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Abstract. Quantum error correcting codes play the role of suppressing
noise and decoherence in quantum systems by introducing redundancy.
Some strategies can be used to improve the parameters of these codes.
For example, entanglement can provide a way for quantum error correct-
ing codes to achieve higher rates than the one obtained via traditional
stabilizer formalism. Such codes are called entanglement-assisted quan-
tum (QUENTA) codes. In this paper, we use algebraic geometry codes
to construct three families of QUENTA codes, where one of them has
maximal entanglement and is maximal distance separable. At the end,
we show that for any asymptotically good tower of algebraic function
fields there is an asymptotically good family of maximal entanglement
QUENTA codes with nonzero rate, relative minimal distance, and rela-
tive amount of entanglement.

Keywords: Quantum Codes · Algebraic Geometry Codes · Maximal
Distance Separable · Maximal Entanglement · Asymptotically Good.

1 Introduction

It is generally accepted that the prospect of practical large-scale quantum
computers and the use of quantum communication are only possible with the
implementation of quantum error correcting codes. Quantum error correcting
codes play the role of suppressing noise and decoherence by introducing redun-
dancy. The capability of correcting errors of such codes can be improved if it is
possible to have pre-shared entanglement states. This class of codes is known as
Entanglement-Assisted Quantum (QUENTA)codes, also denoted by EAQECC’s
in the literature. Additionally, this class of codes can achieve the hashing bound
[24,13] and violate the quantum Hamming bound [14]. The first QUENTA codes
were proposed by Bowen [1] followed by the work from Fattal, et al. [9]. The sta-
bilizer formalism of QUENTA codes was created by Brun et al. [2], where they
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showed that QUENTA codes paradigm does not require the dual-containing
constraint as the standard quantum error-correcting code does [15].

After this landmark paper from Brun et al., many works have focused on the
construction of QUENTA codes based on classical linear codes [23,5,18,12,17].
However, the analysis of q-ary QUENTA codes was taken into account only
recently [8,5,20,6,12,16,11,17]. The majority of them utilized constacyclic codes
[8,6,20] or negacyclic codes [5,20] as the classical counterpart. Since the length
of the classical codes is normally proportional to the square of the size of the
field, most of the quantum codes from the previous works have a length that
is proportional to the square of the size of the finite field. On the other hand,
Liu et al. used k-Galois dual codes [17] and Galois LCD codes [16], which allow
quantum codes with length lower than the previous ones mentioned. So, there
is no result in the literature with QUENTA codes having length proportional
to a greater power of the cardinality of the finite field. In addition, it has not
been shown previously that there exists a family of asymptotically good maximal
entanglement QUENTA codes. Such a family can be used to achieve the hashing
bound. A possible approach to solve both questions is using algebraic geometry
codes (AG) codes as the classical counterpart to construct QUENTA codes.

The AG codes were invented by Goppa [10] and have several properties. Two
properties important for this paper are that its parameters can be calculated via
the degree of a divisor, which allows a direct description of the code, and the
intersection of two AG codes can be associated to a linear code that is also an
AG code. As will be shown, using AG codes we can derive quantum codes with
interesting properties. Before presenting such results, some constructions have
been made.

First of all, we introduce the idea of relative hull, which is a generalization
of the concept of hull utilized in the construction of Linear Complementary
Dual (LCD) codes [4]. With this tool, it is possible to quantify the amount of
entanglement in a QUENTA codes in a more direct way if the intersection of
two classical codes is known. As will be shown, this is the case for AG codes.
A analysis of the lower bound for the minimal distance of some quantum codes
constructed demonstrates that this bound differs from the Singleton bound up
to one unit, leading to the conclusion that it is possible to construct QUENTA
codes from AG codes that are almost maximal distance separable (MDS) codes
or maximal distance separable (MDS) codes; i.e., they have Singleton defects
equal to one or zero. Furthermore, these codes also have maximal entanglement,
which can be employed to achieve entanglement-assisted quantum capacity of a
depolarizing channel [1,7,19]. We give three examples of families of QUENTA
codes with these properties.

The paper is organized as follows. In Section 2, we describe what needs to be
known about AG codes so that they can be applied to the construction method
of Wilde and Brun [23]. Afterwards, a few basic description of how to utilize AG
codes to construct QUENTA codes are given in Section 3. In this same section, we
apply the method proposed to AG codes constructed from rational, Hermitian,
and Elliptic function fields; the first function field allows QUENTA codes that
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are MDS and latter function field allows almost MDS ones. In Section 4, we show
that there exists families of QUENTA codes that are asymptotically good in its
rate, relative distance and entanglement-assisted rate. Lastly, the conclusion is
carried out in Section 5.

