
ω1, ω2, . . . , ωk be a basis of Ω(E − µP −D), which is a subset of Ω(−µP −D). Thus

ωi =
n∑

j=1

resPj (ωi)ηj for i = 1, . . . , k,

by Proposition 10. Define

A =

 resP1(ω1) . . . resPn(ω1)
...

. . .
...

resP1(ωk) . . . resPn(ωk)

 ,

so  ω1
...

ωk

 = A

 η1
...

ηn

 .

Let l = g + µ − 1, then l is the dimension of Ω(−µP ). Let β1, . . . , βl be a basis of Ω(−µP ),
then there exists a (k × l)-matrix Y over F such that ω1

...
ωk

−A

 η1
...

ηn

 = Y

 β1
...
βl

 .

Now rank(A) = k by Theorem 3, since deg(E − µP ) ≥ 2g − 1. Hence there exists an (n× l)-
matrix X over F such that

AX = Y

Thus  ω1
...

ωk

 = A


 η1

...
ηn

 + X

 β1
...
βl


 .

Define

εi = ηi +
l∑

j=1

xijβj for i = 1, . . . , n.

where xij is entry of matrix X in row i and column j. Then εi ∈ Ω(−Pi−µP ) and resPi(εi) = 1
and

ωi =
n∑

j=1

resPj (ωi)εj , for i = 1, . . . , k.

Finally, for every ω ∈ Ω(E − µP −D)

ω =
n∑

j=1

resPj (ω)εj .

by the linearity of resPi and since the corresponding statement is true for the basis ω1, . . . , ωk

of Ω(E − µP −D). Clearly (εi)∞ = Pi + P if µ = 1. 2
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Remark 8 In case X is the projective line, e.g. for classical Goppa codes with n+1 distinct
rational points P1, . . . , Pn, P∞, where Pi = (αi : 1) and P∞ = (1 : 0), and Goppa polynomial
h, which is not zero at the points Pi, we can take for the differentials εi = dX/(X − αi). For
an arbitrary curve it is not so easy to find these differentials εi explicitly, see [22] in case of
the Hermitian curve.

Definition 9 Let the assumptions be as in Proposition 11. For code CΩ(D,E − µP ), define
the map

ε : Fn −→ Ω by ε(x) =
n∑

i=1

xiεi,

where ε1, . . . , εn are given by Proposition 11.

Remark 9 The restriction of ε to CΩ(D,E − µP ) is the inverse map of αΩ restricted to
Ω(E − µP −D), as we will see in the following corollary.

Corollary 1 Let the assumptions be as in Proposition 11. Let ε1, . . . , εn be the differentials
given by Proposition 11. Then

ε(c) ∈ Ω(E − µP −D) if and only if c ∈ CΩ(D,E − µP ).

Proof. By Proposition 11, there exist independent differentials ε1 . . . , εn with εi ∈ Ω(−Pi−µP )
and resPi(εi) = 1, such that for every ω ∈ Ω(E − µP −D)

ω =
n∑

i=1

resPi(ω)εi.

Let c ∈ CΩ(D,E − µP ), then there exists an ω ∈ Ω(E − µP −D) such that

c = (resP1(ω), . . . , resPn(ω)),

so

ε(c) =
n∑

i=1

resPi(ω)εi = ω ∈ Ω(E − µP −D).

Conversely, let ε(c) ∈ Ω(E−µP −D), then one has resPj (ε(c)) = cj for every j = 1, . . . , n,
so

c = αΩ(ε(c)) ∈ CΩ(D,E − µP )

by the definition of αΩ. 2

V The syndrome

In [12], [23] and [16], for the code CΩ(D,G), the syndrome of x ∈ Fn is defined by a map
from L(F ) to F, namely by s(x, f) =

∑n
i=1 xif(Pi)g(Pi), where g ∈ L(G − F ) and F is a

divisor. But here we give a different definition of the syndrome of x, namely as an element of
K∞(P ), which is a generalization of the syndrome of classical Goppa codes. In this section,
we will give the definition only for codes of the form CΩ(D,E−µP ). This is not a restriction
since every geometric Goppa code is isometric with a code of this type, by the discussion in
section III.

