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Introduction

Abstracted from the work of Skorobogatov and VIidut [12] on the decoding of algebraic
geometric codes, which generalized the ideas of Justesen et all [12], we present a decoding algo-
rithm, based on error locating pairs, for arbitrary linear codes.

Basically an error locating pair for a linear code C in JF" is a pair of codes A and B in F” such
that their star product is contained in C*. A linear map E,, from A to BY is used to locate the
errors of a received word.

Translated in generating matrices A and B of A en B respectively, A+ B is part of a parity check
matrix for C, this is pursued in the paper of Van Lint and Wilson [14], where properties of the
minimum distance of C' in terms of A and B are derived, in particular the Roos bound for BCH
codes.

One can define a notion of error correcting pairs for subfield subcodes and get a similar result as
Feng and Tzeng [5], on decoding BCH codes beyond the designed minimal distance.

Notation. Let I be a finite field and C a code over JF. We denote the wordlength of C by n(C)
and its minimal distance by d(C). If C is a linear code we denote its dimension by £(C).

The ball of radius r and center g is denoted by B(a, r),i.e. B(a, r)={be F" | d(a, b)< r} for
ae F" Letn={l, ---, n}. Define the support of a e IF" by supp(a)={i € n | @; #0) and
the zero setof aby z(a) = {i € n | a; =0}.

We cay that w has ¢ errors supported at / if w=c + e with c e C and I =supp e and

1Tl =¢t=d(w, C).
If C is a linear code over FF then we denote the vector space of JF linear functionals on C by CV.
C" :={yly:C - Fisan JF linear map}.

If € is a linear subspace of FF" then we denote the orthogonal complement of C in F" by C*,
also called the dual of C.



-2.

Ct:={be F"l <b,c>=0forallce C},

where <b,c>=3 b;c;forb,ce F".

We can add and multiply elements of F* coordinatewise
(v+w);=v;+w;
(v W) =v; w,.

For two subsets A and B of [F" we denote by A « B the set

AxB={axblae A,be B}.

§1. The decoding problem
Let Cbe a code in IF". We say that C is completely decoded if we can find a map D

D:F"=sC
such that
dDw, w)=d{(C,w) forall we F".

In particularis De=c¢ forallc e C.

This method is called maximum likelyhood decoding and is based on the assumption that the pro-
bability that an error will take place at i is the same for all ;,

The problem: "with input the pair (C , w), where Cis a code in " and w a word in F", and out-
put ce C, such that d{c, w)=d(C, w)", is an NP-complete problem [Berlekamp, Mc Eliece,
Van Tilborg]. But it is not known whether there is an algorithm A, with input w and output
¢ e C of minimum distance to w, such that Ac is polynomial in memory space and computing
time in n, where n = d(C). Put it differently: it is feasible that it takes a research laboratory a lot
of time and work to produce a device for a given code C, which decodes € completely in such a
way that it works efficiently for all its costumers.

Let C be a linear code in FF". Define forwe F* and v e C* the syndrome of w with respect to
V.
s(w,v) = <w, v>,
Define the linear map
s:F" - b
w = (v = s(w, V)

We call s(w) the syndrome of w and s the syndrome map.
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Remark that w is a codeword of C if and only if s(w) = 0. If w is a word with error e, that is to say
w=c+ e with c € C, then s(w) = s(e).
Thus we have an exact sequence of vector spaces over IF

05CoF s e 50

that is to say Kers = C and s is surjective, since dim (C1)" =n —dim C.
And we see that there is a one-to-one correspondence between syndromes in (C1)Y and cosets of
Cin IF™. A coset leader is an element of a coset of C of minimum weight.
A complete decoding algorithm A¢ could consist of a memory of a complete set of coset leaders.
It searches among these coset leaders the unique wp with the property s(wo) =s(w) and w is
decoded by w — wq. But A needs a memory of g”* coset leaders, which grows exponentially in
n—k
Remark that the restriction of s to B(C, ¢) is injective

s:B(C,e) » (CHY

, where e =|_% (d-1)).

Let r< e then a t-error correcting algorithm is a method which sends w e /F™ to the unique code
word c withw=c+eif we B(C, t) and detects when w is not in B(C , ¢). We will be concemned
with z-error correcting algorithms and not with complete decoding algorithms.

§2. r-error locating pairs
Let A, B and C be linear codes in /F". Define the error locator map E , by

Ey:A > BY
a = (b = s(w,axb)).
Now suppose
AxBcct

(2.1) If wis a word with error e then E, = E,.

