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71 Preface

You are reading the second edition of some lecture notes, which try to give an in-
troduction to Functional Analysis. The second edition differs from the first edition.
Further there are added more and more subjects and it becomes the question if there
can be spoken about an introduction to the functional analysis. It becomes more
and more a kind of overview of the functional analysis.

It is also possible that this is the ?-th edition of these lecture notes. My advice
is, if you want to know something, look in the Index or the Contents and try to
find everything that is needed to understand your particular problem. If you start
with reading from the first sentence of these notes, it takes a long time before you
come into the world of the functional analysis. As already said, these lectures notes
become more and more a kind of overview of everything and nothing. I hope you
can use these notes, more I can not do.

To me was asked is to treat the chapters 2 and 3 out of the book (Kreyszig, 1978).
To understand these chapters, it is also needed to do parts out of chapter 1. These
parts will be done if needed.
During the writing1 of these lecture notes is made use2 of the books of (Kreyszig,
1978), (Sutherland, 1975), (Griffel, 1981) and (Jain et al., 1996). Naturally there
are used also other books and there is made use of lecture notes of various authors.
Therefore here below a little invitation to look at internet. With "little" is meant,
to be careful with your time and not to become enslaved in searching to books and
lecture notes going about Functional Analysis. To search information is not so dif-
ficult, but to learn from the founded information is quite another discipline.
On the internet there are very much free available lectures notes, see for instance
Chen-1. Before October 2009, there was also the site geocities, but this site is
no longer available! Let’s hope that something like geocities comes back! There are
some initiatives to save the data of geocities, but at this moment: May 2011, I have
no idea, where I can find the saved data.
It is also possible to download complete books, see for instance esnips or kniga.
Searching with "functional analysis" and you will find the necessary documents,
most of the time .djvu and/or .pdf files.
Be careful where you are looking, because there are two kinds of "functional analy-
ses":

1. Mathematics:

It still goes on, René.1

Also is made use of the wonderful TeX macro package ConTeXt, see context.2

http://www.maths.mq.edu.au/~wchen/ln.html
http://www.geocities.com/alex_stef/mylist.html
http://www.esnips.com
http://lib.org.by
http://wiki.contextgarden.net/Main_Page
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A branch of analysis which studies the properties of mappings of classes of func-
tions from one topological vector space to another.

2. Systems Engineering:
A part of the design process that addresses the activities that a system, soft-
ware, or organization must perform to achieve its desired outputs, that is, the
transformations necessary to turn available inputs into the desired outputs.

The first one will be studied.
Expressions or other things, which can be find in the Index, are given by a lightgray
color in the text, such for instance functional analysis .
The internet gives a large amount of information about mathematics. It is worth to
mention the wiki-encyclopedia wiki-FA. Within this encyclopedia there are made
links to other mathematical sites, which are worth to read. Another site which has
to be mentioned is wolfram-index, look what is written by Functional Analysis,
wolfram-FA.
For cheap printed books about Functional Analysis look to NewAge-publ. The
mentioned publisher has several books about Functional Analysis. The book of (Jain
et al., 1996) is easy to read, the other books are going about a certain application
of the Functional Analysis. The website of Alibris has also cheap books about
Functional Analysis, used books as well as copies of books.
Problems with the mathematical analysis? Then it is may be good to look in
Math-Anal-Koerner. From the last mentioned book, there is also a book with
the answers of most of the exercises out of that book.
If there is need for a mathematical fitness program see then Shankar-fitness.
Downloading the last two mentioned books needs some patience.

http://en.wikipedia.org/wiki/Functional_analysis
http://mathworld.wolfram.com/letters
http://mathworld.wolfram.com/FunctionalAnalysis.html
http://www.newagepublishers.com/servlet/nasubjdisp?offset=0&subname=Mathematics&ordby=Publication Year
http://www.alibris.com
http://www.eknigu.com/info/M_Mathematics/MC_Calculus/MCet_Elementary calculus textbooks/Koerner T.W. A companion to analysis (book draft G2)(T)(598s).djvu
http://lib.org.by/info/M_Mathematics/MP_Mathematical physics/MPt_Textbooks/Shankar R. Basic Training In Mathematics.. A fitness program for science students (Plenum,1995)(ISBN 0306450364)(K)(600dpi)(T)(390s)_MPt_.djvu


92 Preliminaries

A short overview will be given of all kind of terms, which are used in the chapters
behind this one. It is not the intention to give a complete overview of the analysis
on the Rn, in this chapter.
Since the Functional Analysis is kind of generalisation of the analysis already known,
so it is hard to present everything in one unbroken line. So there will be sometimes
referred to paragraphs further on in the lectures notes. It is of importance to read
these references.

2.1 Mappings

If X and Y are sets and A ⊆ X any subset of X. A mapping T : A→ Y is some
relation, such that for each x ∈ A, there exists a single element y ∈ Y , such that
y = T (x). If y = T (x) then y is called the image of x with respect to T .
Such a mapping T can also be called a function, a transformation or an operator.
The name depends of the situation in which such a mapping is used. It also depends
on the properties of the setsX and Y . IfX and Y are vector spaces (Chapter 3.2),
in particular normed spaces ( Chapter 3.7), a map T is called an operator .
Such a mapping is may be not defined on the whole of X, but only a certain subset
of X, such a subset is called the domain of T , denoted by D(T ).
Some people make a distinction between a map and a function. If X = Rn and
Y = Rm, they speak about functions and not about maps. In these Lecture Notes
there is not really made a strict distinction.
The set of all images of T is called the range of T , denoted by R(T ),

R(T ) = {y ∈ Y | y = T (x) for some x ∈ D(T )}. (2.1)

The set of all elements out of x ∈ D(T ), such that T (x) = 0, is called the nullspace
of T and denoted by N (T ),

N (T ) = {x ∈ D(T )|T (x) = 0}. (2.2)

If M ⊂ D(T ) then T (M) is called the image of the subset M , note that T (D(T )) =
R(T ).
Two properties called one-to-one and onto are of importance, if there is searched for
a mapping from the range of T to the domain of T . Going back it is of importance
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that every y0 ∈ R(T ) is the image of just one element x0 ∈ D(T ). This means that
y0 has a unique original.
A mapping T is called one-to-one if for every x, y ∈ D(T )

x 6= y =⇒ T (x) 6= T (y). (2.3)

It is only a little bit difficult to use that definition. Another equivalent definition is

T (x) = T (y) =⇒ x = y. (2.4)

If T satisfies one of these properties, T is also called injective , T is an injection,
or T is one-to-one.
A mapping T : D(T )→ Y is said to be onto if R(T ) = Y , or

∀y ∈ Y there exists a x ∈ D(T ), such that y = T (x). (2.5)

Note that T : D(T )→ R(T ) is always onto. If T is onto, it is also called surjective ,
T is an surjection or T is onto.
If T : D(T )→ Y is one-to-one and onto then T is called bijective , T is an bijection.
This means that there exists an inverse mapping T−1 of T , with T−1 : Y → D(T ).
Since for every y ∈ Y there exists an unique x ∈ D(T ), such that T (x) = y, the
function T−1 is defined by T−1(y) = x.
And so you have that T−1 T = I with I the identity mapping onD(T ) and T T−1 = I
with I the identity mapping on Y . Sometimes the identity mapping has some index,
such that you know, about what identity is spoken. For instance IX , the identity
mapping on X and IY , the identity mapping on Y .

2.2 Bounded, open and closed subsets

The definitions will be given for subsets in Rn for some n ∈ N. On Rn, there is
defined a mapping to measure distances between points in Rn. A norm, notated by
‖ . ‖, see definition 3.23, can be used to measure the distance between points. More
general can be used a metric, notated by d(., .), see definition 3.18.
A subset A ⊂ Rn is bounded , if there exists a K ∈ R such that

‖ x − y ‖≤ K, (2.6)
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for all x ∈ A and a fixed y ∈ Rn.
An open ball , with radius ε > 0 around some point x0 ∈ Rn is written by Bε(x0)
and defined by

Bε(x0) = {x ∈ Rn| ‖ x− x0 ‖< ε}. (2.7)

A subset A ⊂ Rn is open , if for every x ∈ A there exists an ε > 0, such that
Bε(x) ⊂ A.
The complement of A is written by Ac and defined by

Ac = {x ∈ Rn|x /∈ A}. (2.8)

A subset A ⊂ Rn is closed , if Ac is open.
If A and B are sets, then the relative complement of A in B is defined by

B\A = {x ∈ B |x /∈ A}, (2.9)

in certain sense: set B minus set A.

2.3 Convergent and limits

Sequences {xn}n∈N are of importance to study the behaviour of all kind of different
spaces and also mappings. Most of the time, there will be looked if a sequence
is convergent or not? There will be looked if a sequence has a limit . The
sequence {λn}n∈N has limit λ if for every ε > 0 there exists a N(ε) such that for
every n > N(ε), ‖ λn − λ ‖< ε.
Sometimes it is difficult to calculate λ, and so also difficult to look if a sequence
converges. But if a sequence converges, it is a Cauchy sequence . The sequence
{λn}n∈N is a Cauchy sequence, if for every ε > 0 there exists a N(ε) such that for
every m,n > N(ε), ‖ λm − λn ‖< ε. Only elements of the sequence are needed and
not the limit of the sequence.
But be careful, a convergent sequence is a Cauchy sequence, but not every Cauchy
sequence converges!
A space is called complete if every Cauchy sequence in that space converges.
If there is looked at a sequence, it is important to look to the tail of that sequence.
In some cases the tail has to converge to a constant and in other situations it is of
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importance that these terms become small. In some literature the authors define
explicitly the tail of a sequence , see for instance in (Searcoid, 2007). In the lecture
notes of (Melrose, 2004) is the term tail used, but nowhere is to find a definition of it.

Suppose that X is an non-empty set and let x = {xn}n∈N be a sequence in X. Let
m ∈ N, the set {xn | n ∈ N andn ≥ m} is called the m-th tail of the sequence
{xn}n∈N, notated by tailm(x) .

Definition 2.1

2.4 Rational and real numbers

There are several numbers, the natural numbers N = { 1, 2, 3, . . .}, the whole numbers
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the rational numbers Q = { p

q
| p, q ∈ Z}, the

real numbers numbers R and the complex numbers C = { a+i b | a, b ∈ R and i2 =
−1}.
Every real numbers is the limit of a sequence of rational numbers. The real numbers
R is the completion of Q. The real numbers R exist out of Q joined with all the
limits of the Cauchy sequences in Q.

2.5 Accumulation points and the closure of a subset

LetM be subset of some spaceX. Some point x0 ∈ X is called an accumulation point
of M if every ball of x0 contains at least a point y ∈M , distinct from x0.
The closure of M , denoted by M, is the union of M with all its accumulation
points.
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x ∈ M if and only if there is a sequence {xn}n∈N in M such that limn→∞ xn = x.

Theorem 2.1

Proof of Theorem 2.1

The proof exists out of two parts.

(⇒) If x ∈ M then x ∈ M or x /∈ M . If x ∈ M take then xn = x for each n. If
x /∈ M , then x is an accumulation point of M , so for every n ∈ N, the ball
B 1
n

(x) contains a point xn ∈ M . So there is constructed a sequence {xn}n∈N
with
‖ xn − x ‖< 1

n → 0, if n→∞.
(⇐) If {xn}n∈N ⊂M and ‖ xn − x ‖→ 0, if n→∞, then every neighbourhood

of x contains points xn 6= x, so x is an accumulation point of M .

�

M is closed if and only if the limit of every convergent sequence in M is an ele-
ment of M .

Theorem 2.2

Proof of Theorem 2.2

The proof exists out of two parts.

(⇒) M is closed and there is a convergent sequence {xn}n∈N inM , limn→∞ xn = x.
If x /∈M then x ∈M c. M c is open, so there is a δ > 0 such that Bδ(x) ⊂M c,
but then ‖ xn − x ‖> δ. This means that the sequence is not convergent, but
that is not the case, so x ∈M .

(⇐) If M is not closed, then is M c not open. So there is an element x ∈M c, such
that for every ball B 1

n
(x), with n ∈ N, there exist an element xn ∈M .

Since limn→∞
1
n = 0, the sequence {xn}n∈N converges in M . The limit of

every convergent sequence in M is an element of M , so x ∈ M , this gives a
contradiction, so M is closed.
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�

M is closed if and only if M = M.

Theorem 2.3

Proof of Theorem 2.3

The proof exists out of two parts.

(⇒) M ⊆ M, if there is some x ∈ M \M , then x is an accumulation point of M, so
there can be constructed a convergent sequence {xn}n∈N out of M with limit
x. M is closed, so x ∈M , so M \M = ∅.

(⇐) Let {xn}n∈N be a convergent sequence in M , with limn→∞ xn = x, since
M \M = ∅, the only possibility is that x ∈M , so M is closed.

�

Let K be the intersection of all closed sets containing M , then K = M. This
means that M is the smallest closed set containing M .

Theorem 2.4

Proof of Theorem 2.4

The proof exists out of two parts.

(⇒) M is closed and M ⊂ M, so K ⊂ M.
(⇐) If S is closed and M ⊂ S, then M ⊂ S = S and so M ⊂ K.

�
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2.6 Dense subset

The subset Y ⊂ X is (everywhere) dense in X if Y = X.
This is the case if and only if Y ∩ Br(x) 6= ∅ for every x ∈ X and every r > 0.

Definition 2.2

Most of the time, dense is used in the following sense:
Let Y and X be sets and Y ⊆ X. Y is a dense subset of X, if for every x ∈ X,
there exists a sequence of elements {yn}n∈N in Y , such that limn→∞ yn = x.
Or in other words, every point in X is a point of Y or a limit point of Y .
The rational numbers Q is a dense subset of real numbers R, Q lies dense in R.

2.7 Separable and countable space

With countable is meant that every element of a space X can be associated with
an unique element of N and that every element out of N corresponds with an unique
element out of X. The mathematical description of countable becomes, a set or a
space X is called countable if there exists an injective function

f : X → N.

If f is also surjective, thus making f bijective, then X is called countably infinite

or denumerable .
The space X is said to be separable if this space has a countable subset M of X,
which is also dense in X. M is countable, means that M = {yn|yn ∈ X}n∈N. M is
dense in X, means thatM = X. If x ∈ X then there exists in every neighbourhood
of x an element of M , so span{yn ∈M |n ∈ N} = X.



16

The rational numbers Q are countable and are dense in R, so the real numbers are
separable.

2.8 Compact subset

There are several definitions of compactness of a subset M , out of another set X.
These definitions are equivalent if (X, d) is a metric space ( Metric Spaces, see sec-
tion 3.5), but in non-metric spaces they have not to be equivalent, carefulness is
needed in such cases.
Let (Sα)α∈IS be a family of subsets of X, with IS is meant an index set. This family
of subsets is a cover of M , if

M ⊂ ∪α∈ISSα (2.10)

and (Sα)α∈IS is a cover of X, if ∪α∈ISSα = X. Each element out of X belongs to
a set Sα out of the cover of X.
If the sets Sα are open, there is spoken about a open cover .

• The subset M is said to be compact in X, if every open cover of M contains

a finite subcover , a finite number of sets Sα which cover M .
• The subsetM is said to be countable compact in X, if every countable open

cover of M contains a finite subcover.
• The subset M is said to be sequentially compact in X, if every sequence in

M has a convergent subsequence in M .

The open interval ( 0, 1) is not compact.

Example 2.1

Explanation of Example 2.1

Consider the open sets In = ( 1
n+ 2 ,

1
n

) with n ∈ {1, 2, 3, · · ·} = N. Look
to the open cover { In | n ∈ N}. Assume that this cover has a finite subcover
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F = {(a1, b1), (a2, b2), · · · , (an0 , bn0)}, with ai < bi and 1 ≤ i ≤ n0. Define
α = min(a1, · · · , an0) and α > 0, because there are only a finite number of ai.
The points in the interval ( 0, α) are not covered by the subcover F , so the given

cover has no finite subcover. �

Read the definition of compactness carefully: " Every open cover has to contain a
finite subcover". Just finding a certain open cover, which has a finite subcover, is
not enough!

X

MSα Sα ∩M

Figure 2.1 Compactness
and open sets

Compactness is a topological property. In the situation of figure 2.1, there are two
topologies, the topology on X and a topology on M . The topology on M is induced
by the topology on X. Be aware of the fact that the set Sα ∩M is an open set of
the topology on M .

A compact subset M of a metric space (X, d) is closed and bounded.

Theorem 2.5

Proof of Theorem 2.5

First will be proved that M is closed and then will be proved that M is bounded.
Let x ∈ M , then there exists a sequence {xn} in M , such that xn → x, see
theorem 2.1. The subsetM is compact in the metric space (X, d). In theorem 6.6
is proved, that in a metric space compactness is equivalent with sequentially com-
pactness, so x ∈M . Hence M is closed, because x ∈M was arbitrary chosen.
The boundedness of M will be proved by a contradiction.
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Suppose that M is unbounded, then there exists a sequence {yn} ⊂ M such that
d(yn, a) > n, with a ∈ M , a fixed element. This sequence has not a convergent
subsequence, what should mean thatM is not compact, what is not the case. Hence,
M has to be bounded. �

The converse of theorem 2.5 is in general not true, but for Rn the converse is true
as well. The Heine-Borel theorem 2.6 characterizes compact subsets of Rn.

The theorem of Heine-Borel:
In Rn with usual metric d, for any subset A ⊂ Rn:

A is compact if and only if A is closed and bounded.

Theorem 2.6

Proof of Theorem 2.6

The proof exists out of two parts.