First we need some preparations.
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Definition 10 [1, I.7] Let B be a divisor on X . The rational functions f1 and f2 are said to
be congruent to each other modulo B under a set of places O, if we have vQ(f1− f2) ≥ vQ(B)
for every Q ∈ O. We shall write

f1 ≡O f2(mod B).

In particular,
1) If O is the set of all places of X , then we write f1 ≡ f2(mod B);
2) If O is the support of a divisor E on X , then we write f1 ≡E f2(mod B).
3) If B = (f), where f is a rational function, then we write f1 ≡O f2(mod f).

Lemma 5 Let 〈h〉 be the principal ideal of K∞(P ) generated by h ∈ K∞(P ). Let E = (h)0.
Then

{f ∈ K∞(P )|f ≡E 0 ((mod h )} = 〈h〉.
Therefore for f ∈ K∞(P ), f ≡E 0 ((mod h ) if and only if there exists a q ∈ K∞(P ) such
that f = qh, that is f ≡ 0 ((mod h ) in the ring K∞(P ).

Proof. Let f ∈ 〈h〉, then there is a q ∈ K∞(P ) such that f = qh. Thus

vQ(f) = vQ(q) + vQ(h) ≥ vQ(h) for Q ∈ supp(E),

hence f ≡E 0(mod h) by definition.
Conversely, let f ∈ K∞(P ) and f ≡E 0(mod h). Then by the Division Theorem 2, there

exist q, r ∈ K∞(P ) such that f = qh + r where r = 0 or deg(r) ∈ gap(h). We claim r = 0,
therefore f ∈ 〈h〉. If it is not true, then for every Q 6= P we have

vQ(r) = vQ(f − qh) ≥ min{vQ(f), vQ(q) + vQ(h)} ≥ vQ(h),

since if Q 6∈ supp((h)0) then vQ(h) = 0 and if Q ∈ supp(h) then vQ(f) ≥ vQ(h). So
r/h ∈ K∞(P ) and r/h 6= 0. Thus deg(r) − deg(h) = deg(r/h) is not a gap of P , that is
r 6∈ gap(h) which is a contradiction. 2

Definition 11 Let W be a divisor on X and P be a rational point on X , such that P is not
in the support of W . Define K∞(P,W ) by

K∞(P,W ) = {f ∈ K∞(P )|f = 0 or f ≡W 0(mod W )}

Lemma 6 K∞(P,W ) is an ideal in K∞(P ).

Proof. Let f1, f2 ∈ K∞(P,W ), then for every Q ∈ supp(W ), we have vQ(fi) ≥ vQ(W ) for
i = 1, 2, so

vQ(f1 + f2) ≥ min{vQ(f1), vQ(f2)} ≥ vQ(W ).

Let f ∈ K∞(P,W ) and h ∈ K∞(P ), then for every Q ∈ supp(W ), we have vQ(f) ≥ −vQ(W )
and vQ(h) ≥ 0, since Q 6= P . Hence vQ(fh) ≥ vQ(W ). Therefore fh ∈ K∞(P,W ), so
K∞(P,W ) is an ideal in K∞(P ). 2

Proposition 12 Let P be a place not in {P1, . . . , Pn}. Let E be an effective divisor. Then
there exists a differential form η such that

supp((η)0) ⊆ {P} and supp((η)) ∩ ({P1, . . . , Pn} ∪ supp(E)) = ∅,

If moreover g > 1, then
supp((η)0) = {P}.
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Proof. Suppose supp(E) = {Q1, . . . , Qm}. Let ω′ be any nonzero differential form. By the
independence of valuations, see [1, p. 11], there exists a rational function f0 such that vP (f0) =
−vP (ω′), vPi(f0) = −vPi(ω

′) for i = 1, . . . , n and vQi(f0) = −vQi(ω
′) for i = 1, . . . ,m. Define

ω = f0ω
′, then ω 6= 0 and

supp((ω)) ∩ {P, P1, . . . , Pn, Q1, . . . Qm} = ∅.

Now by Proposition 6, there exists an f ∈ K∞(P ) such that (f)O = (ω)0, where O =
supp((ω)0). Define η = ωf−1, then η 6= 0 and (η) = (ω) − (f) ≤ −vP (f)P . Hence
supp((η)0) ⊆ {P} and supp((η)) ∩ {P1, . . . , Pn, Q1, . . . , Qm} = ∅. If g > 1, then 2g − 2 > 0,
hence (η)0 6= 0, so supp((η)0) = {P} and supp((η)∞) ∩ ({P, P1, . . . , Pn} ∪ supp(E)) = ∅. 2

The following three examples give such an η explicitly with the additional property
supp(η) = (2g − 2)P .