Notation. Throughout this paper, p denotes a prime number and q is a power
of p. Let F/Fq be an algebraic function field over Fq of genus g, where Fq denotes
the finite field with q elements. A linear code C with parameters [n, k, d]q is a
k-dimensional subspace of Fnq with minimum distance d. Lastly, an [[n, k, d; c]]q
quantum code is a qk-dimensional subspace of Cqn with minimum distance d
that utilizes c pre-shared entanglement pairs.

2 Preliminaries

In this section, we introduce some ideas related to linear complementary dual
(LCD) codes, algebraic geometry (AG) codes and entanglement-assisted quan-
tum (QUENTA) codes. The first description to be given is that of LCD codes,
but first we need to give the definition of the Euclidean dual of a code.

Definition 1. Let C be a Fq-linear code of length n. The dual of C is defined
as C⊥ := { x ∈ Fnq | x · c = 0 for all c ∈ C }.

When the intersection between a code and its dual gives only the vector 0,
the code is called LCD. A formal description can be seen below.

Definition 2. The hull of a linear code C is given by hull(C) := C⊥ ∩ C. The
code is called linear complementary dual (LCD) code if the hull is trivial; i.e,
hull(C) = {0}.

The class of LCD codes is a possible way to construct QUENTA codes that
have maximal entanglement and asymptotically good families (see Sections 3
and 4).

When we consider two linear codes instead of one, the idea of relative hull and
linear complementary pairs emerge. The next definition gives such a description.

Definition 3. Let C1 and C2 be two Fq-linear code. The relative hull of C1 over
C2 is defined by hull(C1, C2) := C⊥1 ∩C2. If hull(C1, C2) = {0}, then C1 is called
a linear C2-complementary dual code.

For the present paper, the relative hull between two codes will have a di-
rect relation with the amount of entanglement used by a QUENTA code (see
Theorem 1).

2.1 Algebraic-Geometry codes

Let F/Fq be an algebraic function field of genus g. A place P of F/Fq is
the maximal ideal of some valuation ring OP of F/Fq. We also define PF :=
{P |P is a place of F/Fq}.
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A divisor of F/Fq is a formal sum of places given by D :=
∑
P∈PF

nPP , with
nP ∈ Z, where almost all nP = 0. The support and degree of D are defined as
supp(D) := {P ∈ PF |np 6= 0} and deg(D) :=

∑
P∈PF

nP deg(P ), respectively,
where deg(P ) is the degree of the place P . When a place has degree one, it is
called a rational place.

The discrete valuation corresponding to a place P is written as νP . For
every element x of F/Fq, we can define a principal divisor of x by (x) :=∑
P∈PF

νP (x)P . For x ∈ OP , we define x(P ) ∈ OP /P to be the residue class of
x modulo P ; for x ∈ F \OP , we put x(P ) :=∞. For a given divisor G, we denote
the Riemann-Roch space associated to G by L(G) = {x ∈ F ∗|(x) ≥ −G} ∪ {0}.

The given description of Riemann-Roch spaces shows that when we are talk-
ing about such spaces we deal with functions that obey a set of rules which
are described by the defining divisor. One natural question that could arise is
the relation between the intersection of two Riemann-Roch spaces and the re-
spective divisor that defines such a space. Such a result was shown by Munuera
and Pellikaan[21]. Before showing it, we need to define the intersection of two
divisors, which is done in the following.

Definition 4. Let G and H be divisors over F/Fq. If G =
∑
P∈PF

νP (G)P and
H =

∑
P∈PF

νP (H)P , where P ∈ PF is a place, then the intersection G ∩H of
G and H over F/Fq is defined as follows

G ∩H =
∑
P∈PF

min{νP (G), νP (H)}P. (1)

In addition, the union is given by

G ∪H =
∑
P∈PF

max{νP (G), νP (H)}P. (2)

Proposition 1. [21, Lemma 2.6] Let G and H be divisors over F/Fq. Then
L(G) ∩ L(H) = L(G ∩H).

In the Section 3 it will be shown that when AG codes are used to construct
QUENTA codes, the amount of entanglement used is equal to the dimension of
the intersection of the two Riemann-Roch spaces.