(2.2) Define for a subset / of n

Al:={ae Al g =0 forall ie /).

(2.3) If wis a word with error supported at / then Ker E, contains A(/).
The inclusion of B(I} — B induces a dual map B Vo B({ )V.

(2.4) The following sequence is a complex of vector spaces over F
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B,
05A0)>A>BY 5B =0
» that is to say the composition of two consecutive maps is zero.

Now we are interested in the case that Ker E, = A(J). Then E, can be used to locate the errors of
w. Before proving a proposition of that effect we need a lemma.

(2.5) Let! be a subset of n with ¢ elements.

Define the map
¢;:B - F'
by ¢s(b)=(b;,, ---, b)) whereI={iy, -+, i}andi; < -+ <i,.

(2.6) Lemma. The following statements are equivalent
) dBbH>t
i) codimB()=tforevery/ cnwith|]|=¢

iii) the map ¢y surjective forevery 7/ c nwith 171 =¢.

Proof. ii) is equivalent with iii), since Ker ¢; = B(J). ii) implies 1) suppose d(BJ')S t. Then there
exists a non zero element y of B such that w #(y)< t. Let G be a generating matrix of B. Then
GTy=0. Hence G has ¢ dependant columns say at the places i, --- , i, Let /= {iy, «- - , i,).
i
Then B({) = B(i;) is the intersection of ¢ dependant hyperplanes, hence codim B(/) <t The
j=1
converse is proved similarly.

d-1

2.7) Corollary. SCRC)Sn—-dt+1

where d =d(C), d+=d(Ct) and C R(C) is the covering radius of C.

Proof. The first inequality is well known. The second too? Let :=d+ —1. Then dCchH>t
Hence the map ¢; : C — FF* is surjective with 7= {1, ---, t}. Thus for every we IF" there
exists an element ¢ of C such that ¢;(w)=¢;(c). Hence d(w, ¢)<n—t Therefore
CR(C)Sn—dt+1.

(2.8) Proposition. If A, B and C are linear codes in F” such that A+ B < C and dBY)>r
and w is a word with r errors supported at / then
KerE, = A().

Proof. We already noticed that A(/) ¢ Ker E, in (2.3). Let w be a word with r errors supported
at I that is to say w=c+ e with ce C and / =suppe. The map ¢y is surjective by Lemma (2.6),
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since d(BL) > r. So there exists a basis by, --- ., b; of B such that b, =8 for 1 j,k<r,

where I = {iy, -, i ).
If a € Ker Ey, then E(a) =0 hence

,
O=s(w,ax bj)=s(e,axb;)=3 e, a, b;, =€ a;
k=1

for all j=1, ---,r. Thus a;=0 for all i € I, since ¢; #0 for all i e I =supp(e). Therefore
a € A(f). This proves the proposition.
(2.9) Leta be an element of " and z(a)= {j,, - - ,J.}.

Let 5, be the restriction of the map s to the coordinates j,, -, j,, that is to say

sa: FT = (CHY

;
Vi = Yy

i=l
Define the projection map
7, F" = JF7
w o W, W)
Define the inclusion map
ip: F" - F"
by

v; if j=j; forsomel Si<r
M =1 0 otherwise.

Then r, o i, is the identity mapon F™ and s, =5 o i,.
y map a

(2.10) Proposition. Let A and C be linear codes in .

Let we JF". Suppose w=c+e and ce C and w t(e) =d(w, C). Let a be an element of A. If
supp(e) < z(a) then the equation s5,(x) = s(w) has a solution m,(e). If moreover n < d(4) + d(C)
then this solution is unique,

Proof. If supp(e) c z(a) then i, o n,(e) =e. Hence

Sa(ma(@)) =s5(ia o ma(e) =s(e) = s(W).

Therefore m,(e) is a solution of the equation s,(x) = s(w). If moreover n < d(A) + d(C) and x is
a solution then



$(a(x)) = 54(x) = s(w) = 5(e).

Hence s(i,(x) —e) = 0, 50 { ,(x) — e € C. Both i,(x) and e are supported at z(a). Thus
wi(i,(x)—e)< # z(a)< n —d(A) < d(C).

So i,(x)—e=0. Hence ny(e) =m, o i,(x)=x. Therefore the equation s5,(x)=s(w) has the

unique solution r, (). This proves the proposition.

(2.11) Definition. Let A, B and C be linear codes in IF". We call (A , B) a t-error locating pair
for Cif

1) AsxBcct
2) kA)>:

3) dBY) >t
If moreover

4y n<d@A)+d4d(C)

then we call (A, B) a t-error correcting pair for C.