Example 4 The projective line P1 over F, see Example 1.
If P∞ = (1 : 0) and η = dX, then η = (−X2)d(1/X). Hence (η) = −2P∞. If P = (α : 1)

and η = d(1/(X − α)), then (η) = −2P .

Example 5 Hermitian Curve H(q), see Example 2.
If η = dx, then (η) = (2g − 2)P , see [24, Satz 1 (f)]

Example 6 Let X (l, q) be the curve as in Example 3.
The genus of this curve is {

∑l−1
i=1 ql+1−i(q + 1)i−1 − (q + 1)l−1 + 1}/2 and this curve goes

through all the ql places of degree one, outside the hyperplane with equation x0 = 0. Let
yi = Xi/X0 for i = 1 . . . , l − 1, then

yq+1
i − y2

i + yi+1 − yq
i+1 = 0 for i = 1, . . . , l − 1.

The number 2g − 1 is a gap of P̃∞, see [17]. Thus there exists an η ∈ Ω such that (η) =
(2g − 2)P̃∞ by [18, Theorem 4.4.1] and [20, Lemma 1.1].

Remark 10 All these examples have the property that there exists a differential with support
concentrated at at most one place. Other examples are rational, elliptic and hyperelliptic
curves, see [18]. See Delgado [2] and Sathaye [20] for a caracterization of such curves. It
would be interesting to know how big the class of such curves is, in particular whether there
exists a family of curves such that the ratio of the number of rational points divided by the
genus does not tend to zero, whereas the number of rational points tends to infinity.
Over an algebraically closed field of characteristic zero the situation is as follows. The moduli
variety Mg, parametrizing all isomorphism classes of curves of genus g, has dimension 3g− 3,
if g > 1. The subvariety Pg of Mg, of curves with a differential with support at one point,
has dimension 2g − 1, see [19].
In the following we give an example of a curve without such a differential. The Klein quartic
in characterisic two is also such a curve.

Example 7 A curve of genus 3, which is not hyperelliptic, has a plane model of degree 4.
Effective canonical divisors are intersection divisors of this plane curve with a line. So there
exists a differential η such that (η) = 4P if and only if the plane model has a tangent line,
which intersects the curve in P with multiplicity 4. The plane curve X defined over GF (2)
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with equation: XY (X +Y )(X +Z)+XZ2(X +Z)+Y 2Z(Y +Z) = 0, see [17], has not such
a differential. In fact, this curve has seven places of degree one, say P1, P2, . . . , P7. Every
line L in P2, defined over GF (2), has intersection L.X = 2Pi + Pj + Pk, where i, j and k are
mutually different. Therefore there does not exist a differential form such that its divisor is
(2g − 2)P for some point P on X .

Theorem 4 Let P be a rational point not in {P1, . . . , Pn}. Let E be an effective divisor and
µ a positive integer, such that deg(E − µP ) ≥ 2g − 1. Then by the results of the previous
sections and the above proposition, we have the following conclusions:
1) (Proposition 6). T here exists an h ∈ K∞(P ), such that (h)E = E, where E = supp(E).
2) (Proposition 11). There exist n differentials, namely ε1, . . . , εn, such that εi ∈ Ω(−Pi−µP )
and resPi(εi) = 1 for i = 1, . . . , n. Moreover, for every ω ∈ Ω(E − µP −D),

ω =
n∑

i=1

resPi(ω)εi.

3) (Proposition 12). There exists a differential η, such that (η)0 = lP and

supp((η)∞) ∩ ({P, P1, . . . , Pn} ∪ supp(E)) = ∅.

Definition 12 The syndrome of the code CΩ(D,E − µP ) is defined by the map S from Fn

to F(X ), such that for every x ∈ Fn,

S(x)η =
n∑

i=1

xi
h(Pi)− h

h(Pi)
εi.

S(x) is called the syndrome of x.

Remark 11 . The syndrome is well defined, since for every differential σ on X there is a
unique s ∈ F(X ) such that σ = sη. It follows immediately from the definition that S is a
linear map over F.