For the exactly value of the dimension of a Riemann-Roch space and the con-
struction of the dual code of a AG code, it is necessary to introduce the ideas of
differential spaces and canonical divisors.ΩF := {ω|ω is a Weil differential of F/Fq}
be the differential space of F/Fq. Given a nonzero differential ω, we denote by
(ω) :=

∑
P∈PF

νP (ω)P the canonical divisor of ω. All canonical divisors are
equivalent and have degree equal to 2g− 2. Furthermore, for a divisor G we de-
fine ΩF (G) := {ω ∈ ΩF |ω = 0 or (ω) ≥ G}, and its dimension as an Fq-vector
space is denoted by i(G).

The dimension of a Riemann-Roch space can be calculated through its defin-
ing divisor, the divisor of a Weil differential and the genus of a curve.
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Proposition 2. [22, Thm. 1.5.15](Riemann-Roch Theorem) Let W be a canon-
ical divisor of F/Fq. Then for each divisor G, the dimension of L(G) is given
by `(G) = deg(G) + 1− g+ `(W −G), where deg(G) is the degree of the divisor
G.

Now we can define the first AG code utilized in this paper, see Definition 5,
and its parameters, see Proposition 3. As can be seen, these parameters are re-
lated to the degrees of divisors, genus and number of rational places. So, with
simple arithmetic we can create families of codes, even when the algebraic func-
tion field is fixed.

Definition 5. Let P1, · · · , Pn be pairwise distinct rational places of F/Fq and
D = P1+. . .+Pn. Choose a divisor G of F/Fq such that supp(G)∩supp(D) = ∅.
The algebraic-geometry (AG) code CL(D,G) associated with the divisors D and
G is defined as CL(D,G) := {(x(P1), . . . , x(Pn))|x ∈ L(G)}.

Proposition 3. [22, Cor. 2.2.3]Let F/Fq be a function field of genus g. Then
the AG code CL(D,G) is a [n, k, d]-linear code over Fq with parameters k =
`(G) − `(G − D) and d ≥ n − deg(G). If 2g − 2 < deg(G) < n, then k =
deg(G)− g + 1.

Lemma 1. Let F/Fq be a function field of genus g and let D be a divisor as in
Definition 5. If G1 and G2 are two divisors such that suppG1∩suppD = ∅, resp.
suppG2 ∩ suppD = ∅, and deg(G1 ∪ G2) < n, then CL(D,G1) ∩ CL(D,G2) =
CL(D,G1 ∩G2).

Another important type of AG code is given in the following.

Definition 6. Let F/Fq be a function field of genus g and let G and D be
divisors as in Definition 5. Then we define the code CΩ(D,G) as CΩ(D,G) :=
{(resP1

(ω), . . . , resPn
(ω)|ω ∈ ΩF (G − D)}, where resPi

(ω) denotes the residue
of ω at Pi, with parameters [n, k′, d′], where k′ = i(G − D) − i(G) and d′ ≥
deg(G)− (2g − 2).

Proposition 4. [22, Thm. 2.2.7]Let CΩ(D,G) be the AG code from Defini-
tion 6. If 2g − 2 < deg(G) < n, then CΩ(D,G) is an [n, k′, d′]-linear code over
Fq, where k′ = n+ g − 1− deg(G) and d′ ≥ deg(G)− (2g − 2).

The relationship between the codes CL(D,G) and CΩ(D,G) is given in the
next proposition.

Proposition 5. [22, Prop. 2.2.10] Let CL(D,G) be the AG code described in
Definition 5. Then CΩ(D,G) is its Euclidean dual, i. e., CL(D,G)⊥ = CΩ(D,G).
Additionally, if we have a Weil differential η such that νPi(η) = −1 and ηPi = 1
for all i = 1, . . . , n, then CΩ(D,G) = CL(D,D −G+ (η)).

It is not hard to see that the divisor of a Weil differential from Proposition 5
can be decomposed as a sum of a divisor proportional of D with one that has its
support different from the support of D; i. e., (η) = −D+(η′), where supp(D)∩
supp((η′)) = ∅.
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2.2 Entanglement-assisted quantum codes

Definition 7. A quantum code Q is called an [[n, k, d; c]]q entanglement-assisted
quantum (QUENTA) code if it encodes k logical qudits into n physical qudits
using c copies of maximally entangle states and can correct b(d−1)/2c quantum
errors. The rate of a QUENTA code is given by k/n, relative distance by d/n,
and entanglement-assisted rate by c/n. Lastly, a QUENTA code is said to have
maximal entanglement when c = n− k.

Formulating a stabilizer paradigm for QUENTA codes gives a way to use
classical codes to construct this quantum codes [3]. In particular, we have the
next procedure by Wilde and Brun [23].