(2.12) Algorithm.
0. Begin.
1.1. Compute Ker E,.
1.2, IfKer E, =0 then goto 3.2.
1.3. IfKer Ey # 0 then choose a non zero element a of Ker E,,.
2.1. Computation of a solution of s ,(x) = s(w).
2.2, If 54(x) = s(w) has no or more than one solution then goto 3.2.
2.3, If 5,(x) = 5(w) has the unique solution x, then compute w £(Xp).
24. If wt(xg) > t then goto 3.2,
3.1. Print: "The received word is decoded by";
Print: w — i, (xg); goto 4.
3.2. Print: "The received word has more than ¢ errors”.
4. End.

(2.13) Theorem. If (A, B) is a r-error correcting pair for C and ¢ < %(d —1) then algorithm

(2.12) corrects ¢ errors with complexity O(n3).

Proof. Let r =d(w, C). Then there exist ce € and e such that w=c+e and wt(e)=r. Let

supp(e)=/. If Ker E, = 0 then r > ¢, since A(J) = ~ A (i) is the intersection of 7 hyperplanes in A

iel
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and dim A > ¢ and this intersection is contained in Ker E,. Hence w has more than ¢ errors.

Now suppose Ker E # 0 and a is a non zero element of Ker E .

If the equation s,(x) = s(w) has no solution or more than one solution then w has more than ¢
errors, since otherwise r < ¢, so Ker E, = A(J) by Proposition (2.8). So supp(e) c z(a) and there-
fore 5,(x) = s(w) has the unique solution =, (e) by Proposition (2.10).

If the equation s5,(x)=s(w) has the unique solution x, then w—i,(x)e C and
w=(W—i,(x)) +i,(x). If w(i,(x)) > ¢ then w has more than ¢ errors. Since otherwise r < ¢ and
e—ig(x)e C. Hence wi(e—iy(x))<2t<d, so e=i,(x). This is in contradiction with the
assumption w #(i ,(x)) > ¢.

As for the complexity. In the algorithm one has to compute a matrix for £, with respect to bases
for A and BY. One has to compute a kemel of E,. This amounts to a set of at most # linear equa-
tions in at most n variables. The same holds for solving the equation s,(x) = s(w). One has to
locate zeros of a vector and one has to compute the weight of a vector. All these subroutines
have complexity at most 0(n3), see [?).

Questions.
1) Does any code C have a L-;- (d-1)] error correcting pair? Or is there an a priori bound on ¢
in terms of the parameters of the code, such that C has a r-error correcting pair.

2) Does any MDS code C have a I_% (d—1)] error correcting pair?

§3. Decoding algebraic geometric codes

In this section we show that an algebraic geometric code on a curve of genus g has a r-error
correcting pair with ¢ =|_-;- (d—1-g)} , where g is the genus of the curve. Altough the proof is
trivial now one must realize that the idea of an error correcting pair and its properties are hidden
in the papers of Skorobogatov and VIidut [15], Justesen et all [12] back to the papers on decod-
ing BCH codes.

For the theory of algebraic geometric codes we refer to [3], [6], [71, [8], [9], [13]. We follow the
notations of [6].

Let X be an absolutely irreducible non singular projective curve defined over F of genus g. Let
Py, --+, P, be points of X which are rational over IF. Let D be the divisor defined by

D=Py+ -+ +P,. SupposesuppG n suppD =a.
Consider the map

o* : QG-D) > F*"
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w > (resp (W), <, resp (w)).

The code C*(D, G) is by definition the image of v* and its dimension we denote by k*. If
m >2g —2 then o* is injective and k* = dim Q(G — D), which is at least n — m + g — 1, equality
holds if morcover m < n. The minimum distance is at least m —2g+2 and we call if the
designed minimum distance and denote if by d*.

By the residue theorem, the dual code C(D , G) of C*(D, G) is obtained as the image of the map

o:L(G) - F*

= (P, L fP).

If m < nthen o is injective and the dimension of C(D , G) is equal to dim L(G), which is at least
m + 1 —g, equality holds if m > 2¢g — 2. The minimum distance is at least n — m.

The assumption that supp G M supp D = @ is not realy necessary, if one uses the sheaf construc-
tion, but then the code is only defined up to generalized equivalence. Two codes A and B in FF"
are called generalized equivalent or isometric, if there exists a permutation o e S, and
A, L A, e FFT suchthat B = {(M Co(lys “"* An Co(,,)) fce Al

For every code C*(D, G) there exist a rational form o with simple poles at P; and residue 1 at
all P; such that C*(D, G)=C(D, K +D —G) with K the divisor of ®, by Lemma (3.5) of [6].
Hence it is enough to consider only the codes of the form C*(D , G).