Proposition 13 For every x ∈ Fn,

S(x) ∈ K∞(P,W ),

where W = (η)∞.

Proof. For every i = 1, . . . n, we have

vQ(
h(Pi)− h

h(Pi)
εi) ≥ 0 if Q 6∈ {P, Pi}

and
vPi(

h(Pi)− h

h(Pi)
εi) ≥ 1 + vPi(εi) ≥ 0,

since h ∈ K∞(P ) and εi ∈ Ω(−Pi − µP ). Thus vQ(S(x)η) ≥ 0 for Q 6= P . Hence

vQ(S(x)) = vQ(S(x)η)− vQ(η) ≥ −vQ(η) for Q 6= P.

Therefore S(x) ∈ K∞(P,W ). 2

The name syndrome S(x) of x is justified by the following theorem.
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Theorem 5 Under the assumptions of Theorem 4 we have that

c ∈ CΩ(D,E − µP ) if and only if S(c) ≡E 0(mod h).

If moreover E = (h)0, then

c ∈ CΩ(D,E − µP ) if and only if S(c) ≡ 0(mod h) in K∞(P ).

Proof. If c ∈ CΩ(D,E − µP ), then there is an ω ∈ Ω(E − µP −D) such that

c = (resP1(ω), . . . , resPn(ω)),

so

S(c)η =
n∑

i=1

resPi(ω)
h(Pi)− h

h(Pi)
εi = ω − h

n∑
i=1

ci

h(Pi)
εi,

by Proposition 11. Let Q ∈ supp(E), then:
i) vQ(ω) ≥ vQ(E) = vQ(h);
ii) vQ(h

∑n
i=1 ciεi/h(Pi)) ≥ vQ(h);

iii) vQ(η) = 0 since supp((η)) ∩ supp(E) = ∅.
Hence

vQ(S(c)) = vQ(ω − h
n∑

i=1

ci

h(Pi)
εi)− vQ(η) ≥ vQ(h).

Thus S(c) ≡E 0(mod h).

Conversely, suppose c ∈ Fn, then

S(c)η = ε(c)− h
n∑

i=1

ci

h(Pi)
εi.

Let S(c) ≡E 0(mod h). Then for Q ∈ supp(E),

vQ(ε(c)) ≥ min{vQ(S(c)) + vQ(η), vQ(h) + vQ(
n∑

i=1

ci

h(Pi)
εi)} ≥ vQ(h).

For all other places, we have
∑

Q6∈supp(E) vQ(ε(c)) ≥ −D − µP . Combining those two, we
have

ε(c) ∈ Ω(E − µP −D).

Hence c = αΩ(ε(c)) ∈ CΩ(D,E − µP ), by Corollary 1. If moreover E = (h)0, then the
conclusion follows from the above and Lemma 5. 2

VI Decoding by solving the key congruence

Let P be an extra place, that is not in {P1, . . . , Pn}. Let E be an effective divisor with disjoint
support with D and P , Let µ be a positive integer, such that deg(E − µP ) ≥ 2g − 1. By the
discussion in section III, we know that, to decode all geometric Goppa codes it is sufficient
to give a decoding algorithm for codes of the form CΩ(D,E − µP ).
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Definition 13 Let S(x) be the syndrome of x ∈ Fn with respect to (D,E, P ). Let h ∈
K∞(P ) and η ∈ Ω be given in Theorem 4 for the code CΩ(D,E − µP ). Let W = (η)∞ and
l = deg(η)0.
1) If f ∈ K∞(P ) and r ∈ K∞(P,W ) are such that

fS(x) ≡E r(mod h),

then we say that (f, r) satisfies the key congruence of x with respect to (D,E, P ).
If moreover

deg(r)− deg(f) ≤ l + µ,

then the pair (f, r) is called a valid solution of the key congruence.
If furthermore (f, r) is a valid solution and deg(f) is minimal among all the degrees of f ′

such that (f ′, r′) is a valid solution, then (f, r) is called a minimal valid solution of the key
congruence.
2) If E = (h)0 and f ∈ K∞(P ) and r ∈ K∞(P,W ) such that

fS(x) = r + qh for some q ∈ K∞(P,W ),

then we say that (f, r) satisfies the key equation of x with respect to (D,E, P ).
Similarly as in 1) we define what a (minimal) valid solution of the key equation is.