(⇒) The (Rn, d) is a metric space, A is a compact subset, so use theorem 2.5.
(⇐) A ⊂ Rn is closed and bounded. Let {xi}i∈N be a sequence in A. Since A

is bounded, any sequence in A must be bounded, so the sequence {xi}i∈N
is a bounded sequence. The theorem of Bolzano-Weierstrass 6.1 implies
that there exists a convergent subsequence of {xi}i∈N in A. ( Construct a
convergent subsequence by taking coordinate wise subsequences of the origi-
nal sequence {xi}i∈N. The constructed convergent subsequence exists, since
Rn is finite dimensional.) Let’s call the limit point of this subsequence: x.
Since A is closed, x ∈ A. So any sequence in A has a convergent subsequence
with limit point in A, so A is sequentially compact. In a metric space sequen-
tially compactness is equivalent with compactness, see theorem 6.6, so A is
compact.

�

2.9 Supremum and infimum
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Axiom 2.1 The Completeness Axiom for the real numbers
If a non-empty set A ⊂ R has an upper bound, it has a least upper bound.

A bounded subset S ⊂ R has a maximum or a supremum and has a mimimum or
an infimum.
A supremum , denoted by sup, is the lowest upper bound of that subset S. If the
lowest upper bound is an element of S then it is called a maximum , denoted by
max.
An infimum , denoted by inf, is the greatest lower bound of that subset. If the
greatest lower bound is an element of S then it is called a minimum , denoted by
min.
There is always a sequence of elements {sn}n∈N, with for sn ∈ S every n ∈ N, which
converges to a supremum or an infimum, if they exist.

Look to the interval S = (0, 1]. Then inf {S} = 0 and min {S} does not exist
(0 /∈ S) and sup {S} = max {S} = 1 ∈ S.

Example 2.2

2.10 Continuous, uniformly continuous and Lipschitz continuous

Let T : X → Y be a mapping, from a space X with a norm ‖ . ‖1 to a space Y
with a norm ‖ . ‖2. This mapping T is said to be continuous at a point x0 ∈ X,
if for every ε > 0, there exists a δ(ε) > 0 such that for every x ∈ Bδ(x0) = {y ∈
X| ‖ y − x0 ‖1< δ}, there is satisfied that T (x) ∈ Bε(T (x0)), this means that
‖ T (x)− T (x0) ‖2< ε, see figure 2.2.
The mapping T is said to be uniformly continuous , if for every ε > 0, there exists
a δ(ε) > 0 such that for every x and y in X, with ‖ x− y ‖1< δ(ε), there is satisfied
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that ‖ T (x)− T (y) ‖2< ε.
If a mapping is continuous, the value of δ(ε) depends on ε and on the point in the
domain. If a mapping is uniformly continuous, the value of δ(ε) depends only on ε
and not on the point in the domain.
The mapping T is said to be Lipschitz continuous , if there exists a constant L > 0
such that ‖ T (x)− T (y) ‖2≤ L ‖ x− y ‖1 for every x and y in X.

x

y

x0
(x0 + δ)(x0 − δ)

T (x0)

(T (x0) + ε)

(T (x0)− ε)

y = T (x)

0

Figure 2.2 Continuous map

A mapping T : X → Y of a normed space X with norm ‖ . ‖1 to a normed space
Y with norm ‖ . ‖2 is continuous at x0 ∈ X if and only if for every sequence in
(xn)n∈N in X with limn→∞ xn = x0 follows that limn→∞ T (xn) = T (x0).

Theorem 2.7

Proof of Theorem 2.7

The proof exists out of two parts.

(⇒) Let ε > 0 be given. Since T is continuous, then there exists a δ(ε) such that
‖ T (xn) − T (x0) ‖2< ε when ‖ xn − x0 ‖1< δ(ε). Known is that xn → x0, so
there exists an Nε = N(δ(ε)), such that ‖ xn − x0 ‖1< δ(ε) for every n > Nε.
Hence ‖ T (xn) − T (x0) ‖2< ε for n > Nε, so T (xn) → T (x0).
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(⇐) Assume that T is not continuous. Then there exists a ε > 0 such that for every
δ > 0, there exists an x ∈ X with ‖ x − x0 ‖1< δ and ‖ T (xn) − T (x0) ‖2≥ ε.
Take δ = 1

n and there exists an xn ∈ X with ‖ xn − x0 ‖1< δ = 1
n with

‖ T (xn) − T (x0) ‖2≥ ε. So a sequence is constructed such that xn → x0 but
T (xn) 9 T (x0) and this contradicts T (xn)→ T (x0).

�

Theorem 2.7 can be generalised, so is Theorem 2.7 is also valid for a map
T : X → Y between two Metric Spaces (X, d1) and (Y, d2). The proof is almost
the same, replace ‖ a − b ‖1 by d1(a, b) and ‖ c − d ‖2 by d2(c, d) with respectively
a, b ∈ X and c, d ∈ Y .

Remark 2.1

2.11 Continuity and compactness

Important are theorems about the behaviour of continuous mappings with respect
to compact sets.

If T : X → Y is a continuous map
and V ⊂ X is compact then is T (V ) ⊂ Y compact.

Theorem 2.8

Proof of Theorem 2.8

(⇒) Let U be an open cover of T (V ). T−1(U) is open for every U ∈ U , because
T is continuous. The set {T−1(U) | U ∈ U} is an open cover of V , since for
every x ∈ V, T (x) must be an element of some U ∈ U . V is compact, so there
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exists a finite subcover {T−1(U1), · · · , T−1(Un0)}, so {U1, · · · , Un0} is a finite
subcover of U for T (V ).

�

Let (X, d1) and (Y, d2) be metric spaces and T : X → Y a continuous mapping
then is the image T (V ), of a compact subset V ⊂ X, closed and bounded.

Theorem 2.9

Proof of Theorem 2.9

The image T (V ) is compact, see theorem 2.8 and a compact subset of a metric

space is closed and bounded, see theorem 2.5. �

A Compact Metric Space X is a Metric Space in which every sequence has a
subsequence that converges to a point in X.

Definition 2.3

In a Metric Space, sequentially compactness is equivalent to the compactness de-
fined by open covers, see section 2.8.

An example of a compact metric space is a bounded and closed interval [a, b],
with a, b ∈ R with the metric d(x, y) = | x − y |.

Example 2.3
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Let (X, d1) and (Y, d2) be two Compact Metric Spaces, then every continuous
function f : X → Y is uniformly continuous.

Theorem 2.10

Proof of Theorem 2.10

The theorem will be proved by a contradiction.
Suppose that f is not uniformly continuous, but only continuous.
If f is not uniformly continous, then there exists an ε0 such that for all δ > 0, there
are some x, y ∈ X with d1(x, y) < δ and d2(f(x), f(y)) ≥ ε0.
Choose two sequences {vn} and {wn} in X, such that

d1(vn, wn) < 1
n

and d2(f(vn), f(wn)) ≥ ε0.

The metric Space X is compact, so there exist two converging subsequences {vnk}
and {wnk}, (vnk → v0 and wnk → w0), so

d1(vnk , wnk) < 1
nk

and d2(f(vnk), f(wnk)) ≥ ε0. (2.11)

The sequences {vnk} and {wnk} converge to the same point and since f is continu-
ous, statement 2.11 is impossible.

The function f has to be uniformly continuous. �

2.12 Pointwise and uniform convergence

Pointwise convergence and uniform convergence are of importance when there is
looked at sequences of functions.
Let C[a, b], the space of continous functions on the closed interval [a, b]. A norm
which is very much used on this space of functions is the so-called sup-norm, defined
by supt∈[a,b] | f(t) |
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‖ f ‖∞ = sup
t∈[a,b]

| f(t) | (2.12)

with f ∈ C[a, b]. The fact that [a, b] is a compact set of R, means that the
supt∈[a,b] | f(t) |= maxt∈[a,b] | f(t) |.
Let {fn}n∈N be a sequence of functions, with fn ∈ C[a, b]. If x ∈ [a, b] then is
{fn(x)}n∈N a sequence in R.
If for each fixed x ∈ [a, b] the sequence {fn(x)}n∈N converges, there can be defined
the new function f : [a, b]→ R, by f(x) = limn→∞ fn(x).
For each fixed x ∈ [a, b] and every ε > 0, there exist a N(x, ε) such that for every
n > N(x, ε), the inequality | f(x)− fn(x) |< ε holds.
The sequence {fn}n∈N converges pointwise to the function f . For each fixed
x ∈ [a, b], the sequence {fn(x)}n∈N converges to f(x). Such limit function is not
always continous.

Let fn(x) = xn and x ∈ [0, 1]. The pointwise limit of this sequence of functions
becomes

f(x) = lim
n→∞

fn(x) =
{ 0 if x ∈ [0, 1);
1 if x = 1.

Important to note is that the limit function f is not continuous, although the
functions fn are continous on the interval [0, 1].

Example 2.4

If the sequence is uniform convergent , the limit function is continous. A sequence
of functions {fn}n∈N, with fn ∈ C[a, b], n ∈ N, converges uniform to the function f ,
if for every ε > 0, there exist a N(ε) such that for every n > N(ε) ‖ f − fn ‖∞< ε.
Note that N(ε) does not depend of x anymore. So | f(x)−fn(x) |< ε for all n > N(ε)
and for all x ∈ [a, b].

If the sequence of functions {fn}n∈N, with fn ∈ C[a, b], n ∈ N, converges uniform
to the function f on the interval [a, b] , then the function f is continuous on [a, b].

Theorem 2.11
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Proof of Theorem 2.11

Let ε > 0 be given, and there is proved that the function f is continuous for some
x ∈ [a, b].
The sequence {fn}n∈N converges uniform on the interval [a, b], so for every s, x ∈
[a, b], there is a N(ε) such that for every n > N(ε),
| f(s) − fn(s) |< ε

3 and | fn(x) − f(x) |< ε
3 (N(ε) does not depend on the value of

s or x).
Take some n > N(ε), the function fn is continous in x, so there is a δ(ε) > 0, such
that for every s, with | s − x |< δ(ε), | fn(s) − fn(x) |< ε

3 . So the function f is
continous in x, because

| f(s)− f(x) |<| f(s)− fn(s) | + | fn(s)− fn(x) | + | fn(x)− f(x) |< ε,

for every s, with | s− x |< δ(ε). �

2.13 Partially and totally ordered sets

On a non-empty set X, there can be defined a relation, denoted by �, between the
elements of that set. Important are partially ordered sets and totally ordered
sets.

The relation � is called a partial order over the set X, if for all a, b, c ∈ X

PO 1: a � a (reflexivity),
PO 2: if a � b and b � a then a = b (antisymmetry),
PO 3: if a � b and b � c then a � c (transitivity).

If � is a partial order over the set X then (X,�) is called a partial ordered set.

Definition 2.4
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The relation � is called a total order over the set X, if for all a, b, c ∈ X

TO 1: if a � b and b � a then a = b (antisymmetry),
TO 2: if a � b and b � c then a � c (transitivity),
TO 3: a � b or b � a (totality).

Totality implies reflexivity. Thus a total order is also a partial order.
If � is a total order over the set X then (X,�) is called a total ordered set.

Definition 2.5

Working with some order, most of the time there is searched for a maximal element
or a minimal element .

Let (X,�) be partially ordered set and Y ⊂ X.

ME 1: M ∈ Y is called a maximal element of Y if

M � x ⇒ M = x, for all x ∈ Y.

ME 2: M ∈ Y is called a minimal element of Y if

x �M ⇒ M = x, for all x ∈ Y.

Definition 2.6
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2.14 Equivalence relation

A given relation ∼ between two arbitrary elements of a set X is said to be an
equivalence relation if and only if for every a, b, c ∈ X

EQ 1: a ∼ a (reflexivity),
EQ 2: if a ∼ b then b ∼ a (symmetry),
EQ 3: if a ∼ b and b ∼ c then a ∼ c (transitivity).

Definition 2.7

The equivalence class of a under ∼ is often denoted as

[a] = {b ∈ X | b ∼ a},

but also quite often by ∼a.

2.15 Limit superior/inferior of sequences of numbers

If there is worked with the limit superior and the limit inferior, it is most of the
time also necessary to work with the extended real numbers R = R ∪ −∞∪∞.
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Let {xn} be real sequence. The limit superior of {xn} is the extended real num-
ber

lim sup
n→∞

xn = lim
n→∞

( sup
k≥n

xk ).

It can also be defined by the limit of the
decreasing sequence sn = sup {xk | k ≥ n}.

Definition 2.8

Let {xn} be real sequence. The limit inferior of {xn} is the extended real num-
ber

lim inf
n→∞

xn = lim
n→∞

( inf
k≥n

xk ).

It can also be defined by the limit of the
increasing sequence tn = inf {xk | k ≥ n}.

Definition 2.9

To get an idea about the lim sup and lim inf, look to the sequence of maximum and
minimum values of the wave of the function f(x) = (1 + 4 exp (−x/10)) sin (5x)
in figure 2.3.
The definitions of lim sup and lim inf, given the Definitions 2.8 and 2.9, are def-
initions for sequences of real numbers. But in the functional analysis, lim sup and
lim inf, have also to be defined for sequences of sets.

2.16 Limit superior/inferior of sequences of sets

Let (Ek | k ∈ N) be a sequence of subsets of an non-empty set S. The sequence of
subsets (Ek | k ∈ N) increases , written as Ek ↑ , if Ek ⊂ Ek+1 for every k ∈ N.
The sequence of subsets (Ek | k ∈ N) decreases , written as Ek ↓ , if Ek ⊃ Ek+1
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Figure 2.3 Illustration of lim sup and lim inf.

for every k ∈ N. The sequence (Ek | k ∈ N) is a monotone sequence if it is
either an increasing sequence or a decreasing sequence.

If the sequence (Ek | k ∈ N) decreases then

lim
k→∞

Ek =
⋂
k∈N

Ek = {x ∈ S | x ∈ Ek for every k ∈ N}.

If the sequence (Ek | k ∈ N) increases then

lim
k→∞

Ek =
⋃
k∈N

Ek = {x ∈ S | x ∈ Ek for some k ∈ N}.

For a monotone sequence (Ek | k ∈ N), the lim
k→∞

Ek always exists,
but it may be ∅.

Definition 2.10

If Ek ↑ then lim
k→∞

Ek = ∅ ⇔ Ek = ∅ for every k ∈ N.
If Ek ↓ then lim

k→∞
Ek = ∅ can be the case, even if Ek 6= ∅ for every k ∈ N. Take

for instance S = [0, 1] and Ek = (0, 1
k

) with k ∈ N.
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The limit superior and the limit inferior of a sequence
(Ek | k ∈ N) of subsets of a non-empty set S is defined by

lim sup
n→∞

En =
⋂
n∈N

(
⋃
k≥n

Ek),

lim inf
n→∞

En =
⋃
n∈N

(
⋂
k≥n

Ek),

both limits always exist, but they may be ∅.

Definition 2.11

It is easily seen that Dn =
⋃
k≥n Ek is a decreasing sequence of subsets,

so limn→∞Dn exists. Similarly is In =
⋂
k≥n Ek is an increasing sequence of sub-

sets, so limn→∞ In exists.

Let (Ek | k ∈ N) be a sequence of subsets of an non-empty set S.

1. lim supk→∞ Ek = {s ∈ S | s ∈ Ek for infinitely many k ∈ N}
2. lim infk→∞ Ek = {s ∈ S | s ∈ Ek for every k ∈ N, but

with a finite number of exceptions},
3. lim infk→∞ Ek ⊂ lim supk→∞ Ek.

Theorem 2.12

Proof of Theorem 2.12

Let Dn =
⋃
k≥n Ek and In =

⋂
k≥n Ek.

1. (⇒) : Let s ∈
⋂
n∈N Dn and s is an element of only a finitely many Ek’s. If

there are only a finite number of Ek’s then there is a maximum value of k. Let’s
call that maximum value k0. Then s /∈ Dk0+1 and therefore s /∈

⋂
n∈N Dn,

which is in contradiction with the assumption about s. So s belongs to infinitely
many members of the sequence (Ek | k ∈ N).
(⇐) : s ∈ S belongs to infinitely many Ek, so let φ(j) be the sequence, in
increasing order, of these numbers k. For every arbitrary number n ∈ N there
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exists a number α such that φ(α) ≥ n and that means that s ∈ Eφ(α) ⊆ Dn.
So s ∈

⋂
n∈N Dn = lim supk→∞ Ek.

2. (⇒) : Let s ∈
⋃
n∈N In and suppose that there infinitely many k’s such that

s /∈ Ek. Let ψ(j) be the sequence, in increasing order, of these numbers k.
For some arbitrary n there exists a β such that ψ(β) > n, so s /∈ Eψ(β) ⊇
In. Since n was arbitrary s /∈

⋃
n∈N In, which is in contradiction with the

assumption about s. So s belongs to all the members of the sequence (Ek |
k ∈ N), but with a finite number of exceptions.
(⇐) : Suppose that s ∈ Ek for all k ∈ N but for a finite number values of
k’s not. Then there exists some maximum value K0 such that s ∈ Ek, when
k ≥ K0. So s ∈ IK0 and there follows that s ∈

⋃
n∈N In = lim infk→∞ Ek.

3. If s ∈ lim infk→∞ Ek then s /∈ Ek for a finite number of k’s but then s is an
element of infinitely many Ek’s, so s ∈ lim supk→∞ Ek, see the descriptions of
lim infk→∞ Ek and lim supk→∞ Ek in Theorem 2.12: 2 and 1.