Proposition 6. [23, Corollary 1] Let H1 and H2 be parity check matrices of
two linear codes with parameters [n, k1, d1]q and [n, k2, d2]q, respectively. Then
there is a QUENTA code with parameters [[n, k1 + k2 − n + c,min{d1, d2}; c]]q
that requires c = rank(H1HT

2 ) maximally entangled states.

A measurement of goodness for a QUENTA code is the quantum Singleton
bound. Let [[n, k, d; c]]q be a QUENTA code, then the quantum Singleton bound
is given by d ≤ n−k+c

2 + 1. The difference between d and the Singleton bound
is called Singleton defect. When the Singleton defect is equal to zero (resp. one)
the code is called maximum distance separable code (resp. almost maximum
distance separable code) and it is denoted MDS code (resp. almost MDS code).

3 New Construction Method for QUENTA Codes

It is shown in Proposition 6 the connection between the entanglement in a
QUENTA code and the rank of a matrix that is the product of the two parity
check matrices of the classical codes utilized to construct such quantum code.
However, such rank can be difficult to calculate in some cases. As it will be
shown in Theorem 2, it is possible to, instead of calculating such rank, relate
the entanglement with the relative hull between the two classical codes.

Lemma 2. Let C1 and C2 be [n, k1, d1]q and [n, k2, d2]q linear codes with parity-
check matrices H1 and H2, respectively. If dim(hull(C1, C2)) = l1 and dim(hull(C2, C1)) =
l2, then rank(H1H

T
2 ) = n−max{k1 + l1, k2 + l2}.

Observe that for the result in Theorem 2 it was not needed to make any
previous consideration. So, the the previous result can be seen as a new way to
calculate the amount of entanglement used in a QUENTA code.

If the relative hull of a code with respect to other is known, then Theorem 2
can be used instead of Proposition 6 to construct new QUENTA codes in a
more direct way. We show in the following that this is the case when considering
classical AG codes.



QUENTA codes from AG Codes 7

Theorem 1. Let C1 and C2 be two linear codes with parameters [n, k1, d1]q and
[n, k2, d2]q, respectively. If l1 = dim(hull(C1, C2)) and l2 = dim(hull(C2, C1)),
with k1 + l1 ≥ k2 + l2, then there is an [[n, k2 − l1,min{d1, d2};n − k1 − l1]]q
QUENTA code.

Corollary 1. Let C1 and C2 be two linear codes with parameters [n, k1, d1]q and
[n, k2, d2]q, respectively, with hull(C1, C2) = {0}. Then there is a QUENTA code
with parameters [[n, k2,min{d1, d2};n− k1]]q.

Corollary 2. Let C be a MDS LCD code with parameters [n, k, d]q. Then there
is a MDS maximal entanglement QUENTA code with parameters [[n, k, d;n −
k]]q.

It is shown in Corollary 2 that for any MDS LCD code in the literature
we can construct a QUENTA code that is, simultaneously, MDS and maximal
entanglement.

For AG codes, the property needed in Corollary 1 can be translated to a
relation between the divisors used to construct them. The following theorem
presents this description and a more general result.

Theorem 2. Let F/Fq be an algebraic function field and η be the Weil differ-
ential of Proposition 5 with divisor (η) = −D + (η′). Consider that D, G1 =
H1 − (η′), and G2 = H2 − (η′) are divisors following the construction of Defini-
tion 5, with H1 ≥ H2 > 0. Then there exists a QUENTA code with parameters
[[n,deg(G2)− g + 1, n− deg(G1);n− deg(G1) + g − 1]]q.

Proof. Let C1 = CL(D,G1) and C2 = CL(D,G2). Since that G1 = H1 − (η′)
and G2 = H2 − (η′), we have l1 = l2 = 0. Additionally, using H1 ≥ H2 > 0, we
have that k1 ≥ k2. So, the remaining statements follow from the application of
Proposition 3 to the Corollary 1.

The first family of QUENTA codes constructed in this paper is shown in the
following theorem. The rational function field Fq(z)/Fq is used to derive this
family.

Theorem 3. Let q be a power of a prime. So, if a1, a2, b1, b2 are positive integers
such that a1 ≥ b1 and a2 ≥ b2, with b1 + b2 ≥ q − 3 and a1 + a2 < 2q − 5, then
exists a QUENTA code with parameters [[q − 1, b1 + b2 + 4 − q, 2q − 4 − (a1 +
a2); 2q − 5 − (a1 + a2)]]q. In particular, if a1 + a2 − 1 ≤ b1 + b2 ≤ a1 + a2,
then there is an MDS maximal entanglement QUENTA code with parameters
[[q − 1, b1 + b2 + 4− q, 2q − 4− (a1 + a2); 2q − 5− (a1 + a2)]]q.