Definition 14 The Clifford defect of the pair (E,P ) is defined by

s = max{deg(E − kP )
2

− (l(E − kP )− 1)|k ∈ N}.

For the details of the Clifford defect we refer to Duursma [4].

Remark 12 Suppose g is the genus of the curve used. Then it is easy to see that

s = max{deg(E − kP )
2

− (l(E − kP )− 1)|deg(E)− 2g + 1 ≤ k deg(P ) ≤ deg(E)},

and s ≤ g/2.

Definition 15 Let I be a subset of {1, . . . , n}. Let Q =
∑

i∈I Pi. Define

KI(P ) =
⋃

k∈N

L(kP −Q).

Let bI be the smallest integer for which l(bIP −Q) 6= 0.

Proposition 14 Let #(I) ≤ (d∗ − deg(P ))/2 − s, where d∗ = deg(E) − µdeg(P ) − 2g + 2
(see Theorem 3) and s is the Clifford defect of (E,P ). Then

Ω(E − (µ + bI)P −Q) = {0},

where Q =
∑

i∈I Pi.
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Proof. Let t be the number of elements of I. Assume

Ω(E − (µ + bI)P −Q) 6= {0}.

Then there exists a nonzero differential ω and an effective divisor E∗ such that

(ω)− E + (µ + bI)P + Q ∼ E∗,

hence
deg(E∗) = 2g − 2− deg(E) + (µ + bI) deg(P ) + t.

Therefore
(bI − 1)P −Q ∼ K − E + (µ + 2bI − 1)P − E∗,

where K represents the canonical divisor class. Now by the assumption of bI we have

l(K − E + (µ + 2bI − 1)P − E∗) = 0,

and therefore
deg(E∗) ≥ l(K − E + (µ + 2bI − 1)P ).

By the Riemann-Roch Theorem

l(K −E + (µ + 2bI − 1)P ) = l(E − (µ + 2bI − 1)P )− deg(E) + (µ + 2bI − 1) deg(P ) + g − 1.

Hence by the above and the definitions of t and the Clifford defect s, we have

deg(E∗) ≥ (deg(E)− (µ + 2bI − 1)P )/2− s + 1
−deg(E) + (µ + 2bI − 1) deg(P ) + g − 1

≥ t− deg(E) + 2g − 2 + (µ + bI) deg(P ) + 1
= deg(E∗) + 1,

which is a contradiction. 2

Theorem 6 (Decoding Theorem ) Let x ∈ Fn with x = c + e, where c is a code word of
CΩ(D,E − µP ) and e is an error vector. Let η be given by Theorem 4. Then

Existence: There exists a valid solution (f, r) of the key congruence of x with respect to
(D,E, P ), such that

r

f
η ∈ Ω(−D − µP ) and αΩ(

r

f
η) = e.

Uniqueness: Let t = (d∗ − deg(P ))/2− s, where d∗ is the designed minimun distance and
s is Clifford defect of this code. Suppose wt(e) ≤ t. If (f, r) is a minimal valid solution of
the key congruence of x with respect to (D,E, P ), then

r

f
η ∈ Ω(−D − µP ) and αΩ(

r

f
η) = e.
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Proof. Let I = {i|ei 6= 0, 1 ≤ i ≤ n}, where (e1, . . . , en) = e.
Existence: The vector space of differentials on X is one dimensional over F(X ), so η is a basis
of Ω. Hence for every i ∈ {1, . . . , n}, there exists an ui ∈ F(X ) such thst εi = uiη, where εi,
for i = 1, . . . , n, are given by Theorem 4. Therefore by the definitions of η and εi, one has

1) vP (ui) = vP (εi)− vP (η) ≥ −l − µ;
2) vPj (ui) = vPj (εi)− vPj (η) = −δij , where δij is 1 if i = j and 0 otherwise.
3) vR(ui) = vR(εi)− vR(η) ≥ 0, if R 6∈ {P1, . . . , Pn, P}.
Let f0 be a nonzero element of KI(P ), then vPi(f0) ≥ 1 and therefore f0ui ∈ K∞(P )