�

A little example about the lim sup and lim inf of subsets is given by S = R and
the sequence (Ek | k ∈ N) of subsets of S, which is given by{

E2 k = [0, 2 k]
E2 k− 1 = [0, 1

2 k − 1]

with k ∈ N. It is not difficult to see that lim supk→∞ Ek = [0, ∞) and lim infk→∞ Ek =
{0}.

Example 2.5

With the lim sup and lim inf, it also possible to define a limit for an arbitrary
sequence of subsets.

Let (Ek | k ∈ N) be an arbitrary sequence of subsets of a set S. If lim supk→∞ Ek =
lim infk→∞ Ek then the sequence converges and

lim
k→∞

Ek = lim sup
k→∞

Ek = lim inf
k→∞

Ek

Definition 2.12
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It is clear that the sequence of subsets defined in Example 2.5 has no limit, be-
cause lim supk→∞ Ek 6= lim infk→∞ Ek.
But the subsequence (E2 k | k ∈ N) is an increasing sequence with

lim
k→∞

E2 k = [0,∞),

and the subsequence (E2 k−1 | k ∈ N) is a decreasing sequence with

lim
k→∞

E2 k−1 = {0}.

Example 2.6

2.17 Essential supremum and essential infimum

Busy with limit superior and limit inferior, see the Sections 2.15 and 2.16, it is
almost naturally also to write something about the essential supremum and the es-
sential infimum. But the essential supremum and essential infimum have more to
do with Section 2.9. It is a good idea to read first Section 5.1.5, to get a feeling
where it goes about.There has to made use of some mathematical concepts, which
are described later into detail, see at page 270.
Important is the triplet (Ω,Σ, µ), Ω is some set, Σ is some collection of subsets of Ω
and with µ the sets out of Σ can be measured. (Σ has to satisfy certain conditions.)
The triplet (Ω,Σ, µ) is called a measure space, see also page 270.
With the measure space, there can be said something about functions, which are
not valid everywhere, but almost everywhere. And almost everywhere means that
something is true, exept on a set of measure zero.
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A simple example is the interval I = [−
√

3,
√

3] ⊂ R. If the subset J =
[−
√

3,
√

3] ∩ Q is measured with the Lebesque measure, see Section 5.1.6, the
measure of J is zero. An important argument is that the numbers out of Q are
countable and that is not the case for R, the real numbers.

Example 2.7

If there is measured with some measure, it gives also the possibility to define differ-
ent bounds for a function f : Ω → R.
A real number α is called an upper bound for f on Ω, if f(x) ≤ α for all x ∈ Ω.
Another way to express that fact, is to say that

{x ∈ Ω | f(x) > α} = ∅.

But α is called an essential upper bound for f on Ω, if

µ({x ∈ Ω | f(x) > α}) = 0,

that means that f(x) ≤ α almost everywhere on Ω. It is possible that there are
some x ∈ Ω with f(x) > α, but the measure of that set is zero.
And if there are essential upper bounds then there can also be searched to the
smallest essential upper bound, which gives the essential supremum , so

ess sup( f) = inf{α ∈ R | µ({x ∈ Ω | f(x) > α}) = 0},

if {α ∈ R | µ({x ∈ Ω | f(x) > α}) = 0} 6= ∅, otherwise ess sup( f) = ∞.
At the same way, the essential infimum is defined as the largest essential lower bound ,
so the essential infimum is given by

ess inf( f) = sup{β ∈ R | µ({x ∈ Ω | f(x) < β}) = 0},
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if {α ∈ R | µ({x ∈ Ω | f(x) < β}) = 0} 6= ∅, otherwise ess sup( f) = −∞.

This example is based on Example 2.7. Let’s define the function f by

f(x) =
{
x if x ∈ J ⊂ Q,
arctan(x) if x ∈ (I\J) ⊂ (R \Q),
−4 if x = 0.

Let’s look to the values of the function f on the interval [−
√

3,
√

3].
So are values less then −4 lower bounds of f and the infimum of f , the greatest
lower bound, is equal to −4. A value β, with −4 < β < −π3 , is an essential
lower bound of f . The greatest essential lower bound of f , the essential infimum,
is equal to arctan(−

√
3) = −π3 .

The value arctan(
√

3) = π
3 is the essential supremum of f , the least essential up-

per bound. A value β with π
3 < β <

√
3 is an essential upper bound of f . The

least upper bound of f, the supremum, is equal to
√

3. Values greater then
√

3 are
just upper bounds of f .

Example 2.8



353 Spaces

Be careful in thinking about Vector Spaces and Topological Spaces. In a Vector
Space there is looked at elements that can be added or subtracted of each other.
In a Topological Space there is looked at the union or intersection of sets. So is
a Metric Space not by definition a Vector Space, but a Normed Space has to be a
Vector Spaces as well as a Topological Space. Be careful in reading the definitions
of these different spaces!

3.1 Flowchart of spaces

In this chapter is given an overview of classes of spaces. A space is a particular
set of objects, with which can be done specific actions and which satisfy specific
conditions. Here are the different kind of spaces described in a very short way. It is
the intention to make clear the differences between these specific classes of spaces.
See the flowchart at page 37.
Let’s start with a Vector Space and a Topological Space.
A Vector Space consists out of objects, which can be added together and which
can be scaled ( multiplied by a constant). The result of these actions is always an
element in that specific Vector Space. Elements out of a Vector Space are called
vectors.
A Topological Space consist out of sets, which can be intersected and of which the
union can be taken. The union and the intersection of sets give always a set back
in that specific Topological Space. This family of sets is most of the time called a
topology. A topology is needed when there is be spoken about concepts as continu-
ity, convergence and for instance compactness.
If there exist subsets of elements out of a Vector Space, such that these subsets
satisfy the conditions of a Topological Space, then that space is called a Topological
Vector Space. A Vector Space with a topology, the addition and the scaling become
continuous mappings.
Topological Spaces can be very strange spaces. But if there exists a function, which
can measure the distance between the elements out of the subsets of a Topological
Space, then it is possible to define subsets, which satisfy the conditions of a Topo-
logical Space. That specific function is called a metric and the space in question is
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then called a Metric Space. The topology of that space is described by a metric.
A metric measures the distance between elements, but not the length of a particular
element. On the other hand, if the metric can also measure the length of an object,
then that metric is called a norm.
A Topological Vector Space, together with a norm, that gives a Normed Space. With
a norm it is possible to define a topology on a Vector Space.
If every Cauchy row in a certain space converges to an element of that same space
then such a space is called complete.
A Metric Space, where all the Cauchy rows converges to an element of that space is
called a Complete Metric Space. Be aware of the fact that for a Cauchy row, only
the distance is measured between elements of that space. There is only needed a
metric in first instance.
In a Normed Space it is possible to define a metric with the help of the norm. That
is the reason that a Normed Space, which is complete, is called a Banach Space.
With the norm still the length of objects can be calculated, which can not be done
in a Complete Metric Space.
With a norm it is possible to measure the distance between elements, but it is not
possible to look at the position of two different elements, with respect to each other.
With an inner product, the length of an element can be measured and there can
be said something about the position of two elements with respect to each other.
With an inner products it is possible to define a norm and such Normed Spaces are
called Inner Product Spaces. The norm of an Inner Product Space is described by
an inner product.
An Inner Product Space which is complete, or a Banach Space of which the norm
has the behaviour of an inner product, is called a Hilbert Space.
For the definition of the mentioned spaces, see the belonging chapters of this lecture
note or click on the references given at the flowchart, see page 37.

From some spaces can be made a completion, such that the enlarged space becomes
complete. The enlarged space exist out of the space itself united with all the limits
of the Cauchy rows. These completions exist from a metric space, normed space
and an inner product space,

1. the completion of a metric space is called a complete metric space,

2. the completion of a normed space becomes a Banach space and

3. the completion of an inner product space becomes a Hilbert space.
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Vector Space
( section 3.2 )

Topological Space
( section 3.3 )

Topological
Vector Space

( section 3.4 )

Metric Space
( section 3.5 )

Normed Space
( section 3.7 )

Complete Metric Space
( section 3.6 )

Inner Product Space
( section 3.9 )

Banach Space
( section 3.8 )

Hilbert Space
( section 3.10 )

Figure 3.1 A flowchart of spaces.
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3.2 Vector Spaces

A vector space is a set S of objects, which can be added together and multiplied
by a scalar. The scalars are elements out of some field K, most of the time, the
real numbers R or the complex numbers C. The addition is written by (+) and the
scalar multiplication is written by (·).

A Vector Space V S is a set S, such that for every x, y, z ∈ S and α, β ∈ K

VS 1: x+ y ∈ S,

VS 2: x+ y = y + x,

VS 3: (x+ y) + z = x+ (y + z),

VS 4: there is an element 0 ∈ V with x+ 0 = x,

VS 5: given x, there is an element −x ∈ S with x+ (−x) = 0,

VS 6: α · x ∈ S,

VS 7: α · (β · x) = (αβ) · x,

VS 8: 1 · x = x,

VS 9: (α + β) · x = α · x+ β · x,

VS 10: α · (x+ y) = α · x+ α · y.

Definition 3.1

The quartet (S,K, (+), (·)) satisfying the above given conditions is called a Vec-
tor Space.
The different conditions have to do with: VS 1 closed under addition, VS 2 com-
mutative, VS 3 associative, VS 4 identity element of addition, VS 5 additive
inverse, VS 6 closed under scalar multiplication, VS 7 compatible multiplications,
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VS 8 identity element of multiplication, VS 9 distributive: field addition, VS 10
distributive: vector addition. For more information about a field , see wiki-field.

http://en.wikipedia.org/wiki/Field_(mathematics)
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Let x ∈ X, γ ∈ K and let E,F be subsets of X,
the following notations are adopted:

1. x + F = {x + y | y ∈ F},
2. E + F = {x + y | x ∈ E, y ∈ F},
3. k E = {k x | x ∈ E}.

Remark 3.1

3.2.1 Linear Subspaces

There will be worked very much with linear subspaces Y of a Vector Space X.

Let ∅ 6= Y ⊆ X, with X a Vector Space. Y is a linear subspace of the Vector
Space X if

LS 1: for every y1, y2 ∈ Y holds that y1 + y2 ∈ Y ,

LS 2: for every y1 ∈ Y and for every α ∈ K holds that α y1 ∈ Y .

Definition 3.2

To look, if ∅ 6= Y ⊆ X could be a linear subspace of the Vector Space X, the
following theorem is very useful.

If ∅ 6= Y ⊆ X is a linear subspace of the Vector Space X then 0 ∈ Y .

Theorem 3.1

Proof of Theorem 3.1
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Suppose that Y is a linear subspace of the Vector Space X. Take a y1 ∈ Y and take
α = 0 ∈ K then α y1 = 0 y1 = 0 ∈ Y . �

Furthermore it is good to realize that if Y is linear subspace of the Vector Space X
that the quartet (Y,K, (+), (·)) is a Vector Space.
Sometimes there is worked with the sum of linear subspaces .

Let U and V be two linear subspaces of a Vector Space X. The sum U + V is
defined by

U + V = {u + v | u ∈ U, v ∈ V }.

Definition 3.3

It is easily verified that U + V is a linear subspace of X.
If X = U + V then X is said to be the sum of U and V . If U ∩ V = ∅ then
x ∈ X can uniquely be written in the form x = u + v with u ∈ U and v ∈ V , then
X is said to be the direct sum of U and V , denoted by X = U ⊕ V .

A Vector Space X is said to be the direct sum of the linear subspaces U and V ,
denoted by

X = U ⊕ V,

if X = U + V and U ∩ V = ∅. Every x ∈ X has an unique representation

x = u + v, u ∈ U, v ∈ V.

Definition 3.4

If X = U ⊕ V then V is called the algebraic complement of U and vice versa.

3.2.2 Product Spaces
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There will be very much worked with so-called products of Vector Spaces .

Let X1 and X2 be two Vector Spaces over the same field K. The Cartesian prod-
uct X = X1 × X2 is a Vector Space under the following two algebraic operations

PS 1: (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2),

PS 2: α (x1, x2) = (αx1, α x2),

for all x1, y1 ∈ X1, x1, y2 ∈ X2 and α ∈ K.
The Vector Space X is called the product space of X1 and X2.

Definition 3.5

3.2.3 Quotient Spaces

Let W be a linear subspace of a Vector Space V .

The coset of an element x ∈ V with respect to W is defined by the set

x + W = {x + w | w ∈ W}.

Definition 3.6

The distinct cosets form a partition of V . The Quotient Space or Factor Space
is written by

V/W = {x + W | x ∈ V }.
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The linear operations on V/W are defined by

QS 1: (x+W)+ (y+W)= (x+y)+W,

QS 2: α (x+W)=α x+W,

for all x, y ∈ V and α ∈ K.

Definition 3.7

It is easily verified that the Quotient Space V/W , with the defined addition and
the scalar multiplication, is a linear Vector Space over K.

Working with cosets:

a. x + W and v + W are equal ⇔ (x − v) ∈ W ,
b. (x − v) ∈ W ⇔ v ∈ x + W ,
c. the zero in V/W is W , also written as 0 + W ,
d. −(x + W ) = (−x) + W for every x ∈ V ,
e. the cosets x + W and v + W are either equal or disjoint.

Remark 3.2

The sets that are elements of V/W partition V into equivalence classes .

The sum of two cosets is just the algebraic sum of two sets, as defined in Remark 3.1.

The product of a scalar α 6= 0 with a coset x + W is just equal to the product
of α with the set x + W , as defined in Remark 3.1.
But be careful with α = 0:

0 (x + W ) =
{

0 (x+W)=W in the sense of Remark 3.2,
{0} in the sense of Remark 3.1.

Prevent confusion to describe in what context the expression 0 (x + W ) is meant,
so an operation on the set x + W or an operation at the coset x + W .

Remark 3.3
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Consider the Vector Space R2. Let M be a one-dimensional subspace of R2, so
M is a straight line through the origin. A coset of M is a translation of M by a
vector in R2.
The result of such a translation of M has not to be a subspace of R2. And there
are infinitely many choices of translations that give the same coset. So there are
some particular settings:

a. Two cosets of M are either identical or entirely disjoint.
b. The union of the cosets is all of R2.
c. The set of distinct cosets is a partition of R2.

Example 3.1

For the space of the continuous functions, see Section 5.1.2 and for the space of
the polynomials, see Section 5.1.1.
But much of the details given in the sections above are not of direct importance in
this example.
Let C(R) the space of continuous functions on R and let P(R) the subspace of
C(R) containing the polynomials. Given f ∈ C(R), the coset determined by f
is

f + P = {f + p | p ∈ P(R)}.

Further, f + P = g + P if and only if f − g is a polynomial. f + P is the equiv-
alence class obtained by identifying functions which differ by a polynomial,
"f modulo the polynomials".

Example 3.2
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Take M = {(x, 0) | x ∈ R} in Example 3.1, then

R2/M = {y + M | y ∈ R} = {(x, 0) + M | x ∈ R},

so R2/M is the set of all horizontal lines in R2. Note that R2/M is a 1 − 1 corres-
pondence with the set of distinct heights, so there is a natural bijection of R2/M
onto R.
A equivalence class can be seen as "collapsing information modulo M".

Example 3.3

There are slightly different viewpoints of those cosets or quotient sets, but they
are mutually equivalent. In books and lecture notes most of the time one of the
following approaches is chosen.

Let X be a non-empty set. Mutually equivalent definitions of quotient sets .

a. The quotient set π(X) associated to a surjective function π : X → Y onto a
non-empty set Y is defined to be π(X) = Y .

b. The quotient set X/ ∼ associated to an equivalence relation ∼ on X is the set
of equivalence classes: (X/ ∼) = {[x] | x ∈ X} with [x] = {x′ ∈ X | x′ ∼ x}.

c. The quotient set X/P associated to a partition P = {Pi | i ∈ I} of X is
defined as X/P = I.

Definition 3.8

These three notions coincide, here is the way how it can be done:

(π ⇒∼) Let π : X → Y be a surjective function and define the relation ∼ as

x1 ∼ x2 if π(x1) = π(x2).

(∼⇒ P) Given an equivalence relation ∼ on X, the partition P on X is defined
by

P = {[x] | x ∈ X},

where [x] is as Definition 3.8, part b, [x] is thought as an equivalence
class and as an element out of the partition P .
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(P ⇒ π) Let P = {Pi | i ∈ I} be a partition of X with Pi 6= ∅ for all i ∈ I. The
function π : X → Y , by setting Y = I and

π(x) = i if x ∈ Pi.

Surjections:
π : X → Y

Equivalence relations:
∼ on X

Partitions:
P of X

Figure 3.2 Commutative diagram, each map is a bijection.

3.2.4 Bases

Let X be a Vector Space and given some set {x1, · · · , xp} of p vectors or elements
out of X. Let x ∈ X, the question becomes if x can be described on a unique
way by that given set of p elements out of X? Problems are for instance if some
of these p elements are just summations of each other of scalar multiplications, are
they linear independent ? Another problem is if these p elements are enough to
describe x, the dimension of such set of vectors or the Vector Space X?
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Let X be a Vector Space. A system of p vectors {x1, · · · , xp} ⊂ X is called linear
independent, if the following equation gives that

p∑
j=1

αj xj = 0⇒ α1 = · · · = αp = 0 (3.1)

is the only solution.
If there is just one αi 6= 0 then the system {x1, · · · , xp} is called linear dependent .