(3.1) Theorem. Let F be a divisor with support disjoint from D. Let A=C(D, F),
B=CM®O,G-F)and C=C*(D, G). Then

1) AxBcCh
2) Ift+g<degF <nthenk(A)>1t.
3) Ifdeg(G-F)>t+2g—2thend(BY) > rand n < d(A)+d(C).

(3.2) Corollary. If F is a divisor with support disjoint from D such that ¢ + g<degF <nand
deg(G-F)>t+2g-2then (C(D, F), C(D, G-F))is a t-error correcting pair for C* (D, G).

Proof of Theorem (3.1).

1) Ifae A and be B then there exist f e L(F) and g € L(G —F) such that a; = f(P;) and
bi=g(Py) for all i=1, ---, n Thus a;b;=fg(P;). But fe L(F) and ge L(G—F)
implies fg € L(G). Thusa b e C(D, G)and C(D, G) is the dual of C*(D , G).

2) Ift+g<degF <nthenk(4)=dim L(F)2 ¢+ 1 by Riemann-Roch.



3) Now Bl=C*D,G-F) and deg(G-F)>t+2g -2, hence
dBLyz deg(G-F)-2g +2 >t
Further

AA)+d(CYz (n—deg F)+(m—2g +2)
=n+deg(G-F)-2g+2>n+t2n.

This proves the theorem.

(3.3) Theorem. Every algebraic geometric code C*(D, G) of designed minimum distance d*
on a curve of genus g has a t-error correcting pair with ¢ =|_-;- d-1-g)| if

28—-2<msn+2g-2

Proof. Let Fy=(t+g)P,. There exists a rational function f such that vp,(f)=t+g and
vp(f)=0foralli=2, -+-,n, [2]. Let F=F; —(f) thendeg F =deg F1 =t + g and vp,(F)=0
forall i=1, ---, n. Thatis to say F is a divisor of degree ¢ + g with support disjoint from D.
Now t=|_%(d* —-1-g)] andd* =m —2g + 2. Further deg(G—F)=m —(t+g) >t +2g - 2.
Moreover m < n +2g —2 hence n > t + g. Thus there exists a divisor with the properties we need
in order to apply Corollary (3.2). Therefore there exists a ¢-error correcting pair for C*(D , G).

§4. Decoding subfield subcodes

In this section we investigate how we can use a t-error locating pair for C for decoding a subfield
subcode of C.

Let /F be a finite field and IFy a subfield of F. Let C be a linear code in F". We denote the
subfield subcode C N IFp by Cy.

Let s7: F§ — ((Co)*)" be the syndrome map of Cq. Let i : IFy — IF§ and n0 : F} — IF} be
the restriction of i, and =, to IFp and JF{ respectively for an element a of " with r zeros. Let
59=500 40,

(4.1) Proposition. Let A and C be linear codes in F". Let we [Fj. Suppose w=c+e and
ce Cp and wr(e)=d(w, Cg). Let a be an element of A. If supp(e) < z(a) then the equation
59 (x) = 5°(w) has a solution n3(e). If moreover n < d(A) + d(C) then this solution is unique.

The proof is verbatim the same as the proof of Proposition (2.10) if we replace s, 55, i, and x,
by 50, 50, i and n? respectively.

(4.2) Definition. Let A, B and C be linear codes in F". We call (A, B) a t-crror correcting pair
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for Cp if (A, B) is a t-error locating pair for C and if moreover n < d(A) +d(Cyp).

(4.3) Remark. If (A, B) is a t-error correcting pair for € then it is also a -error correcting pair
for every subfield subcode Cg of C.

(4.4) Algorithm.

0. Begin

1.1. Compute Ker E .

1.2. If Ker E # 0 then choose a non zero element a of Ker E .

2.1. Computation of a solution of 59 (x) = s%(w).

22, If sg (x) = $%(w) has no or more than one solution then goto 3.2,
23. Ifsd (x) = s%(w) has the unique solution xg then compute wt(xg).
24. If we(xg) > t then goto 3.2

3.1. Print: "The received word is decoded by";

Print: w — i(xo); goto 4.
3.2. Print: "The received word has more than ¢ errors”.
4. End.

{4.5) Theorem. If (A, B) is a t-error correcting pair for C and £ < % (d(Cp) — 1) then Algorithm

(4.4) corrects ¢ errors with complexity O(n°).