for every i ∈ I. Define r0 = f0
∑

i∈I eiui. Then r0 ∈ K∞(P ) and (r0/f0)η = ε(e), so
αΩ((r0/f0)η) = e, and also

vR(r0) = vR(f0) + vR(ε(e))− vR(η) ≥ −vR(η),

for all places R not in {P1, . . . , Pn, P}, thus r0 ∈ K∞(P,W ).
Now by the definition of the syndrome we have

f0S(x)η = f0

n∑
i=1

xi
h(Pi)− h

h(Pi)
εi

= f0ε(e) + f0S(c)η − f0h
∑
i∈I

ei

h(Pi)
εi

= (r0 + f0S(c)− f0h
∑
i∈I

ei

h(Pi)
ui)η,

where h ∈ K∞(P ) is given by Theorem 4, that is (h)0 = E. Thus f0S(x) ≡E r0(mod h) since
S(c) ≡E 0(mod h) by Theroem 5, and

deg(r0)− deg(f0) = −vP (r0) + vP (f0) = −vP (ε(e)) + vP (η) ≤ l + µ.

This proves the existence.
Uniqueness: Now wt(e) ≤ t, hence #(I) ≤ t. By the assumption we have deg(f) ≤ bI .

Let Q =
∑

i∈I Pi. We claim that

rη − fε(e) ∈ Ω(E − (µ + bI)P −Q),

and therefore rη − fε(e) = 0, by Proposition 14. Thus

(r/f)η = ε(e) ∈ Ω(−D − µP ) and αΩ((r/f)η) = e.

Now we prove our claim. Let us consider the valuation of rη− fε(e) at every place of the
curve.

Since r ∈ K∞(P,W ), we have

vR(rη − fε(e)) ≥ 0 (1)

for every R 6∈ {P1, . . . , Pn, P}. Now look at the valuation of rη − fε(e) at R such that
R ∈ supp(E). First by the assumption, we have vR(fS(x)η − rη) ≥ vR(h), that is

vR(rη − fε(e)− f [S(x)η − ε(e)]) ≥ vR(h).
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Moreover, we have

(S(x)η − ε(e)) =
n∑

i=1

(xi − hxi/h(Pi)− ei)εi

= ε(c)− h
n∑

i=1

xi/h(Pi)εi.

Hence vR(f(S(x)η − ε(e)) ≥ vR(h) since ε(c) ∈ Ω(E − µP −D). Therefore we can conclude
that, for every R ∈ supp(E),

vR(rη − fε(e)) ≥ vR(h). (2)

For the rational points Pi, i = 1, . . . , n, we have

vPi(rη − fε(e)) ≥
{
−1 if i ∈ I,
0 if i 6∈ I.

(3)

At last, we have

vP (rη − fε(e)) = vP (f [(r/f)η − ε(e)])
≥ −deg(f) + min{−deg(r) + deg(f) + l,−µ}
≥ −bI − µ, (4)

since deg(r)− deg(f) ≤ l + µ.
Combining (1), (2), (3) and (4) gives

rη − fε(e) ≥ E −Q− (bI + µ)P,

hence
rη − fε(e) ∈ Ω(E − (bI + µ)P −Q).

This proves our claim. 2

VII Decoding codes isometric with CΩ(D, mP )

In this section we assume that the code length is smaller than the number of rational points,
so there exists a rational point P not in {P1, . . . , Pn}. We know that CΩ(D,mP ) is isometric
with CΩ(D, (h)0−µP ) for some h ∈ K∞(P ). Hence it is sufficient to give a decoding theorem
of the code CΩ(D, (h)0 − µP ). First let us look at the details of the Clifford defect of this
class.

Proposition 15 The Clifford defect s of ((h)0), P ) is

s = max{k/2− l(kP ) + 1|0 ≤ k ≤ 2g − 1},

Proof. Since h ∈ K∞(P ), hence (h)0 ∼ deg(h)P . Therefore l((h)0 − kP ) = l((deg(h)− k)P ).
Thus by the definition of Clifford defect we immediately have the desired result. 2
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Proposition 16 Let H(q) be the Hermitian curve over F = GF (q2) with the function field
F(x, y), where xq+1 = yq + y. Let P be the common pole of x and y ( for the details of this
curve we refer to [24]). Then the Clifford defect of ((h)0), P ) is

s =

{
(q − 1)2/8 + 1/2 if q ≡ 1(mod 2);
(q − 2)2/8 + 1/2 if q ≡ 0(mod 2).