Definition 3.9

If the system has infinitely many vectors {x1, · · · , xp, · · ·} then this system is called
linear independent, if is it linear independent for every finite part of the given system,
so

∀N ∈ N :
N∑
j=1

αj xj = 0⇒ α1 = · · · = αN = 0

is the only solution.
There can be looked at all possible finite linear combinations of the vectors out of the
system {x1, · · · , xp, · · ·}. All possible finite linear combinations of {x1, · · · , xp, · · ·}
is called the span of {x1, · · · , xp, · · ·}.

The span of the system {x1, · · · , xp, · · ·} is defined and denoted by

span(x1, · · · , xp, · · ·) =< x1, · · · , xp, · · · >= {
N∑
j=1

αj xj | N ∈ N, α1, α2, · · · , αN ∈ K},

so all finite linear combinations of the system {x1, · · · , xp, · · ·}.

Definition 3.10

If every x ∈ X can be expressed as a unique linear combination of the elements
out of the system {x1, · · · , xp} then that system is called a basis of X.
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The system {x1, · · · , xp} is called a basis of X if:

B 1: the elements out of the given system are linear independent

B 2: and < x1, · · · , xp >= X.

Definition 3.11

The number of elements, needed to describe a Vector SpaceX, is called the dimension
of X, abbreviated by dim X.

Let X be a Vector Space. If X = {0} then dim X = 0 and if X has a basis
{x1, · · · , xp} then dim X = p. If X 6= {0} has no finite basis then
dim X = ∞, or if for every p ∈ N there exist a linear independent system
{x1, · · · , xp} ⊂ X then dim X = ∞.

Definition 3.12

3.2.5 Finite dimensional Vector Space X

The Vector Space X is finite dimensional, in this case dim X = n, then a system
of n linear independent vectors is a basis for X, or a basis in X. If the vectors
{x1, · · · , xn} are linear independent, then every x ∈ X can be written in an unique
way as a linear combination of these vectors, so

x = α1 x1 + · · · + αn xn

and the numbers α1, · · · , αn are unique.
The element x can also be given by the sequence (α1, α2, · · · , αn) and αi, 1 ≤ i ≤ n

are called the coordinates of x with respect to the basis α = {x1, · · · , xn} , denoted
by xα = (α1, α2, · · · , αn). The sequence xα = (α1, α2, · · · , αn) can be seen as an
element out of the sequence space Rn, see section 5.2.8.
Such a sequence xα can be written as
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xα = α1 ( 1, 0, 0, · · · , 0) +
α2 ( 0, 1, 0, · · · , 0) +
· · ·
αn ( 0, 0, · · · , 0, 1),

which is a linear combination of the elements out of the canonical basis for Rn .
The canonical basis for Rn is defined by

e1 = ( 1, 0, 0, · · · , 0)
e2 = ( 0, 1, 0, · · · , 0)
· · · · · ·
en = ( 0, 0, · · · , 0︸ ︷︷ ︸

(n−1)

, 1).

It is important to note that, in the case of a finite dimensional Vector Space, there
is only made use of algebraïc operations by defining a basis. Such a basis is also
called an algebraiïc basis , or Hamel basis .

3.2.6 Infinite dimensional Vector Space X

There are some very hard problems in the case that the dimension of a Vector Space
X is infinite. Look for instance to the definition 3.10 of a span. There are taken
only finite summations and that in combination with an infinite dimensional space?
Another problem is that, in the finite dimensional case, the number of basis vectors
are countable, question becomes if that is also in the infinite dimensional case?
In comparison with a finite dimensional Vector Space there is also a problem with
the norms, because there exist norms which are not equivalent. This means that
different norms can generate quite different topologies on the same Vector Space X.
So in the infinite dimensional case are several problems. Like, if there exists some
set which is dense in X ( see section 2.7) and if this set is countable ( see section
2.6)?
The price is that infinite sums have to be defined. Besides the algebraïc calculations,
the analysis becomes of importance ( norms, convergence, etc.).
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Just an ordinary basis, without the use of a topology, is difficult to construct, some-
times impossible to construct and in certain sense never used.

Here an example to illustrate the above mentioned problems.
Look at the set of rows

S = {(1, α, α2, α3, · · ·) | | α |< 1, α ∈ R}.

It is not difficult to see that S ⊂ `2, for the defintion of `2, see section 5.2.4.
All the elements out of S are linear independent, in the sense of section 3.2.4.
The set S is a linear independent uncountable subset of `2.

Example 3.4

An index set is an abstract set to label different elements, such set can be un-
countable.

Define the set of functions Idr : R→ {0, 1} by

Idr(x) =
{

1 if x = r,
0 if x 6= r.

The set of all the Idr functions is an uncountable set, which is indexed by R.

Example 3.5

The definition of a Hamel basis in some Vector Space X 6= 0.

A Hamel basis is a set H such that every element of the Vector Space X 6= 0 is a
unique finite linear combination of elements in H.

Definition 3.13

Let X be some Vector Space of sequences, for instance `2, see section 5.2.4.
LetA = {e1, e2, e3, · · ·} with ei = (δi1, δi2, · · · , δij , · · ·) and δij is the Krönecker symbol ,

δij =
{
i = j then 1,
i 6= j then 0.
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The sequences ei are linear independent, but A is not a Hamel basis of `2, since there
are only finite linear combinations allowed. The sequence x = (1, 1

2 ,
1
3 , · · ·) ∈ `

2 can-
not be written as a finite linear combination of elements out of A.

Every Vector Space X 6= 0 has a Hamel basis H.

Theorem 3.2

Proof of Theorem 3.2

A proof will not be given here, but only an outline of how this theorem can be proved.
It dependents on the fact, if you accept the Axiom of Choice, seewiki-axiom-choice.
In Functional Analysis is used the lemma of Zorn, see wiki-lemma-Zorn. Men-
tioned the Axiom of Choice and the lemma of Zorn it is also worth to mention the
Well-ordering Theorem, see wiki-well-order-th.
The mentioned Axiom, Lemma and Theorem are in certain sense equivalent, not
accepting one of these makes the mathematics very hard and difficult.

The idea behind the proof is that there is started with some set H that is too small,
so some element of X can not be written as a finite linear combination of elements
out of H. Then you add that element to H, so H becomes a little bit larger. This
larger H still violates that any finite linear combination of its elements is unique.

The set inclusion is used to define a partial ordering on the set of all possible lin-
early independent subsets of X. See wiki-partial-order for definition of a partial
ordening.

By adding more and more elements, you reach some maximal set H, that can
not be made larger. For a good definition of a maximal set, see wiki-maximal.
The existence of such a maximal H is guaranteed by the lemma of Zorn.

Be careful by the idea of adding elements to H. It looks as if the elements are
countable but look at the indices k of the set H = { vα}α∈A. The index set A is
not necessarily N, it is may be uncountable, see the examples 3.4 and 3.5.

LetH be maximal. Let Y = span(H), then is Y a linear subspace ofX and Y = X.
If not, then H ′ = H ∪ {z} with z ∈ X, z /∈ Y would be a linear independent set,

with H as a proper subset. That is contrary to the fact that H is maximal. �

http://en.wikipedia.org/wiki/Axiom_of_choice
http://en.wikipedia.org/wiki/Zorn's_lemma
http://en.wikipedia.org/wiki/Well-ordering_theorem
http://en.wikipedia.org/wiki/Partially_ordered_set
http://en.wikipedia.org/wiki/Maximal_element
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In the section about Normed Spaces, the definition of an infinite sequence is given,
see definition 3.26. An infinite sequence will be seen as the limit of finite sequences,
if possible.

3.3 Topological Spaces

A nice overview of Topological Spaces is given in an article written by (Moller, ).
A lot of information is also given in the book written by (Taylor, 1958), but that
is not only about Topological Spaces. The book of (Taylor, 1958) is also a nice
introduction to the functional analysis.

A Topological Space is a set with a collection of subsets. The union or the inter-
section of these subsets is again a subset of the given collection.

A Topological Space TS = {A,Ψ} consists of a non-empty set A together with a
fixed collection Ψ of subsets of A satisfying

TS 1: A,∅ ∈ Ψ,

TS 2: the intersection of a finite collection of sets Ψ is again in Ψ,

TS 3: the union of any collection of sets in Ψ is again in Ψ.

The collection Ψ is called a topology of A and members of Ψ are called open
sets of TS. Ψ is a subset of the power set of A.

Definition 3.14

The power set of A is denoted by P(A) and is the collection of all subsets
of A.
For a nice paper about topological spaces, written by J.P. Möller, with at the end
of it a scheme with relations between topological spaces, see paper-top-moller.

3.3.1 Ti Spaces, i = 0, · · · , 4

www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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There are no separation axioms so far. There are several types of separation. Here
follow the different definitions of the Ti-spaces, i = 0, · · · , 4.

Let X be a topological space. X is called:

1. T0-space if and only if given any two distinct points x 6= y ∈ X there is an
open set containing one but not the other;

2. T1-space if and only if given any two distinct points x 6= y ∈ X there are
open sets U and V such that x ∈ U, y ∈ V but x /∈ V, y /∈ U ;

3. T2-space or Hausdorff space if and only if for any two distinct points
x1 6= x2 ∈ X, there exist open sets U, V with x1 ∈ U and x2 ∈ V
and U ∩ V = ∅;

4. T3-space or regular if and only if X is T1 and for every x ∈ X and closed
set C such that x /∈ C, there are disjoint open sets U and V such that x ∈ U
and C ⊆ V ;

5. T3 1
2
-space or Tychonoff if and only if X is T1 and for every x ∈ X and

closed set C such that x /∈ C, there is a continuous function f : X → [0, 1]
such that f(x) = 0 and f(y) = 1 for all y ∈ C;

6. T4-space or normal if and only if for every pair disjoint sets C and D,
there are disjoint sets U and V such that C ⊆ U and D ⊆ V .

Definition 3.15

3.4 Topological Vector Spaces
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A Topological Vector Space space TV S = {V S,Ψ} consists of a non-empty vec-
torspace V S together with a topology Ψ.

Definition 3.16

Let V1 =, {X1, ψ1} and V2 =, {X2, ψ2} be topological vector spaces. Let X1 ×X2
be the cartesian product of X1 and X2, see definition 3.5.
The product topology ψ is the topology with basis
B = {U1 × U2 |U1 ∈ ψ1, U2 ∈ ψ2}.

Definition 3.17

3.5 Metric Spaces

If x, y ∈ X then the distance between these points is denoted by d(x, y). The func-
tion d(·, ·) : X × X → R has to satisfy several conditions before the function d is
called a distance function on X or a metric on X.
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A Metric Space MS is a pair (X, d). X is a Topological Space and the topology
on X is defined by a distance function d, called the metric on X. The distance
function d is defined on XxX and satisfies, for all x, y, z ∈ X,

M 1: d(x, y) ∈ R and 0 ≤ d(x, y) <∞,

M 2: d(x, y) = 0⇐⇒ x = y,

M 3: d(x, y) = d(y, x) (Symmetry),

M 4: d(x, y) ≤ d(x, z) + d(z, y), (Triangle inequality).

Definition 3.18

Here follow some examples of metrics.

If two points x = (x1, · · · , xn) and y = (y1, · · · , yn) are given in the Rn then the
Euclidean metric is defined by

d(x, y) =

√√√√ n∑
i=1

(yi − xi)2

and the so-called taxicab metric is defined by

d(x, y) =
n∑
i=1
| yi − xi | .

Example 3.6
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The examples given in Example 3.6 are both special cases of
the Minkowsky metric . Given two points x = (x1, · · · , xn) and y = (y1, · · · , yn)
in Rn then the Minkowsky distance between x and y is defined by

d(x, y) =
(

n∑
i=1

(yi − xi)p
)1
p

, 0 < p ∈ R,

if p→∞ then the Chebychev metric is obtained

d(x, y) = lim
p→∞

(
n∑
i=1

(yi − xi)p
)1
p

= max
i∈{1,···,n}

| yi − xi | .

Example 3.7

Given a set X the discrete metric d on X is defined by

d(x, y) =
{

1 if x 6= y
0 if x = y

Example 3.8

The definition of an open and a closed ball in the Metric Space (X, d).

The set {x |x ∈ X, d(x, x0) < r} is called an open ball of radius r around the
point x0 and denoted by Br(x0, d).
A closed ball of radius r around the point x0 is defined and denoted by
Br(x0, d) = {x |x ∈ X, d(x, x0) ≤ r}.
A sphere of radius r around the point x0 is defined and denoted by
Sr(x0, d) = {x |x ∈ X, d(x, x0) = r}.

Definition 3.19
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The definitions immediately implies that

Sr(x0, d) = Br(x0, d) − Br(x0, d).

Be aware of the fact, that the closed ball Br(x0, d) has not always to be equal to
the closure of the open ball Br(x0, d), denoted by Br(x0, d).
Take for the metric d the discrete metric, defined in 3.8, take r = 1 and see the
difference.

Remark 3.4

The definition of an interior point and the interior of some subset G of the
Metric Space (X, d).

Let G be some subset of X. x ∈ G is called an interior point of G, if there exists
some r > 0, such that Br(x0, d) ⊂ G.
The set of all interior points of G is called the interior of G and is denoted by G◦.

Definition 3.20

The distance function d(·, ·) : X ×X → R is continuous.

Theorem 3.3

Proof of Theorem 3.3

Let ε > 0 be given and x0 and y0 are two arbitrary points of X. For every x ∈ X
with d(x, x0) < ε

2 and for every y ∈ X with d(x, x0) < ε
2 , it is easily seen that

d(x, y) ≤ d(x, x0) + d(x0, y0) + d(y0, y) < d(x0, y0) + ε
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and

d(x0, y0) ≤ d(x0, x) + d(x, y) + d(y, y0) < d(x, y) + ε

such that

| d(x, y) − d(x0, y0) |< ε.

The points x0 and y0 are arbitrary chosen so the function d is continuous in X.
�

The distance function d is used to define the distance between a point and a set,

the distance between two sets and the diameter of a set .

Let (X, d) be a metric space.

a. The distance between a point x ∈ X and a set A ⊂ X is denoted and defined
by

dist(x, A) = inf{ d(x, y) | y ∈ A}.

b. The distance between the sets A ⊂ X and B ⊂ X is denoted and defined by

dist(A, B) = inf{ d(x, y) |x ∈ A, y ∈ B}.

c. The diameter of A ⊂ X is denoted and defined by

diam(A) = sup{ d(x, y) |x ∈ A, y ∈ A}.

The sets A and B are non-empty sets of X and x ∈ X.

Definition 3.21

The distance function dist( ·, A) is most of the time denoted by d( ·, A).

Remark 3.5
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The distance function d( ·, A) : X → R, defined in 3.21 is continuous.

Theorem 3.4

Proof of Theorem 3.4

Let x, y ∈ X then for each a ∈ A

d(x, a) ≤ d(x, y) + d(y, a).

So that
d(x,A) ≤ d(x, y) + d(y, a),

for each a ∈ A, so that

d(x,A) ≤ d(x, y) + d(y, A),

which shows that
d(x,A) − d(y, A) ≤ d(x, y).

Interchanging the names of the variables x and y and the result is

| d(x,A) − d(y, A) | ≤ d(x, y),

which gives the continuity of d(·, A). �

Let {X, d} be a Metric Space. Let the sequence {xn}n∈N be a Cauchy sequence in
X with a convergent subsequence {xnk}k∈N,

if lim
k→∞

xnk = x then lim
n→∞

xn = x.

Theorem 3.5

Proof of Theorem 3.5

Let ε > 0 be given. The subsequence {xnk}k∈N has a limit x, so there exists
some K(ε) ∈ N such that for every k > K(ε) : d(xnk , x) < ε

2 . The sequence
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{xn}n∈N is a Cauchy sequence, so there exists some N(ε) ∈ N such that for every
n,m > N(ε) : d(xn, xm) < ε

2 . Let n > max{nK(ε), N(ε)} and let k > K(ε) then

d(xn, x) ≤ d(xn, xnk) + d(xnk , x) < ε

2 + ε

2 = ε.

The number n > max{nK(ε), N(ε)} is arbitrary chosen, so the limit of the sequence

{xn}n∈N exists and is equal to x. �

3.5.1 Urysohn’s Lemma

Let {X, d} be a Metric Space and let A,B be non-empty closed subsets of X, such
that A∩B = ∅. Then there exists a continuous function g : X → [0, 1] such that

g(x) =
{ 1 ∀x ∈ A,

0 ∀x ∈ B.

Theorem 3.6

Proof of Theorem 3.6

The definition of the distance function dist(·, ·) is given in definition 3.21. The
distance function dist(·, Y ) is denoted by d(·, Y ) for any non-empty set Y ⊆ X.
There is proved in theorem 3.3 that the distance function is continuous, it is even
uniform continuous. If the set Y is closed, then d(x, Y ) = 0 ⇔ x ∈ Y . Given are
the closed sets A and B, define for every x ∈ X

g(x) = d(x,B)
d(x,A) + d(x,B) .

The function g is continuous on X and satisfies the desired properties. �
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3.6 Complete Metric Spaces

If every Cauchy row in a Metric Space MS1 converges to an element of that same
space MS1 then the space MS1 is called complete.
The space MS1 is called a Complete Metric Space.

Definition 3.22

If M is a subspace of a Complete Metric Space MS1 then
M is complete if and only if M is closed in MS1.

Theorem 3.7

Proof of Theorem 3.7

(⇒) Take some x ∈ M . Then there exists a convergent sequence {xn} to x, see
theorem 2.1. The sequence {xn} is a Cauchy sequence, see section 2.3 and
sinceM is complete the sequence {xn} converges to an unique element x ∈M .
Hence M ⊆M .