The proof is the same as the proof of Theorem (2.13).

§5. Decoding cyclic codes beyond the designed error capability

Let A and B be two matrices of sizes (k xn) and (I Xn) respectively. Let A * B be the (kI xn)
matrix with rows a; * b; where a;, 1< i< kand b;, 1< j< lare the rows of A and B respectively.

(5.1) Lemma. Let A and B be two linear codes in F” with generator matrices A and B respec-
tively. Then 4 * B ¢ Ctif and only if A * B is part of a parity check matrix of C.

Proof. Trivial.
Let Fo = IFy and F = [F;~ and B a primitive n® root of unity

(5.2) Notation. Let V and W be subsets of {1, 8, ---,p" 1. Define
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VW={vwlveV and we W}

(5.3) Notation. Define the matrix M(V) by

1 Bil - ﬁ(n—l)il
MW)=|: : : :
1 Bik - B(”_l)‘&
where V={B", ---  B*} and0<i; < -+ <izSn—1.

(5.4) Lemma. Let A and B be linear codes in F" with generator matrices M(V) and M(W)
respectively for subsets V and Wof (1, B, ---, B*"}. Let C be the linear code in F"* with par-
ity check matrix M(V W). Then A * B c CL.

Proof. M(V) * M(W) is also a parity check matrix for C. Hence A * B < C1 by Lemma (5.1).

Let Cy be a cyclic code of length n over Fy.
Ve{l,B, :+-,B* 1} is called a defining set of Cy if

n-1 i
Co={ce F5 | ¥ &v'=0 forallve V).
=)

(5.5) Theorem: (BCH). Let Cy be a cyclic code with defining set V containing
(B, -+, B} Then d(Co) 2 8.

(5.6) Theorem (Hartmann-Tzeng). Let Cy be a cyclic code with defining set V containing
{BHH ) 1< j< 8-1,0< < 5}, where ged(a, n)=1. Then d(Cg) > § +3s.

(5.7) Notation.LetV =B/, ---, Bi*},wherCOSil <+ <ip<n-—1.Then
V= (B 1 i) <i<i).

(5.8) Theorem (Roos). Let V be a defining set of a cyclic code with minimum distance dy. Let
W be a set of n™ roots of unity such that | WI<IWi + dy — 2. Then the cyclic code Cy with
defining set containing V W has minimum distance d(Co)2 | W | +dy — 1.

The BCH, Hartmann-Tzeng and Roos bound can be proved by looking at the rank of
M(V) * M(W));, see Van Lint and Wilson [14].

(5.9) Theorem. Let V be the defining set of a cyclic code containing 8 — 1 consecutive elements.
Let W be a set of roots of unity. Let ¢ be a natural number such that e <8-1,
IWISIWI+8—e—2 and eS%(I W | +8-2). Then the cyclic code C( with defining set

containing VW has minimum distance d(Co)2 | W | +8~1 and Cy has an e-error correcting
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pair.

Proof. The statement about the minimum distance is the content of Roos’ Theorem. V contains
the set {B*1, ---, B"¥1). Let vy = {B*!, -+, ***!} and let A be the linear code in F”
with generator matrix M(V,), then d(4*)> e +2 by the BCH bound and k(A1) =n —(e+1),
hence A is an MDS code with parameters [n, n —(e+1), e+2], by the Singleton bound. Thus
A is an MDS code with parmeters [n, ¢+1, n —e ]. In particular k(A) =e + 1.

Let Vp = {B/ | 0< j< §—e—2}. Furthermore | W 1< | W | +8— e — 2. Let B be the linear code
in JF" with generator matrix M(Vz W) then M(Vg W) is a parity check matrix for B+, hence
d(B1)= | W | +8—e —2, by the Roos’ bound (5.8).

Now V4 Vz W C VW is contained in the defining set of C and M(V,) and M(V W) are the gen-
erator matrices of A and B respectively. Hence A * B  C*, by Lemma (5.4).

Finally d(A)+d(Co)2n—e+ 1 W1 +8—-1>n—-e+2e2n Thus(A, B)is an e-error correct-
ing pair for Cy. This proves the theorem.

(5.11) Remark. Feng and Tzeng [5} give a decoding algorithm in the situation of Theorem
(5.10), but with the weaker assumption | W | S W +8—2 instead of | W (< W | +8—¢ —2.
Elia [4] and Janssen and Van Tilborg [10] [11] found more decoding procedures bases on error
location which decode beyond the designed error capability.
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