Proof. See also Duursma [4]. It is easy to see that the non-gaps of P between 0 to 2g− 1 are

iq + j(q + 1), 0 ≤ i ≤ q, 0 ≤ j ≤ q − i− 2,

and the gaps of P are

j(q + 1) + 1, . . . , (j + 1)q − 1, 0 ≤ j ≤ q − 2.

For the details of this conclusion we refer to [22]. Then we have

l((iq + j(q + 1))P ) =
(i + j)(i + j + 1)

2
+ j + 1,

where 0 ≤ i ≤ q and 0 ≤ j ≤ q − i− 2, and

l((j(q + 1) + k)P ) = l((j + 1)qP )− 1,

for 1 ≤ k ≤ q − j − 1, where 0 ≤ j ≤ q − 2. Let s(k) = k/2 − l(kP ) + 1. It is easy to prove
that

s(iq + j(q + 1)) ≤
{

(q − 1)2/8 if q ≡ 1(mod 2);
(q − 2)2/8 if q ≡ 0(mod 2),

and the equality holds if

(i, j) =

{
((q − 1)/2, 0) if q ≡ 1(mod 2);
((q − 2)/2, 0) if q ≡ 0(mod 2).

Furthermore
s(j(q + 1) + k) ≤ s((j + 1)q) +

1
2
,

where l ≤ q − j − 1, and the equlity holds if l = q − j − 1. Therefore our proposition follows
immediately from the above two inequalities. 2

As a special case of the Decoding Theorem in section VI, the following theorem gives
method to decode geometric Goppa codes isometric with CΩ(D,mP ).

Theorem 7 Let x ∈ Fn with x = c + e, where c is a code word of CΩ(D, (h)0 − µP ) and e
is an error vector. Let η be given by Theorem 4. Then

Existence: There exists a valid solution (f, r) of the key equation of x with respect to
(D, (h)0, P ), such that

r

f
η ∈ Ω(−D − µP ) and αΩ(

r

f
η) = e.
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Uniqueness: Let t = (d∗ − 1)/2 − s, where d∗ is the designed minimun distance and s is
Clifford defect of this code. Suppose wt(e) ≤ t. If (f, r) is a minimal valid solution of the key
equation of x with respect to (D, (h)0, P ), then

r

f
η ∈ Ω(−D − µP ) and αΩ(

r

f
η) = e.

Proof. By using Lemma 5, this theorem is a special case of Theorem 6, since deg(P ) = 1. 2

Remark 13 By the above theorem, we see that we can decode CΩ(D,mP ) if we can solve the
key equation. In [21], Shen gives an algorithm for solving the key equation using the subre-
sultant sequence, a generalization of the Euclidean algorithm, which corrects and generalizes
the method given in [18], so that the algorithm can correct upto (d∗ − 1)/2 − s errors with
complexity O(n3). For the Hermitian curves H(q), Shen [22] gives a more effecient algorithm
for solving the key equation, which is a generalization of the Berlekamp-Massey decoding
algorithm, following ideas of Sakata.

VIII This method may not correct more than (d∗ − 1)/2 − s

errors

Let H(3) be the Hermitian curve U4 +V 4 +W 4 = 0 over F = GF (9). Then the function field
of H(3) is F(x, y), where the defining equation is x4 = y3 + y. The the genus of this curve is
3, see [24]. Suppose α is a primitive element of GF (9), then

α2 = α + 1, α3 = 2α + 1, α4 = 2, α5 = 2α, α6 = 2α + 2, α7 = α + 2, α8 = 1.

All the rational points of H are the following,
(1) a point at infinity P ;
(2)

P0 = (0, 0), P1 = (α, 1), P2 = (α3, 1), P3 = (α5, 1), P4 = (α7, 1)
P5 = (α2, α), P6 = (2, α), P7 = (α6, α), P8 = (1, α), P9 = (0, α2),
P10 = (α2, α3), P11 = (2, α3), P12 = (α6, α3), P13 = (1, α3), P14 = (α2, 2),
P15 = (2, 2), P16 = (α6, 2), P17 = (1, 2), P18 = (α, α5), P19 = (α3, α5),
P20 = (α5, α5), P21 = (α7, α5), P22 = (0, α6), P23 = (α, α7), P24 = (α3, α7),
P25 = (α5, α7), P26 = (α7, α7),

and K∞(P ) = F[x, y], for the details we refer to [22] and [24].
Let D =

∑26
i=1 Pi and E = (y4)0 = 16P0. In this section we will consider the code

CΩ(D,E−P ) which is isometric to the code CΩ(D, 15P ). Denote Pi = (αi, βi) for i = 1, . . . , 26
and let