(⇐) Take a Cauchy sequence {xn} in the closed subspaceM . The Cauchy sequence
converges in MS1, since MS1 is a Complete Metric Space, this implies that
xn → x ∈ MS1, so x ∈ M . M is closed, so M = M and this means that
x ∈M . Hence the Cauchy sequence {xn} converges inM , soM is complete. �

�
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For 1 ≤ p ≤ ∞, the metric space `p is complete.

Theorem 3.8

Proof of Theorem 3.8

1. Let 1 ≤ p <∞. Consider a Cauchy sequence {xn} in `p.
Given ε > 0, then there exists aN(ε) such that for allm,n > N(ε) dp(xn, xm) <
ε, with the metric dp, defined by

dp(x, y) = (
∞∑
i=1
| xi − yi |p)

1
p .

For n, m > N(ε) and for i = 1, 2, · · ·

| (xn)i − (xm)i | ≤ dp(xn, xm) ≤ ε.

For each fixed i ∈ {1, 2, · · ·}, the sequence {(xn)i} is a Cauchy sequence in K.
K is complete, so (xn)i → xi in K for n→∞.
Define x = (x1, x2, · · ·), there has to be shown that x ∈ `p and xn → x in `p,
for n→∞.
For all n, m > N(ε)

k∑
i=1
| (xn)i − (xm)i |p< εp

for k = 1, 2, · · ·. Let m→∞ then for n > N(ε)
k∑
i=1
| (xn)i − xi |p≤ εp

for k = 1, 2, · · ·. Now letting k →∞ and the result is that

dp(xn, x) ≤ ε (3.2)

for n > N(ε), so (xn − x) ∈ `p. Using the Minkowski inequality ?? ii.b, there
follows that x = xn + (x − xn) ∈ `p.
Inequality 3.2 implies that xn → x for n→∞.
The sequence {xn} was an arbitrary chosen Cauchy sequence in `p, so `p is
complete for 1 ≤ p <∞.
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2. For p =∞, the proof is going almost on the same way as for 1 ≤ p <∞, only
with the metric d∞, defined by

d∞(x, y) = sup
i∈N
| xi − yi |

for every x, y ∈ `∞. �

�

3.7 Normed Spaces

A Normed Space NS is a pair (X, ‖ . ‖). X is a topological vector space, the
topology of X is defined by the norm ‖ . ‖. The norm is a real-valued function
on X and satisfies for all x, y ∈ X and α ∈ R or C,

N 1: ‖ x ‖≥ 0, ( positive)

N 2: ‖ x ‖= 0⇐⇒ x = 0,

N 3: ‖ αx ‖=| α |‖ x ‖, ( homogeneous)

N 4: ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖, (Triangle inequality).

Definition 3.23

A normed space is also a metric space. A metric d induced by the norm is given by

d(x, y) =‖ x− y ‖ . (3.3)

A mapping p : X → R, that is almost a norm, is called a seminorm or a
pseudonorm .
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Let X be a Vector Space. A mapping p : X → R is called a seminorm or pseudonorm
if it satisfies the conditions (N 1), (N 3) and (N 4), given in definition 3.23.

Definition 3.24

If p is a seminorm on the Vector Space X and if p(x) = 0 implies that x = 0
then p is a norm.
A seminorm p satisfies:

p(0) = 0,
| p(x) − p(y) | ≤ p(x − y).

Remark 3.6

Besides the triangle inequality given by (N 4), there is also the so-called

inverse triangle inequality

| ‖ x ‖ − ‖ y ‖ |≤ ‖ x − y ‖ . (3.4)

The inverse triangle inequality is also true in Metric Spaces

| d(x, y) − d(y, z) | ≤ d(x, z).

With these triangle inequalities lower and upper bounds can be given of ‖ x − y ‖
or
‖ x + y ‖.

Given is a Normed Space (X, ‖ · ‖). The map

‖ · ‖: X → [0, ∞)

is continuous in x = x0, for every x0 ∈ X.

Theorem 3.9
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Proof of Theorem 3.9

Let ε > 0 be given. Take δ = ε then is obtained, that for every x ∈ X with
‖ x − x0 ‖< δ that | ‖ x ‖ − ‖ x0 ‖ |≤ ‖ x − x0 ‖< δ = ε. �

There is also said that the norm is continuous in its own topology on X.

On a Vector Space X there can be defined an infinitely number of different norms.
Between some of these different norms there is almost no difference in the topology
they generate on the Vector Space X. If some different norms are not to be distin-
guished of each other, these norms are called equivalent norms .

Let X be a Vector Space with norms ‖ · ‖0 and ‖ · ‖1. The norms ‖ · ‖0 and ‖ · ‖1
are said to be equivalent if there exist numbers m > 0 and M > 0 such that for
every x ∈ X

m ‖ x ‖0≤‖ x ‖1≤ M ‖ x ‖0 .

The constants m and M are independent of x!

Definition 3.25

In Linear Algebra there is used, most of the time, only one norm and that is the
Euclidean norm : ‖ · ‖2, if x = (x1, · · · , xN ) ∈ RN then ‖ x ‖2 =

√∑N
i=1 | xi |2.

Here beneath the reason why!

All norms on a finite-dimensional Vector Space X ( over R or C) are equivalent.

Theorem 3.10

Proof of Theorem 3.10

Let ‖ · ‖ be a norm on X and let {x1, x2, · · · , xN} be a basis for X, the dimension
of X is N . Define another norm ‖ · ‖2 on X by

‖
N∑
i=1

αi xi ‖2 = (
N∑
i=1
| αi |2)

1
2 .
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If the norms ‖ · ‖ and ‖ · ‖2 are equivalent then all the norms on X are equivalent.
DefineM = (

∑N
i=1 ‖ xi ‖2) 1

2 , M is positive because {x1, x2, · · · , xN} is a basis for
X. Let x ∈ X with x =

∑N
i=1 αi xi, using the triangle inequality and the inequality

of Cauchy-Schwarz, see theorem 5.42, gives

‖ x ‖= ‖
N∑
i=1

αi xi ‖ ≤
N∑
i=1
‖ αi xi ‖

=
N∑
i=1
| αi | ‖ xi ‖

≤ (
N∑
i=1
| αi |2)

1
2 (

N∑
i=1
‖ xi ‖2)

1
2

= M ‖
N∑
i=1

αi xi ‖2 = M ‖ x ‖2

Define the function f : KN → K, with K = R or K = C by

f(α1, α2, · · · , αN ) = ‖
N∑
i=1

αi xi ‖ .

The function f is continuous in the ‖ · ‖2-norm, because

| f(α1, · · · , αN ) − f( β1, · · · , βN ) | ≤ ‖
N∑
i=1

(αi − βi)xi ‖

≤M (
N∑
i=1
| αi − βi |2)

1
2 ( = M ‖

N∑
i=1

(αi − βi)xi ‖2).

Above are used the continuity of the norm ‖ · ‖ and the inequality of Cauchy-
Schwarz.
The set

S1 = {(γ1, · · · , γN ) ∈ KN |
N∑
i=1
| γi |2 = 1}

is a compact set, the function f is continuous in the ‖ · ‖2-norm, so there exists a
point (θ1, · · · , θN ) ∈ S1 such that

m = f(θ1, · · · , θN ) ≤ f(α1, · · · , αN )
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for all (α1, · · · , αN ) ∈ S1.
If m = 0 then ‖

∑N
i=1 θi xi ‖= 0, so

∑N
i=1 θi xi = 0 and there follows that θi = 0

for all 1 < i < N , because {x1, x2, · · · , xN} is basis of X, but this contradicts the
fact that (θ1, · · · , θN ) ∈ S1.
Hence m > 0.
The result is that, if ‖

∑N
i=1 αi xi ‖2 = 1 then f(α1, · · · , αN ) = ‖

∑N
i=1 αi xi ‖≥ m.

For every x ∈ X, with x 6= 0, is ‖ x

‖ x ‖2
‖2 = 1, so ‖ x

‖ x ‖2
‖≥ m and this results

in
‖ x ‖≥ m ‖ x ‖2,

which is also valid for x = 0. The norms ‖ · ‖ and ‖ · ‖2 are equivalent

m ‖ x ‖2≤‖ x ‖≤ M ‖ x ‖2 . (3.5)

If ‖ · ‖1 should be another norm on X, then with the same reasoning as above, there
can be found constants m1 > 0 and M1 > 0, such that

m1 ‖ x ‖2≤‖ x ‖1≤ M1 ‖ x ‖2 . (3.6)

and combining the results of 3.5 and 3.6 results in
m

M1
‖ x ‖1≤‖ x ‖≤

M

m1
‖ x ‖1

so the norms ‖ · ‖1 and ‖ · ‖ are equivalent. �

3.7.1 Hamel and Schauder bases

In section 3.2, about Vector Spaces, there is made some remark about problems by
defining infinite sums, see section 3.2.6. In a normed space, the norm can be used
to overcome some problems.
Every Vector Space has a Hamel basis, see Theorem 3.2, but in the case of infi-
nite dimensional Vector Spaces it is difficult to find the right form of it. It should
be very helpfull to get some basis, where elements x out of the normed space X
can be approximated by limits of finite sums. If such a basis exists it is called a
Schauder basis .
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Let X be a Vector Space over the field K. If the Normed Space (X, ‖ · ‖) has a
countable sequence {en}n∈N with the property that for every x ∈ X there exists
an unique sequence {αn}n∈N ⊂ K such that

lim
n→∞

‖ x −
n∑
i=1

αi ei ‖= 0.

then {en} is called a Schauder basis of X.

Definition 3.26

Some textbooks will define Schauder bases for Banach Spaces, see section 3.8,
and not for Normed Spaces. Having a Schauder basis {en}n∈N, it is now possible
to look to all possible linear combinations of these basis vectors {en}n∈N. To be
careful, it is may be better to look to all possible Cauchy sequences, which can be
constructed with these basis vectors {en}n∈N.
The Normed Space X united with all the limits of these Cauchy sequences in X, is
denoted by X̂ and in most cases it will be greater then the original Normed Space
X. The space (X̂, ‖ · ‖1) is called the completion of the normed space (X, ‖ · ‖)
and is complete, so a Banach Space.
May be it is useful to read how the real numbers ( R) can be constructed out of
the rational numbers ( Q), with the use of Cauchy sequences, see wiki-constr-real.
Keep in mind that, in general, elements of a Normed Space can not be multiplied
with each other. There is defined a scalar multiplication on such a Normed Space.
Further there is, in general, no ordening relation between elements of a Normed
Space. These two facts are the great differences between the completion of the ra-
tional numbers and the completion of an arbitrary Normed Space, but further the
construction of such a completion is almost the same.

Every Normed Space (X, ‖ · ‖) has a completion (X̂, ‖ · ‖1).

Theorem 3.11

Proof of Theorem 3.11

Here is not given a proof, but here is given the construction of a completion.
There has to overcome a problem with the norm ‖ · ‖. If some element y ∈ X̂ but
y /∈ X, then ‖ y ‖ has no meaning. That is also the reason of the index 1 to the

http://en.wikipedia.org/wiki/Construction_of_real_numbers
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norm on the Vector Space X̂.
The problem is easily fixed by looking at equivalence classes of Cauchy sequences.
More information about equivalence classes can be found in wiki-equi-class. Im-
portant is the equivalence relation, denoted by ∼. If {xn}n∈N and {yn}n∈N are two
Cauchy sequences in X then an equivalence relation ∼ is defined by

{xn} ∼ {yn} ⇐⇒ lim
n→∞

‖ xn − yn ‖= 0.

An equivalence class is denoted by x̃ = [{xn}] and equivalence classes can be added,
or multiplied by a scalar, such that X̂ is a Vector Space. The norm ‖ · ‖1 is defined
by

‖ x̃ ‖1 = lim
n→∞

‖ xn ‖

with {xn} a sequence out of the equivalence class x̃.
To complete the proof of the theorem several things have to be done, such as to
proof that

1. there exists a norm preserving map of X onto a subspace W of X, with W

dense in X̂,

2. the constructed space (X̂, ‖ · ‖1) is complete,

3. the space X̂ is unique, except for isometric isomorphisms3.

It is not difficult to prove these facts but it is lengthy.

See section 3.11.4 for a proof, but then for a Metric Space. �

It becomes clear, that is easier to define a Schauder basis for a Banach Space then
for a Normed Space, the problems of a completion are circumvented.
Next are given some nice examples of a space with a Hamel basis and set of linear
independent elements, which is a Schauder basis, but not a Hamel basis.

For isometric isomorphisms, see page 1213

http://en.wikipedia.org/wiki/Equivalence_class
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Look at the space c00 out of section 5.2.7, the space of sequences with only a fi-
nite number of coefficients not equal to zero. c00 is a linear subspace of `∞ and
equipped with the norm ‖ · ‖∞-norm, see section 5.2.1.
The canonical base of c00 is defined by

e1 = ( 1, 0, 0, · · ·),
e2 = ( 0, 1, 0, · · ·),
· · · · · ·
ek = ( 0, · · · , 0︸ ︷︷ ︸

(k−1)

, 1, 0, · · ·),

· · ·

and is a Hamel basis of c00.

Example 3.9

Explanation of Example 3.9

Take an arbitrary x ∈ c00 then x = (α1, α2, · · · , αn, 0, 0, · · ·) with αi = 0 for
i > n and n ∈ N. So x can be written by a finite sum of the basisvectors out of
the given canonical basis:

x =
n∑
i=1

αi ei,

and the canonical basis is a Hamel basis of c00. �
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Look at the space c00, see example 3.9. Let’s define a set of sequences

b1 = ( 1, 1
2 , 0, · · ·)

b2 = ( 0, 1
2 ,

1
3 , 0, · · ·)

· · · · · ·

bk = ( 0, · · · , 0︸ ︷︷ ︸
(k−1)

,
1
k
,

1
k + 1 , 0, · · ·),

· · ·

The system {b1, b2, b3, · · ·} is a Schauder basis of c00 but
it is not a Hamel basis of c00.

Example 3.10

Explanation of Example 3.10

If the set given set of sequences {bn}n∈N is a basis of c00 then it is easy to see that

e1 = lim
N→∞

N∑
j=1

(−1)(j−1) bj ,

and because of the fact that

‖ bk ‖∞= 1
k

for every k ∈ N, it follows that:

‖ e1 −
N∑
j=1

(−1)(j−1) bj ‖∞≤
1

N + 1 .

Realize that (e1 −
∑N

j=1(−1)(j−1) bj) ∈ c00 for every N ∈ N, so there are no
problems by calculating the norm.
This means that e1 is a summation of an infinite number of elements out of the set
{bn}n∈N, so this set can not be a Hamel basis.
Take a finite linear combination of elements out of {bn}n∈N and solve
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N∑
j=1

γi bj = (0, 0, · · · , 0, 0, · · ·),

this gives γj = 0 for every 1 ≤ j ≤ N , with N ∈ N arbitrary chosen. This means
that the set of sequences {bn}n∈N is linear independent in the sense of section 3.2.4.
Take now an arbitrary x ∈ c00 then x = (α1, α2, · · · , αn, 0, 0, · · ·) with αi = 0
for i > n and n ∈ N. To find, is a sequence ( γ1, γ2, · · ·) such that

x =
∞∑
j=1

γj bj . (3.7)

Equation 3.7 gives the following set of linear equations

α1 = γ1,

α2 = 1
2 γ1 + 1

2 γ2,

· · · · · ·

αn = 1
n
γn−1 + 1

n
γn,

0 = 1
n+ 1 γn + 1

n+ 1 γn+1,

· · · · · · ,

which is solvable. Since γ1 is known, all the values of γi with 2 ≤ i ≤ n are known.
Remarkable is that γk+1 = −γk for k ≥ n and because of the fact that γn is known
all the next coeffcients are also known.
One thing has to be done! Take N ∈ N great enough and calculate

‖ x −
N∑
j=1

γj bj ‖∞= ‖ ( 0, · · · , 0︸ ︷︷ ︸
N

, γN , −γN , · · ·) ‖∞≤ | γN | ‖ eN+1 ‖∞= | γN |
(N + 1)

So limN→∞ ‖ x −
∑N

j=1 γj bj ‖∞= 0 and the conclusion becomes that the system

{bn}n∈N is a Schauder basis of c00. �

Sometimes there is also spoken about a total set or fundamental set .
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A total set ( or fundamental set) in a Normed Space X is a subset M ⊂ X whose
span 3.10 is dense in X.

Definition 3.27

According the definition:

M is total inX if and only if spanM = X.

Be careful: a complete set is total, but the converse need not hold in infinite-
dimensional spaces.

Remark 3.7

3.8 Banach Spaces

If every Cauchy row in a Normed Space (X, ‖ · ‖) converges to an element of that
same space X then that Normed Space (X, ‖ · ‖) is called complete in the metric
induced by the norm.
A complete Normed Space (X, ‖ · ‖) is called a Banach Space .

Definition 3.28
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Let Y be a subspace of a Banach Space (X, ‖ · ‖). Then,
Y is closed if and only if Y is complete.

Theorem 3.12

Proof of Theorem 3.12

(⇒) Let {xn}n∈N be a Cauchy sequence in Y , then it is also in BS. BS is complete,
so there exists some x ∈ BS such that xn → x. Every neighbourhood of x
contains points out of Y , take xn 6= x, with n great enough. This means that
x is an accumulation point of Y , see section 2.5. Y is closed, so x ∈ Y and
there is proved that Y is complete.