The following theorem shows a construction of QUENTA codes derived from
Hermitian function field. Next, Elliptic function field will be used to obtain
maximal entanglement QUENTA codes with Singleton defect at most one.

Theorem 4. Let q be a power of a prime and F/Fq2 be the Hermitian function
field defined by the equation

yq + y = xq+1.
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Let a1, a2, b1, b2 be positive integers such that a1 ≥ b1, a2 ≥ b2, with b1 + b2 >
q3 +2q(q−1)−5 and a1 +a2 < 2q3 + q(q−1)−4. Then there exists a QUENTA
code with parameters [[q3 − 1, b1 + b2 − q3 − 3q(q− 1)/2 + 4, 2q3 + q(q− 1)− 4−
(a1 + a2); 2q3 + 3q(q − 1)/2− 5− (a1 + a2)]]q2 .

Theorem 5. Let q = 2m, with m ≥ 1 an integer, and F/Fq be an Elliptic
function field with n rational points and genus g = 1 defined by the equation

y2 + y = x3 + bx+ c, (3)

where b, c ∈ Fq. Let a1, a2, b1, b2 be positive integers such that a1 ≥ b1, a2 ≥ b2,
with b1 + b2 > n and a1 + a2 < 2n− 2. Then there exists a QUENTA code with
parameters [[e− 2, b1 + b2− e, 2e− 2− (a1 + a2); 2e− 2− (a1 + a2)]]q, where e is
the number of rational places of the Elliptic curve. In particular, if a1 = b1 and
a2 = b2, then there is an almost MDS maximal entanglement QUENTA code
with parameters [[e− 2, a1 + a2 − e, 2e− 2− (a1 + a2); 2e− 2− (a1 + a2)]]q.

4 Asymptotically Good Maximal Entanglement
QUENTA Codes

In this section, we show that from any family of (classical) asymptotically good
AG codes, we can construct a family of asymptotically good maximal entangle-
ment QUENTA codes. This is a consequence of the use of the result from Carlet,
et al. [4] applied to Theorem 2. Before showing it, we need to define the concept
of (classical) asymptotically good codes.

Definition 8. Let q be a prime power and αq := sup{R ∈ [0, 1] : (δ,R) ∈ Uq},
for 0 ≤ δ ≤ 1. Here Uq denotes the set of all ordered pair (δ,R) ∈ [0, 1]2

for which there is a family of linear codes that are indexed as Ct, with pa-
rameters [nt, kt, dt]q, such that nt → ∞ as t → ∞ and δ = limt→∞ dt/nt,
R = limt→∞ kt/nt. If δ,R > 0, then the family is called asymptotically good.

Proposition 7. [4, Corollary 5.5] Let q ≥ 3 be a power of a prime and A(q) =

lim supg→∞
Nq(g)
g , where Nq(g) denotes the maximum number of rational places

that a global function field of genus g with full constant field Fq can have. Then
there exists a family of LCD codes with

αLCDq (δ) ≥ 1− δ − 1

A(q)
, for δ ∈ [0, 1]. (4)

Theorem 6. Let q ≥ 3 be a power of a prime and A(q) as defined in Propo-
sition 7. Then there exists a family of maximal entanglement QUENTA codes
with parameters [[nt, kt, dt; ct]]q, such that

lim
t→∞

dt
nt
≥ δ, lim

t→∞

kt
nt
≥ 1− δ − 1

A(q)
, and lim

t→∞

ct
nt
∈ [δ, δ + 1/A(q)].

(5)
for δ ∈ [0, 1− 1/A(q)].
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Although the Gilbert-Varshamov bound for QUENTA codes over qudits has
not been defined, we conjecture that the codes constructed in Theorem 6 exceeds
the asymptotic Gilbert-Varshamov for q sufficiently large.

5 Conclusion

This paper has been devoted to the use of AG codes in the construction of
QUENTA codes. We firstly showed that the intersection of two AG codes is
also a AG code. This was used in a new description of how to compute the
entanglement in a QUENTA code. As a consequence, we constructed three new
families of QUENTA codes where one of them is MDS and the other is almost
MDS. Lastly, it was shown that for any asymptotically good classical family of
AG code, there is a family asymptotically good maximal entanglement QUENTA
codes. It is worth mentioning that all the results presented in this paper can be
generalized to QUENTA codes derived from the Hermitian case.
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