εi = {(y − βi)2 + 1
x− αi

−
1∑

k=0

k∑
ν=0

αk+2
i β

−(ν+1)
i x1−kyν}dx,

where i = 1, . . . , 26, then we have (εi)∞ = Pi + P and ω =
∑26

i=1 resPi(ω)εi for every ω ∈
CΩ(D,E − P ). Let η = dx. Hence the syndrome of x ∈ F26 is

S(x) ≡
26∑
i=1

xiβ
−1
i (

3∑
k=0

3∑
j=0

αk
i β

j
i x

3−ky3−j +
1∑

k=0

k∑
ν=0

αk+2
i β3−ν

i x1−kyν)(mod y4)
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(for the details we refer to [22]).
By Theorem 3 and Proposition 16, we know that the designed minimum distance is d∗ = 11

and the Clifford defect is 1. Therefore one can correct up to 4 errors by solving the key
equation, see Theorem 7. The following example shows that one can not always correct 5,
which is equal to (d∗ − 1)/2, errors.

Example 8 Suppose the error vector e has nonzero values at the locations P1, P2, P3, P4 and
P9 (for the reason of this choice we refer to [4, Proposition 5]), hence we can suppose the
received word is x = (1111000010 · · · 0). Then the syndrome of x is

S(x) ≡
4∑

i=1

(
3∑

k=0

3∑
j=0

αk
i x

3−ky3−j +
1∑

k=0

k∑
ν=0

αk+2
i x1−kyν)

+ x3y3 + α2x3y2 + α4x3y + α6x3(mod y4)
= 2x3y3 + α7x3y2 + 2αx3(mod y4). (5)

Furthermore we have

xS(x) ≡ (y3 + y)(2y3 + α7y2 + 2α)(mod y4)
≡ 2y3 + 2αy(mod y4); (6)

yS(x) ≡ (α7x3y3 + 2αx3y)(mod y4); (7)

x2S(x) ≡ 2xy3 + 2αxy(mod y4); (8)

and

xyS(x) ≡ 2αy2(mod y4). (9)

Now let f = Ax2 + By + Cx + D 6= 0, where A,B, C, D ∈ GF (9). Then

fS(x) ≡ Bα7x3y3 + 2Bx3y + 2Axy3 + 2Axy + 2Cy3 +
+2Cy + 2Dx3y3 + α7Dx3y2 + 2Dx3(mod y4)

by (5),(6),(7),(8) and (9). Therefore, if there exists an r ∈ K∞(P ) such that

fS(x) ≡ r(mod y4) and deg(r)− deg(f) ≤ 2g − 1 = 5,

then A = B = C = D = 0, which is a contradiction to f 6= 0.
Hence the minimal degree of f which satisfies deg(fS(x)(mod y4))−deg(f) ≤ 2g−1 = 5 is

at least 7. But there exist at least two independent solutions, namely f1 = xy and f2 = xy−x,
where

f1S(x) ≡ 2αy2(mod y4) and f2S(x) ≡ y3 + 2αy2 + αy(mod y4).

Moreover, let r1 = 2αy2, then

(resP1(
r1

f1
dx), . . . , resP26(

r1

f1
dx)) 6= e.

Hence, we conclude that by finding a minimal valid solution of the key equation, in
particular by using the subresultant sequence [21], we may not get the right error vector e
when wt(e) > (d∗ − 1)/2− s.
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[24] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers
von Primzablcharakteristik, teil 2, Arch. Math. 24 (1973), 615-631.

[25] H. Stichtenoth, A note on Hermitian codes over GF(q2), IEEE Trans. Inform. Theory
IT-34 (1988), 1345-1348.

[26] H. Stichtenoth, On the automorphisms of geometric Goppa codes, J. Algebra 130 (1990),
113-121.

[27] H. J. Tiersma, Remarks on codes from Hermitian curves, IEEE Trans. Inform. Theory
IT-33 (1987), 605-609.
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