(⇐) Let x be a limitpoint of Y . So there exists a sequence {xn}n∈N ⊂ Y , such
that xn → x for n→ x∞. A convergent sequence is a Cauchy sequence. Y is
complete, so the sequence {xn}n∈N converges in Y . It follows that x ∈ Y , so
Y is closed.

�

3.9 Inner Product Spaces

The norm of an Inner Product Space can be expressed as an inner product and so
the inner product defines a topology on such a space. An Inner Product gives also
information about the position of two elements with respect to each other.
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An Inner Product Space IPS is a pair (X, (., .)). X is a topological vector space,
the topology on X is defined by the norm induced by the inner product (., .). The
inner product (., .) is a real or complex valued function on XxX and satisfies for
all x, y, z ∈ X and α ∈ R or C

IP 1: 0 ≤ (x, x) ∈ R and (x, x) = 0⇐⇒ x = 0,

IP 2: (x, y) = (y, x),

IP 3: (αx, y) = α(x, y),

IP 4: (x+ y, z) = (x, z) + (y, z),

with (y, x) is meant, the complex conjugate4 of the value (y, x).

Definition 3.29

The inner product (., .) defines a norm ‖ . ‖ on X

‖ x ‖=
√

(x, x) (3.8)

and this norm induces a metric d on X by

d(x, y) =‖ x− y ‖,

in the same way as formula ( 3.3).
An Inner Product Space is also called a pre-Hilbert space .

3.9.1 Inequality of Cauchy-Schwarz (general)

The inequality of Cauchy-Schwarz is valid for every inner product.
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Let X be an Inner Product Space with inner product (·, ·), for every x, y ∈ X
holds that

| (x, y) | ≤ ‖ x ‖ ‖ y ‖ . (3.9)

Theorem 3.13

Proof of Theorem 3.13

Condition IP 1 and definition 3.8 gives that

0 ≤ (x − α y, x − α y) = ‖ x − α y ‖2

for every x, y ∈ X and α ∈ K, with K = R or C.
This gives

0 ≤ (x, x) − (x, α y) − (α y, x) + (α y, α y)
= ( x, x)− α (x, y) − α( y, x) + αα ( y, y). (3.10)

If ( y, y) = 0 then y = 0 ( see condition IP 1) and there is no problem. Assume
y 6= 0, in the sense that ( y, y) 6= 0, and take

α = (x, y)
( y, y) .

Put α in inequality 3.10 and use that

(x, y) = (y, x),

see condition IP 2. Writing out and some calculations gives the inequality of
Cauchy-Schwarz. �

If (X, (., .)) is an Inner Product Space, then is the inner product (., .) : X × X →
K continuous. This means that if

xn → x and yn → y then (xn, yn) → (x, y) for n→∞.

Theorem 3.14
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Proof of Theorem 3.14

With the triangle inequality and the inequality of Cauchy-Schwarz is obtained

| (xn, yn) − (x, y) |= | (xn, yn) − (xn, y) + (xn, y)− (x, y) |
= | (xn, yn − y) + (xn − x, y) | ≤ | (xn, yn − y) | + | (xn − x, y) |
≤ ‖ xn ‖ ‖ yn − y ‖ + ‖ xn − x ‖ ‖ y ‖→ 0,

since ‖ xn − x ‖→ 0 and ‖ yn − y ‖→ 0 for n→∞. �

So the norm and the inner product are continuous, see theorem 3.9 and theo-
rem 3.14.

3.9.2 Parallelogram Identity and Polarization Identity

An important equality is the parallelogram equality, see figure 3.3.

‖ x ‖ x

‖
y
‖

y

‖ x
+

y ‖
‖
x −

y ‖ The parallelogram identity in R2:

2 (‖ x ‖2 + ‖ y ‖2) =
=

(‖ x + y ‖2 + ‖ x − y ‖2).

Figure 3.3 Parallelogram Identity

If it is not sure, if the used norm ‖ · ‖ is induced by an inner product, the check
of the parallelogram identity will be very useful. If the norm ‖ · ‖ satisfies the
parallelogram identity then the inner product (·, ·) can be recovered by the norm,
using the so-called polarization identity .
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An inner product (·, ·) can be recovered by the norm ‖ · ‖ on a Vector Space X if
and only if the norm ‖ · ‖ satisfies the parallelogram identity

2 (‖ x ‖2 + ‖ y ‖2) = (‖ x + y ‖2 + ‖ x − y ‖2). (3.11)

The inner product is given by the polarization identity

(x, y) = 1
4

{
(‖ x + y ‖2 − ‖ x− y ‖2) + i (‖ x + i y ‖2 − ‖ x− i y ‖2)

}
. (3.12)

Theorem 3.15

Proof of Theorem 3.15

(⇒) If the inner product can be recovered by the norm ‖ x ‖ then (x, x) = ‖ x ‖2
and

‖ x + y ‖2 = (x + y, x + y)

= ‖ x ‖2 + (x, y) + (y, x) + ‖ y ‖2 = ‖ x ‖2 + (x, y) + (x, y) + ‖ y ‖2,

where with (x, y) is meant the complex conjugate of (x, y).
Replace y by (−y) and there is obtained

‖ x − y ‖2 = (x − y, x − y)

= ‖ x ‖2 − (x, y) − (y, x) + ‖ y ‖2 = ‖ x ‖2 − (x, y) − (x, y) + ‖ y ‖2 .

Adding the obtainded formulas together gives the parallelogram identity 3.11.

(⇐) Here the question becomes if the right-hand site of formula 3.12 is an inner
product? The first two conditions, IP1 and IP2 are relative easy. The condi-
tions IP3 and IP4 require more attention. Conditon IP4 is used in the proof
of the scalar multiplication, condition IP3. The parallelogram identity is used
in the proof of IP4.

IP 1: The inner product (·, ·) induces the norm ‖ · ‖:
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(x, x) = 1
4

{
(‖ x + x ‖2 − ‖ x − x ‖2) + i (‖ x + i x ‖2 − ‖ x − i x ‖2)

}
= 1

4

{
4 ‖ x ‖2 + i (| (1 + i |2 − | (1 − i |2) ‖ x ‖2)

}
= ‖ x ‖2 .

IP 2:

(y, x) = 1
4

{
(‖ y + x ‖2 − ‖ y − x ‖2) − i (‖ y + i x ‖2 − ‖ y − i x ‖2)

}
= 1

4

{
(‖ x + y ‖2 − ‖ x − y ‖2) − i (| −i |2 ‖ y + i x ‖2 − | i |2 ‖ y − i x ‖2)

}
= 1

4

{
(‖ x + y ‖2 − ‖ x − y ‖2) − i (‖ −i y + x ‖2 − ‖ i y + x ‖2)

}
= 1

4

{
(‖ x + y ‖2 − ‖ x − y ‖2) + i (‖ x + i y ‖2 − ‖ x − i y ‖2)

}
= (x, y)

IP 3: Take first notice of the result of IP4. The consequence of 3.16 is that
by a trivial induction can be proved that

(nx, y) = n (x, y) (3.13)

and hence (x, y) = (n x
n
, y) = n (x

n
, y), such that

(x
n
, y) = 1

n
(x, y), (3.14)

for every positive integer n. The above obtained expressions 3.13 and
3.14 imply that

(q x, y) = q (x, y),

for every rational number q, and (0, y) = 0 by the polarization iden-
tity.
The polarization identity also ensures that

(−x, y) = (−1) (x, y).

Every real number can b e approximated by a row of rational numbers,
Q is dense in R. Take an arbitrary α ∈ R and there exists a sequence
{qn}n∈N such that qn converges in R to α for n → ∞, this together
with
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−(αx, y) = (−αx, y)

gives that

| (qn x, y) − (αx, y) |= | ((qn − α)x, y) | .

The polarization identity and the continuity of the norm ensures that
| ((qn − α)x, y) |→ 0 for n→∞. This all here results in

(αx, y) = lim
n→∞

(qnx, y) = lim
n→∞

qn(x, y) = α (x, y).

The polarization identity ensures that i (x, y) = ( i x, y) for every
x, y ∈ X. Take λ = α + i β ∈ C and (λx, y) = ( (α + i β)x, y) =
(αx, y) + (i β x, y) = (α + i β) (x, y) = λ (x, y), conclusion

(λx, y) = λ(x, y)

for every λ ∈ C and for all x, y ∈ X.

IP 4: The parallelogram identity is used. First (x + z) and (y + z) are
rewritten

x + z = (x + y

2 + z) + x − y

2 ,

y + z = (x + y

2 + z) − x − y

2 .

The parallelogram identity is used, such that

‖ x + z ‖2 + ‖ y + z ‖2 = 2 (‖ x + y

2 + z ‖2 + ‖ x − y

2 ‖2).

Hence

(x, z) + (y, z) = 1
4

{
(‖ x + z ‖2 + ‖ y + z ‖2) − (‖ x − z ‖2 + ‖ y − z ‖2)

+ i (‖ x + i z ‖2 + ‖ y + i z ‖2) − i (‖ x − i z ‖2 + ‖ y − i z ‖2)
}

= 1
2

{
(‖ x + y

2 + z ‖2 + ‖ x − y

2 ‖2) − (‖ x + y

2 − z ‖2 + ‖ x − y

2 ‖2)

+ i (‖ x + y

2 + i z ‖2 + ‖ x − y

2 ‖2) − i (‖ x + y

2 − i z ‖2 + ‖ x − y

2 ‖2)
}

= 2 (x + y

2 , z)

for every x, y, z ∈ X, so also for y = 0 and that gives
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(x, z) = 2 (x2 , z) (3.15)

for every x, z ∈ X. The consequence of 3.15 is that

(x, z) + (y, z) = (x + y, z) (3.16)

for every x, y, z ∈ X.

�

3.9.3 Orthogonality

In an Inner Product Space (X, (., .)), there can be get information about the position
of two vectors x and y with respect to each other. With the geometrical definition
of an inner product the angle can be calculated between two elements x and y.

Let (X, (., .)) be an Inner Product Space, the geometrical definition of the inner
product (., .) is

(x, y) = ‖ x ‖ ‖ y ‖ cos (∠x, y),

for every x, y ∈ X, with ∠x, y is denoted the angle between the elements x, y ∈
X.

Definition 3.30

An important property is if elements in an Inner Product Space are perpendicular
or not.
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Let (X, (., .)) be an Inner Product Space. A vector 0 6= x ∈ X is said to be or-
thogonal to the vector 0 6= y ∈ X if

(x, y) = 0,

x and y are called orhogonal vectors, denoted by x ⊥ y.

Definition 3.31

If A,B ⊂ X are non-empty subsets of X then

a. x ⊥ A, if (x, y) = 0 for each y ∈ A,
b. A ⊥ B, if (x, y) = 0 if x ⊥ y for each x ∈ A and y ∈ B.

If A,B ⊂ X are non-empty subspaces of X and A ⊥ B then is A + B, see 3.3,
called the orthogonal sum of A and B.
All the elements of X, which stay orthogonal to some non-empty subset A ⊂ X is
called the orthoplement of A.

Let (X, (., .)) be an Inner Product Space and let A be an non-empty subset of X,
then

A⊥ = {x ∈ X | (x, y) = 0 for every y ∈ A}

is called the orthoplement of A.

Definition 3.32

Let A, B be non-empty subsets of some Inner Product Space (X, (., .)).

a. If A be a subset of X then is the set A⊥ a closed subspace of X.
b. A ∩ A⊥ is empty or A ∩ A⊥ = {0}.
c. If A be a subset of X then A ⊂ A⊥⊥.
d. If A,B are subsets of X and A ⊂ B, then A⊥ ⊃ B⊥.
e. A⊥ = (span(A))⊥ = (span(A))⊥.

Theorem 3.16
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Proof of Theorem 3.16

a. Let x, y ∈ A⊥ and α ∈ K, then

(x + α y, z) = (x, z) + α (y, z) = 0

for every z ∈ A. Hence A⊥ is a linear subspace of X.
Remains to prove: A⊥ = A⊥.
(⇒) The set A⊥ is equal to A⊥ unified with all its accumulation

points, so A⊥ ⊆ A⊥.
(⇐) Let x ∈ A⊥ then there exist a sequence {xn} in A⊥ such that

limn→∞ xn = x. Hence

(x, z) = lim
n→∞

(xn, z) = 0,

for every z ∈ A. ( Inner product is continuous.) So x ∈ A⊥ and
A⊥ ⊆ A⊥.

b. If x ∈ A ∩ A⊥ 6= ∅ then x ⊥ x, so x = 0.
c. If x ∈ A, and x ⊥ A⊥ means that x ∈ (A⊥)⊥, so A ⊂ A⊥⊥.
d. If x ∈ B⊥ then (x, y) = 0 for each y ∈ B and in particular for every x ∈ A ⊂ B.

So x ∈ A⊥, this gives B⊥ ⊂ A⊥.
e. (⇐) SinceA ⊂ span(A) ⊂ span(A), from (d.) follows that (span(A))⊥ ⊂

(span(A))⊥ ⊂ A⊥.
(⇒) If x ∈ A⊥ then (x, y) = 0 for all y ∈ A. Since span(A) are

finite linear combinations of elements out of A, (x, y) = 0 for all
y ∈ span(A) as well. If t ∈ span(A), then there exist a sequence
{tn}n∈N ⊂ span(A) such that limn→∞ tn = t. The inner product
is continuous so

(x, t) = lim
n→∞

(x, tn) = 0,

so x ∈ (span(A))⊥.

�

3.9.4 Orthogonal and orthonormal systems
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Important systems in Inner Product spaces are the orthogonal and orthonormal

systems. Orthonormal sequences are often used as basis for an Inner Product
Space, see for bases: section 3.2.4.

Let (X, (., .)) be an Inner Product Space and S ⊂ X is a system, with 0 /∈ S.

1. The system S is called orthogonal if for every x, y ∈ S:

x 6= y ⇒ x ⊥ y.

2. The system S is called orthonormal if the system S is orthogonal and

‖ x ‖= 1.

3. The system S is called an orthonormal sequence, if S = {xn}n∈I, and

(xn, xm) = δnm =
{

0, if n 6= m,
1, if n = m.

with mostly I = N or I = Z.

Definition 3.33

From an orthogonal system S = {xi | 0 6= xi ∈ S, i ∈ N } can simply be made
an orthonormal system S1 = { ei = xi

‖ xi ‖
| xi ∈ S, i ∈ N }. Divide the elements

through by their own length.

Remark 3.8
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Orthogonal systems are linear independent systems.

Theorem 3.17

Proof of Theorem 3.17

The system S is linear independent if every finite subsystem of S is linear indepen-
dent. Let S be an orthogonal system. Assume that

N∑
i=1

αi xi = 0,

with xi ∈ S, then xi 6= 0 and (xi, xj) = 0, if i 6= j. Take a k, with 1 ≤ k ≤ N , then

0 = (0, xk) = (
N∑
i=1

αi xi, xk) = αk ‖ xk ‖2 .

Hence αk = 0, k was arbitrary chosen, so αk = 0 for every k ∈ {1, · · · , N}. Further

N was arbitrary chosen so the system S is linear independent. �

Let (X, (., .)) be an Inner Product Space.

1. Let S = {xi | 1 ≤ i ≤ N} be an orthogonal set in X, then

‖
N∑
i=1

xi ‖2 =
N∑
i=1
‖ xi ‖2,

the theorem of Pythagoras .
2. Let S = {xi | 1 ≤ i ≤ N} be an orthonormal set in X, and 0 /∈ S then

‖ x − y ‖=
√

2

for every x 6= y in S.

Theorem 3.18
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Proof of Theorem 3.18

1. If xi, xj ∈ S with i 6= j then (xi, xj) = 0, such that

‖
N∑
i=1

xi ‖2 = (
N∑
i=1

xi,
N∑
i=1

xi) =
N∑
i=1

N∑
j=1

(xi, xj) =
N∑
i=1

(xi, xi) =
N∑
i=1
‖ xi ‖2 .

2. S is orhonormal, then for x 6= y

‖ x − y ‖2 = (x − y, x − y) = (x, x) + (y, y) = 2,

x 6= 0 and y 6= 0, because 0 /∈ S.

�

The following inequality can be used to give certain bounds for approximation
errors or it can be used to prove the convergence of certain series. It is called
the inequality of Bessel ( or Bessel’s inequality).

(Inequality of Bessel) Let {en}n∈N be an orthonormal sequence in an Inner Prod-
uct Space (X, (., .)), then ∑

i∈N
| (x, ei) |2≤‖ x ‖2,

for every x ∈ X. ( Instead of N there may also be chosen another countable index
set.)

Theorem 3.19

Proof of Theorem 3.19

The proof exists out of several parts.

1. For arbitrary chosen complex numbers αi holds

‖ x −
N∑
i=1

αi ei ‖2 = ‖ x ‖2 −
N∑
i=1
| (x, ei) |2 +

N∑
i=1
| (x, ei) − αi |2 . (3.17)
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Take αi = (x, ei) and

‖ x −
N∑
i=1

αi ei ‖2 = ‖ x ‖2 −
N∑
i=1
| (x, ei) |2 .

2. The left-hand site of 3.17 is non-negative, so
N∑
i=1
| (x, ei) |2≤‖ x ‖2 .

3. Take the limit for N → ∞. The limit exists because the series is monotone
increasing and bounded above.

�

If there is given some countable linear indenpendent set of elements in an Inner
Product Spaces (X, (., .)), there can be constructed an orthonormal set of elements
with the same span as the original set of elements. The method to construct such
an orthonormal set of elements is known as the Gram-Schmidt proces . In fact is
the orthogonalisation of the set of linear independent elements the most important
part of the Gram-Schmidt proces, see Remark 3.8.

Let the elements of the set S = {xi | i ∈ N} be a linear independent set of the
Inner Product Spaces (X, (., .)). Then there exists an orthonormal set ONS =
{ei | i ∈ N} of the Inner Product Spaces (X, (., .)), such that

span(x1, x2, · · · , xn) = span(e1, e2, · · · , en),

for every n ∈ N.

Theorem 3.20

Proof of Theorem 3.20

Let n ∈ N be given. Let’s first construct an orthogonal set of elements OGS =
{yi | i ∈ N}.
The first choice is the easiest one. Let y1 = x1, y1 6= 0 because x1 6= 0 and
span(x1) = span(y1). The direction y1 will not be changed anymore, the only thing
that will be changed, of y1, is it’s length.
The second element y2 has to be constructed out of y1 and x2. Let’s take y2 =
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x2 − α y1, the element y2 has to be orthogonal to the element y1. That means that
the constant α has to be chosen such that (y2, y1) = 0, that gives

(y2, y1) = (x2 − α y1, y1) = 0 ⇒ α = (x2, y1)
(y1, y1) .

The result is that

y2 = x2 −
(x2, y1)
(y1, y1) y1.

It is easy to see that

span(y1, y2) = span(x1, x2),

because y1 and y2 are linear combinations of x1 and x2.
Let’s assume that there is constructed an orthogonal set of element {y1, · · · , y(n−1)},
with the property span(y1, · · · , y(n−1)) = span(x1, · · · , x(n−1)). How to construct
yn?
The easiest way to do is to subtract from xn a linear combination of the elements
y1 to y(n−1), in formula form,

yn = xn −
(
α1 y1 + α2 y2 · · · + α(n−1) y(n−1)

)
,

such that yn becomes perpendicular to the elements y1 to y(n−1). That means that(
(yn, yi) = 0 ⇒ αi = (xn, yi)

(yi, yi)

)
for 1 ≤ i ≤ (n− 1).

It is easily seen that yn is a linear combination of xn and the elements y1, · · · , y(n−1),
so span(y1, · · · , yn) = span(y1, · · · , y(n−1), xn) = span(x1, · · · , x(n−1), xn).
Since n is arbitrary chosen, this set of orthogonal elements OGS = {yi | 1 ≤ i ≤
n} can be constructed for every n ∈ N. The set of orthonormal elements is easily

constructed by ONS = { yi
‖ yi ‖

= ei | 1 ≤ i ≤ n}. �

3.10 Hilbert Spaces
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A Hilbert space H is a complete Inner Product Space, complete in the metric in-
duced by the inner product.

Definition 3.34

A Hilbert Space can also be seen as a Banach Space with a norm, which is in-
duced by an inner product. Further the term pre-Hilbert space is mentioned at
page 75. The next theorem makes clear why the word pre- is written before Hilbert.
For the definition of an isometric isomorphism see page 121.

If X is an Inner Product Space, then there exists a Hilbert Space H and an iso-
metric isomorphism T : X → W , where W is a dense subspace of H. The Hilbert
Space H is unique except for isometric isomorphisms.

Theorem 3.21

Proof of Theorem 3.21

The Inner Product Space with its inner product is a Normed Space. So there exists
a Banach Space H and an isometry T : X → W onto a subspace of H, which is
dense in H, see theorem 3.11 and the proof of the mentioned theorem.
The problem is the inner product. But with the help of the continuity of the inner
product, see theorem 3.14, there can be defined an inner product on H by

(x̃, ŷ) = lim
n→∞

(xn, yn)

for every x̃, ỹ ∈ H. The sequences {xn}n∈N and {yn}n∈N represent the equivalence
classes x̃ and ỹ, see also theorem 3.11. The norms on X and W satisfy the paral-
lelogram identity, see theorem 3.11, such that T becomes an isometric isomorphism
between Inner Product Spaces. Theorem 3.11 guarantees that the completion is
unique execept for isometric isomorphisms. �

3.10.1 Minimal distance and orthogonal projection
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The definition of the distance of a point x to a set A is given in 3.21.
Let M be subset of a Hilbert Space H and x ∈ H, then it is sometimes important
to know if there exists some y ∈M such that dist(x,M) = ‖ x − y ‖. And if there
exists such a y ∈ M , the question becomes if this y is unique? See the figures 3.4
for several complications which can occur.

M

x

δ

M

x

δ

M

x

δ
δ

δ

No solution. An unique
solution.

Infinitely many solutions.

Figure 3.4 Minimal distance δ to some subset M ⊂ X.

To avoid several of these problems it is of importance to assume that M is a closed
subset of H and also that M is a convex set.

A subset A of a Vector Space X is said to be convex if

αx + (1 − α) y ∈ A

for every x, y ∈ A and for every α with 0 ≤ α ≤ 1.

Definition 3.35

Any subspace of a Vector Space is obviously convex and intersections of convex
subsets are also convex.
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Let X be an Inner Product Space and M 6= ∅ is a convex subset of X. M is com-
plete in the metric induced by the inner product on X. Then for every x ∈ X,
there exists an unique y0 ∈M such that

dist(x,M) = ‖ x − y0 ‖ .

Theorem 3.22

Proof of Theorem 3.22

Just write

λ = dist(x,M) = inf{ d(x, y) | y ∈ M},

then there is a sequence {yn} in M such that

lim
n→∞

‖ x − yn ‖= λ.

If the sequence {yn} is a Cauchy sequence, the completeness of M can be used to
prove the existence of such y0 ∈M(!).
Write

λn = ‖ yn − x ‖

so that λn → λ, as n→∞.
The norm is induced by an inner product such that the parallelogram identity can
be used in the calculation of

‖ yn − ym ‖2 = ‖ (yn − x) − (ym − x) ‖2

= 2 (‖ (yn − x) ‖2 + ‖ (ym − x) ‖2) − 2 ‖ (yn + ym)
2 − x ‖2

≤ 2 (λ2
n + λ2

m) − λ2,

because (yn + ym)
2 ∈M and ‖ (yn + ym)

2 − x ‖≥ λ.
This shows that {yn} is a Cauchy sequence, since λn → λ, as n → ∞. M is
complete, so yn → y0 ∈M , as n→∞ and

lim
n→∞

‖ x − yn ‖= ‖ x − y0 ‖= λ.
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Is y0 unique? Assume that there is some y1 ∈ M, y1 6= y0 with ‖ x − y1 ‖= λ =
‖ x − y0 ‖. The parallelogram identity is used again and also the fact that M is
convex

‖ y0 − y1 ‖2 = ‖ (y0 − x) − (y1 − x) ‖2

= 2 (‖ y0 − x ‖2 + ‖ y1 − x ‖2)− ‖ (y0 − x) + (y1 − x) ‖2

= 2 (‖ y0 − x ‖2 + ‖ y1 − x ‖2)− 4 ‖ (y0 + y1)
2 − x ‖2

≤ 2 (λ2 + λ2) − 4λ2 = 0.

Hence y1 = y0. �

See theorem 3.22, but now within a real Inner Product Space. The point y0 ∈ M
can be characterised by

(x − y0, z − y0) ≤ 0

for every z ∈ M . The angle between x− y0 and z− y0 is obtuse for every z ∈ M .

Theorem 3.23

Proof of Theorem 3.23

Step 1: If the inequality is valid then

‖ x − y0 ‖2 − ‖ x − z ‖2

= 2 (x − y0, z − y0)− ‖ z − y0 ‖2≤ 0.

Hence for every z ∈M : ‖ x − y0 ‖≤‖ x − z ‖.

Step 2: The question is if the inequality is true for the closest point y0? Since M is
convex, λ z + (1 − λ) y0 ∈M for every 0 < λ < 1.
About y0 is known that
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‖ x − y0 ‖2≤‖ x − λ z − (1 − λ) y0 ‖2 (3.18)

= ‖ (x − y0) − λ (z − y0) ‖2 . (3.19)

Because X is a real Inner Product Space, inequality 3.18 becomes

‖ x − y0 ‖2

≤‖ (x − y0) ‖2 −2λ (x − y0, z − y0) + λ2 ‖ z − y0 ‖2 .

and this leads to the inequality

(x − y0, z − y0) ≤ λ

2 ‖ z − y0 ‖2

for every z ∈M . Take the limit of λ→ 0 and the desired result is obtained.

�

Theorem 3.23 can also be read as that it is possible to construct a hyperplane
through y0, such that x lies on a side of that plane and that M lies on the opposite
site of that plane, see figure 3.5. Several possibilities of such a hyperplane are drawn.

M

x

δ
Hyperplane

Hyperplane

y0

Figure 3.5 Some
hyperplanes through y0.

If there is only an unique hyperplane than the direction of (x − y0) is perpendicular
to that plane, see figure 3.6.
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y0

M

δ

x Hyperplane

Figure 3.6 Unique
hyperplane through y0.

Given a fixed point x and certain plane M , the shortest distance of x to the plane
is found by dropping a perpendicular line through x on M . With the point of in-
tersection of this perpendicular line with M and the point x, the shortest distance
can be calculated. The next theorem generalizes the above mentioned fact. Read
theorem 3.22 very well, there is spoken about a non-empty convex subset, in the
next theorem is spoken about a linear subspace.

See theorem 3.22, but now with M a complete subspace of X, then z = x − y0 is
orthogonal to M .

Theorem 3.24

Proof of Theorem 3.24

A subspace is convex, that is easy to verify. So theorem 3.22 gives the existence of
an element y0 ∈M , such that dist(x,M) = ‖ x − y0 ‖= δ.
If z = x − y0 is not orthogonal to M then there exists an element y1 ∈ M such
that

(z, y1) = β 6= 0. (3.20)

It is clear that y1 6= 0 otherwise (z, y1) = 0. For any γ

‖ z − γ y1 ‖2 = (z − γ y1, z − γ y1)

= (z, z) − γ (z, y1) − γ (y1, z) + | γ |2 (y1, y1)

If γ is chosen equal to
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γ = β

‖ y1 ‖2

then

‖ z − γ y1 ‖2 = ‖ z ‖2 − | β |
2

‖ y1 ‖2
< δ2.

This means that ‖ z − γ y1 ‖= ‖ x − y0 − γ y1 ‖< δ, but by definition
‖ z − γ y1 ‖> δ, if γ 6= 0.

Hence 3.20 cannot hold, so z = x − y0 is orthogonal to M . �

From theorem 3.24, it is easily seen that x = y0 + z with y0 ∈ M and z ∈ M⊥.
In a Hilbert Space this representation is very important and useful.

If M is closed subspace of a Hilbert Space H. Then

H = M ⊕ M⊥.

Theorem 3.25

Proof of Theorem 3.25

Since M is a closed subspace of H, M is also a complete subspace of H, see theo-
rem 3.7. Let x ∈ H, theorem 3.24 gives the existence of a y0 ∈ M and a z ∈ M⊥
such that x = y0 + z.
Assume that x = y0 + z = y1 + z1 with y0, y1 ∈ M and z, z1 ∈ M⊥. Then
y0 − y1 = z − z1, since M ∩ M⊥ = {0} this implies that y1 = y0 and z = z1.

So y0 and z are unique. �

In section 3.7.1 is spoken about total subsetM of a Normed SpaceX, i.e. span(M) =
X. How to characterize such a set in a Hilbert Space H?

Let M be a non-empty subset of a Hilbert Space H.
M is total in H if and only if x ⊥ M =⇒ x = 0 (or M⊥ = {0}).

Theorem 3.26
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Proof of Theorem 3.26

(⇒) Take x ∈ M⊥. M is total in H, so span(M) = H. This means that for
x ∈ H(M⊥ ⊂ H), there exists a sequence {xn}n∈N in span(M) such that
xn → x. Since x ∈M⊥ and M⊥ ⊥ span(M), (xn, x) = 0. The continuity of
the inner product implies that (xn, x) → (x, x), so (x, x) = ‖ x ‖2 = 0 and
this means that x = 0. x ∈M⊥ was arbitrary chosen, hence M⊥ = {0}.

(⇐) Given is that M⊥ = {0}. If x ⊥ span(M) then x ∈ M⊥ and x = 0. Hence
span(M)⊥ = {0}. The span(M) is a subspace of H. With theorem 3.25 is
obtained that span(M) = H, so M is total in H.

�

In Inner Product Spaces theorem 3.26 is true from right to the left. If X is an In-
ner Product Space then: "If M is total in X then x ⊥ M =⇒ x = 0."
The completeness of the Inner Product Space X is of importance for the opposite!

Remark 3.9

If S is a subspace of a Hilbert space H then S = S⊥⊥,
so S⊥⊥ is the smallest closed subspace containing S.

Lemma 3.1

Proof of Theorem 3.1

If x ∈ S then x ⊥ y for all y ∈ S⊥, so x ∈ S⊥⊥ and therefore S ⊆ S⊥⊥.
Since (S⊥)⊥ is closed, so is obtained one direction of the containment

S ⊆ S⊥⊥.
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Suppose that S⊥⊥ is strictly larger than S. Then there is some y ∈ S⊥⊥ not lying
in S. S⊥⊥ is a Hilbert space in its own and S is a closed subset, so the orthogonal
complement of S in S⊥⊥ contains an element z 6= 0. But then z ∈ S⊥ and z ∈ S⊥⊥,
this contradicts the fact that

S⊥ ∩ (S⊥)⊥ = {0}.

See for the comment about the smallest closed subspace, Theorem 2.4. �

3.10.2 Orthogonal base, Fourier expansion and Parseval’s relation

The main problem will be to show that sums can be defined in a reasonable way. It
should be nice to prove that orhogonal bases of H are countable.

An orthogonal set M of a Hilbert Space H is called an orthogonal base of H, if no
orthonormal set of H contains M as a proper subset.

Definition 3.36

An orthogonal base is sometimes also called a complete orthogonal system . Be
careful, the word "complete" has nothing to do with the topological concept: com-
pleteness.

Remark 3.10

A Hilbert Space H (0 6= x ∈ H) has at least one orthonormal base. If M is any
orthogonal set in H, there exists an orthonormal base containing M as subset.

Theorem 3.27
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Proof of Theorem 3.27

There exists a x 6= 0 in H. The set, which contains only x

‖ x ‖
is orthonormal. So

there exists an orthonormal set in H.
Look to the totality {S} of orthonormal sets which contain M as subset. {S} is
partially ordered. The partial order is written by S1 ≺ S2 what means that S1 ⊆ S2.
{S ′} is the linear ordered subset of {S}. ∪S′∈{S′} is an orthonormal set and an up-
per bound of {S ′}. Thus by Zorn’s Lemma, there exists a maximal element S0 of

{S}. S ⊆ S0 and because of it’s maximality, S0 is an orthogonal base of H. �

There exists an orthonormal base S0 of a Hilbert Space H. This orthogonal base
S0 can be used to represent elements f ∈ H, the so-called Fourier expansion of
f . With the help of the Fourier expansion the norm of an element f ∈ H can be
calculated by Parseval’s relation .

Let S0 = {eα | α ∈ Λ} be an orthonormal base of a Hilbert Space H. For any
f ∈ H the Fourier-coefficients, with respect to S0, are defined by

fα = (f, eα)

and

f =
∑
α∈Λ

fα eα,

which is called the Fourier expansion of f . Further

‖ f ‖2 =
∑
α∈Λ
| fα |2,

for any f ∈ H, which is called Parseval’s relation.

Theorem 3.28

Proof of Theorem 3.28

The proof is splitted up into several steps.
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1. First will be proved the inequality of Bessel. In the proof given in theorem 3.19
there was given a countable orthonormal sequence. Here is given an orthonor-
mal base S0. If this base is countable, that is till this moment not known.
Let’s take a finite system {α1, α2, · · · , αn} out of Λ.
For arbitrary chosen complex numbers cαi holds

‖ f −
n∑
i=1

cαi eαi ‖
2 = ‖ f ‖2 −

n∑
i=1
| (f, eαi) |2 +

n∑
i=1
| (f, eαi) − cαi |

2 .

(3.21)

For fixed {α1, α2, · · · , αn}, the minimum of ‖ f −
∑n

i=1 cαi eαi ‖2 is attained
when cαi = fαi . Hence

n∑
i=1
| fαi |

2≤‖ f ‖2

2. Define

Ej = {eα | | (f, eα) |≥ ‖ f ‖
j

, eα ∈ S0}

for j = 1, 2, · · ·. Suppose thatEj contains the distinct elements {eα1 , eα1 , · · · , eαm}
then by Bessel’s inequality,

m∑
i=1

(‖ f ‖
j

)2 ≤
∑
αi

| (f, eαi) |2≤‖ f ‖2 .

This shows that m ≤ j2, so Ej contains at most j2 elements.
Let

Ef = {eα | (f, eα) 6= 0, eα ∈ S0}.

Ef is the union of all Ej ’s, j = 1, 2, · · ·, so Ef is a countable set.

3. Also if Ef is denumerable then
∞∑
i=1
| fαi |

2≤‖ f ‖2<∞,

such that the term fαi = (f, eαi) of that convergent series tends to zero if
i→∞.
Also important to mention
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∑
α∈Λ
| fα |2 =

∞∑
i=1
| fαi |

2≤‖ f ‖2<∞,

so Bessel’s inequality is true.
4. The sequence {

∑n
i=1 fαi eαi}n∈N is a Cauchy sequence, since, using the ortho-

normality of {eα},

‖
n∑
i=1

fαi eαi −
m∑
i=1

fαi eαi ‖
2 =

n∑
i=m+1

| fαi |
2

which tends to zero if n,m → ∞, (n > m). The Cauchy sequence converges
in the Hilbert Space H, so limn→∞

∑n
i=1 fαi eαi = g ∈ H.

By the continuity of the inner product

(f − g, eαk) = lim
n→∞

(f −
n∑
i=1

fαi eαi , eαk) = fαk − fαk = 0,

and when α 6= αj with j = 1, 2, · · · then

(f − g, eα) = lim
n→∞

(f −
n∑
i=1

fαi eαi , eα) = 0− 0 = 0.

The system S0 is an orthonormal base of H, so (f − g) = 0.
5. By the continuity of the norm and formula 3.21 follows that

0 = lim
n→∞

‖ f−
n∑
i=1

fαi eαi ‖
2 = ‖ f ‖2 − lim

n→∞

n∑
i=1
| fαi |

2 = ‖ f ‖2 −
∑
α∈Λ
| fα |2 .

�

3.10.3 Representation of bounded linear functionals

In the chapter about Dual Spaces, see chapter 4, there is something written about
the representation of bounded linear functionals. Linear functionals are in certain
sense nothing else then linear operators on a vectorspace and their range lies in the
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field K with K = R or K = C. About their representation is also spoken, for the
finite dimensional case, see 4.4.1 and for the vectorspace `1 see 4.6.1. The essence
is that these linear functionals can be represented by an inner product. The same
can be done for bounded linear functionals on a Hilbert Space H.

Be careful:
The `1 space is not an Inner Product space, the representation can be read as an
inner product.

Remark 3.11

The representation theorem of Riesz (functionals) .

Let H be a Hilbert Space and f is a bounded linear functional on H, so f : H →
K and there is some M > 0 such that | f(x) | ≤ M ‖ x ‖ then there is an unique
a ∈ H such that

f(x) = (x, a)

for every x ∈ H and

‖ f ‖= ‖ a ‖ .

Theorem 3.29

Proof of Theorem 3.29

The proof is splitted up in several steps.

1. First the existence of such an a ∈ H.
If f = 0 then satisfies a = 0. Assume that there is some z 6= 0 such that
f(z) 6= 0, (z ∈ H). The nullspace of f , N(f) = {x ∈ H|f(x) = 0} is a
closed linear subspace of H, hence N(f) ⊕ N(f)⊥ = H. So z can be written
as z = z0 + z1 with z0 ∈ N(f) and z1 ∈ N(f)⊥ and z1 6= 0. Take now

x ∈ H and write x as follows x = (x − f(x)
f(z1) z1) + f(x)

f(z1) z1 = x0 + x1.

It is easily to check that f(x0) = 0, so x1 ∈ N(f)⊥ and that means that
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(x − f(x)
f(z1) z1) ⊥ z1. Hence, (x, z1) = f(x)

f(z1) (z1, z1) = f(x) ‖ z1 ‖2

f(z1) . Take

a = f(z1)
‖ z1 ‖2

z1 and for every x ∈ H : f(x) = (x, a).

2. Is a unique?
If there is some b ∈ H such that (x, b) = (x, a) for every x ∈ H then (x, b−a) =
0 for every x ∈ H. Take x = b− a then ‖ b− a ‖2= 0 then (b− a) = 0, hence
b = a.

3. The norm of f?
Using Cauchy-Schwarz gives |f(x)| = |(x, a)| ≤ ‖ x ‖ ‖ a ‖, so ‖ f ‖≤‖ a ‖.
Further f(a) = ‖ a ‖2, there is no other possibility then ‖ f ‖= ‖ a ‖.

�

3.10.4 Representation of bounded sesquilinear forms

In the paragraphs before is, without knowing it, already worked with sesquilinear forms
, because inner products are sesquilinear forms. Sesquilinear forms are also called
sesquilinear functionals .



103

Let X and Y be two Vector Spaces over the same field K. A mapping

h : X × Y → K

is called a sesquilinear form, if for all x1, x2 ∈ X and y1, y2 ∈ Y and α ∈ K

SQL 1: h(x1 + x2, y1) = h(x1, y1) + h(x2, y1),

SQL 2: h(x1, y1 + y2) = h(x1, y1) + h(x1, y2),

SQL 3: h(αx1, y1) = αh(x1, y1),

SQL 4: h(x1, α y1) = αh(x1, y1).

In short h is linear it the first argument and conjugate linear in the second argu-
ment.

Definition 3.37

Inner products are bounded sesquilinear forms . The definition of the norm of a sesquilinear form
is almost the same as the definition of the norm of a linear functional or a linear
operator.

If X and Y are Normed Spaces, the sesquilinear form is bounded if there exists
some positive number c ∈ R such that

|h(x, y)| ≤ c ‖ x ‖ ‖ y ‖

for all x ∈ X and y ∈ Y .
The norm of h is defined by

‖ h ‖= sup{
0 6= x ∈ X,
0 6= y ∈ Y

|h(x, y)|
‖ x ‖ ‖ y ‖

= sup{
‖ x ‖= 1,
‖ y ‖= 1

|h(x, y)|.

Definition 3.38

When the Normed Spaces X and Y are Hilbert Spaces then the representation
of a sesquilinear form can be done by an inner product and the help of a bounded
linear operator, the so-called Riesz representation .
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Let H1 and H2 be Hibert Spaces over the field K and

h : H1 × H2 → K

is a bounded sesquilinear form. Let (·, ·)H1 be the inner product in H1 and let
(·, ·)H2 be the inner product in H2. Then h has a representation

h(x, y) = (S(x), y)H2

where S : H1 → H2 is a uniquely determined bounded linear operator and

‖ S ‖= ‖ h ‖ .

Theorem 3.30

Proof of Theorem 3.30

The proof is splitted up in several steps.

1. The inner product?
Let x ∈ H1 be fixed and look at h(x, y). h(x, y) is linear in y because there is
taken the complex conjugate of h(x, y). Then using Theorem 3.29 gives the
existence of an unique z ∈ H2, such that

h(x, y) = (y, z)H2 ,

therefore

h(x, y) = (z, y)H2 . (3.22)

2. The operator S?
z ∈ H2 is unique, but depends on the fixed x ∈ H1, so equation 3.22 defines
an operator S : H1 → H2 given by

z = S(x).

3. Is S linear?
For x1, x2 ∈ H1 and α ∈ K:

(S(x1 + x2), y)H2 = h((x1 + x2), y) = h(x1, y) + h(x2, y)
= (S(x1), y)H2 + (S(x2), y)H2 = ((S(x1) + S(x2)), y)H2
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for every y ∈ H2. Hence, S(x1 + x2) = S(x1) + S(x2).
On the same way, using the linearity in the first argument of h:
S(αx1) = αS(x1).

4. Is S bounded?

‖ h ‖= sup{0 6= x ∈ H1,

0 6= y ∈ H2

(S(x), y)H2

‖ x ‖H1 ‖ y ‖H2

≥ sup{0 6= x ∈ H1,

0 6= S(x) ∈ H2

(S(x), S(x))H2

‖ x ‖H1 ‖ S(x) ‖H2
= ‖ S ‖,

so the linear operator S is bounded.

5. The norm of S?

‖ h ‖= sup{0 6= x ∈ H1,

0 6= y ∈ H2

(S(x), y)H2

‖ x ‖H1 ‖ y ‖H2

≤ sup{0 6= x ∈ H1,

0 6= y ∈ H2

‖ S(x) ‖H2 ‖ y ‖H2

‖ x ‖H1 ‖ y ‖H2
= ‖ S ‖

using the Cauchy-Schwarz-inequality. Hence, ‖ S ‖= ‖ T ‖.

6. Is S unique?
If there is another linear operator T : H1 → H2 such that

h(x, y) = (T (x), y)H2 = (S(x), y)H2

for every x ∈ H1 and y ∈ H2, then

(T (x) − S(x), y) = 0

for every x ∈ H1 and y ∈ H2. Hence, T (x) = S(x) for every x ∈ H1, so
S = T .
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�

3.11 Quotient Spaces

See Section 3.2.3 for the definition of a Quotient Space and its linear operations.
The book of (Megginson, 1998) is used to the following overview of the properties
of Quotient Spaces.
Suppose that W is a linear subspace of a normed space (V, ‖ · ‖). With a norm
there can be easily defined a metric, see formula 3.3.
With the help of that metric, there can be defined a distance between cosets and
with that distance function, there will be defined a norm at the Quotient Space V/W .

3.11.1 Metric and Norm on V/W

The natural way to define a distance between the cosets x + W and y + W , is to
think as if the cosets were sets. The distance between the sets x + W and y + W
in a Metric Space is defined by

d(x + W, y + W ) = inf{‖ s − t ‖ | s ∈ x + W, t ∈ y + W}, (3.23)

used is definition 3.21. Since

{s − t | s ∈ x + W, t ∈ y + W} = {(x + z1) − (y + z2) | z1, z2 ∈ W} =
{x − (y − z1 + z2) | z1, z2 ∈ W} = {x − (y + z) | z ∈ W} =
{x − w | w ∈ y + W}

d(x + W, y + W ) = d(x, y + W ), whenever x, y ∈ V .
If x ∈ W \W then 0 ≤ d(x + W, 0 + W ) = d(x, W ) = 0, but x + W 6= 0 + M ,
so formula 3.23 is not a metric at the Quotient Space V/W . But if W is closed,
there are no problems anymore, because W \W = ∅.
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If W is closed, formula 3.23 defines a (quotient) metric on the Quotient Space
V/W . That will also be the reason that most of the time the linear space W is
assumed to be closed.
Since the metric is induced by a norm, it also possible to define a norm at the
Quotient Space V/W , that will be the distance of a coset to the origin of V/W .

Let W be a closed linear subspace of the Normed Space (V, ‖ · ‖). The Quotient Norm
of the Quotient Space V/W is given by

‖ x + W ‖= d(x + W, 0 + W ) = inf{‖ x + y ‖ | y ∈ W}. (3.24)

Definition 3.39

Let’s look, if the conditions in definition 3.23 are satisfied.
It’s clear that ‖ x + W ‖≥ 0, so condition 1 is satisfied.
If ‖ x + W ‖= 0, there exists a sequence {wn}n∈N ⊂ W , such that x + wn → 0,
as n → ∞, so wn → (−x). W is closed, so that (−x) ∈ W and that means that
x + W = x + (−x) + W = 0 + W in V/W and condition 2 is fulfilled.
Let’s now look at condition 3, for x ∈ V and 0 6= k ∈ K,

‖ k (x + W ) ‖= ‖ k x + W ‖= inf{‖ k x + y ‖ | y ∈ W} =

inf{| k | ‖ x + y

k
‖ | y ∈ W} = | k | inf{‖ x + y ‖ | y ∈ W} =

| k | ‖ x + W ‖ .

And now the triangle-inequality, let x1, x2 ∈ V . The infimum is the greatest lower
bound

‖ (x1 + W ) + (x2 + W ) ‖= ‖ (x1 + x2) + W ‖=
inf{‖ (x1 + x2) + y ‖ | y ∈ W}
= inf{‖ (x1 + y1) + (x2 + y2) ‖ | y1, y2 ∈ W} ≤

inf{(‖ (x1 + y1) ‖ + ‖ (x2 + y2) ‖) | y1, y2 ∈ W} =
‖ x1 + W ‖ + ‖ x2 + W ‖

Since x1, x2 ∈ V were arbitrary chosen, so condition 4 is also fulfilled. It follows
that the expression 3.24 is a norm on the Quotient Space V/W .
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Let W be a closed subspace of the Normed Space (V, ‖ · ‖).

a. If x ∈ X then ‖ x ‖≥‖ x + W ‖.
b. If x ∈ X and ε > 0, then there exists an x0 ∈ V such that

x0 + W = x + W and ‖ x0 ‖ < ‖ x + W ‖ + ε.

Theorem 3.31

Proof of Theorem 3.31

a. ‖ x ‖= ‖ x − 0 ‖≥ d(x, 0 + W ) = ‖ x + W ‖.
b. Suppose that x ∈ V and ε > 0. There holds d(x,W ) ≤‖ x − y ‖

for every y ∈ W . Let y be an element of W such that
‖ x − y ‖ < d(x,W ) + ε = ‖ x + W ‖ + ε.
So take x0 = x − y.

�

To do certain estimations, it is of importance to know about the existence of certain
elements in some subspace. Let (V, ‖ · ‖) be a Normed Space and W a closed
subspace of V . Suppose that x, y ∈ V and ‖ x − y + W ‖< δ then there exists a
sequence {zi}i∈N ⊂ W such that

lim
i→∞

‖ x − y + zi ‖= ‖ x − y + W ‖= inf{‖ x − y + z ‖ | z ∈ W}

and ‖ x− y+W ‖≤‖ x− y+ zi ‖ for every i ∈ N. If ‖ x− y+W ‖< δ then there is
some zi0(∈ W ) such that ‖ x− y + zi0 ‖< δ and (x− y) + zi0 +W = (x− y) +W .
So there exists some y0 = y − zi0 ∈ V such that x − yi0 + W = x − y + W and
‖ x − yi0 ‖< δ.

Let W be a closed subspace of the Normed Space (V, ‖ · ‖).
The sequence {xn + W}n∈N converges to x + W in V/W if and only if
there is a sequence {yn}n∈N ⊂ W such that the sequence {(xn + yn)}n∈N con-
verges to x ∈ V .

Theorem 3.32
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Proof of Theorem 3.32

(⇒) Assume that (xn + W )→ (x + W ) in V/W . Since

‖ (xn + W ) − (x + W ) ‖= inf{‖ xn − x + y ‖ | y ∈ W},

choose yn ∈ W such that

‖ xn − x + yn ‖ < ‖ (xn + W ) − (x + W ) ‖ + 1
n

for n = 1, 2, · · ·, see Theorem 3.31b. There follows that (xn − x + yn)→ 0
in V , so (xn + yn)→ x in V , as n→∞.

(⇐) Let {xn + W}n∈N be a sequence in V/W . If {yn}n∈N is a sequence in W such
that (xn + yn)→ x in V , then

‖ (xn + W ) − (x + W ) ‖= ‖ (xn − x) + W ‖ ≤‖ (xn − x + yn) ‖

for every n, so that (xn + W ) → (x + W ) in V/W .

�

3.11.2 Completeness is three-space property

It would be nice to deduce a property of some space on the basis of some other
facts that are known about that space. If W is a closed subspace of a normed space
(V, ‖ · ‖) and there is known that the quotient space V/W is complete. Does this
fact imply that the space (V, ‖ · ‖) is complete or not? Here it is a question about
completeness, but there are also other properties of spaces, where this question can
be asked.
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Let P be a property defined for Normed Spaces. Suppose that (V, ‖ · ‖) is a
Normed Space with a closed subspace W such that two of the spaces V, W, V/W
have the property P , then the third must also have it. Then P is called a three-space property .

Definition 3.40

If W is a closed subspace of a Normed Space (V, ‖ · ‖).
Completeness is a three-space property.
The normed space (V, ‖ · ‖) is complete if and only if W and V/W are complete.

Theorem 3.33

Proof of Theorem 3.33

(⇒) The normed space (V, ‖ · ‖) is complete, so it is a Banach Space. So W is a
closed linear subspace of the Banach Space (V, ‖ · ‖), so W is a Banach Space,
see Theorem 3.12.
The Quotient Space V/W is a Normed linear Space, see Definition 3.39.
Suppose that {(xn +W}n∈N is a Cauchy sequence in V/W . If some subsequence
of {(xn + W )}n∈N has a limit, the entire sequence will converge to the same
limit. (Idea: (xn − x) = (xn − xnk) + (xnk − x).)
There is a subsequence {(xnk + W )}k∈N with ‖ (xnk − xnk+1) + W ‖ < 2−k.
Hence there exists a sequence {yk}k∈N ⊂ W such that
‖ (xnk − xnk+1 − yk) ‖ < 2−k. Write yk = wk+1 − wk with w1 = 0 and
wk ∈ W, k = 2, 3, · · ·. So the sequence {(xnk − wk)}k∈N is a Cauchy sequence
in V , since V is complete, it converges to a limit x ∈ V . With Theorem 3.32
follows that (xnk +W )→ (x+W ), hence the Quotient Space V/W is complete.

(⇐) Suppose that W and V/W are complete. Let {xn}n∈N be Cauchy sequence
in V . Since ‖ (xn − xm) + W ‖ ≤‖ xn − xm ‖ for all n,m ∈ N, the
sequence {(xn + W )}n∈N is a Cauchy sequence in V/W and so converges to
some (z + W ) ∈ V/W .
With Theorem 3.31b follows that there exists a sequence {yn}n∈N ⊂ W such
that ‖ (xn + yn) − z ‖→ 0 in V .
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Since yn − ym = yn + xn − z − xn + xm − xm − ym + z and
‖ yn − ym ‖≤‖ yn + xn − z ‖ + ‖ −xn + xm ‖ + ‖ − xm − ym + z ‖ for
n,m = 1, 2, · · ·, if follows that the sequence {yn}n∈N is a Cauchy sequence in
W . W is complete, so yn → y in W and xn = (xn + yn) − yn → z − y in V .
This shows that V is complete.

�

3.11.3 Quotient Map

Let (V, ‖ · ‖) be a Normed Space and W a closed subspace of V . The equivalence
classes are the members of the Quotient Space V/W . Quite often, use is made of a
projection from V onto V/W .

Let (V, ‖ · ‖) be a Normed Space and W a closed subspace of V . The quotient map
from V onto V/W is the function π defined by the formula
π(x) = x + W . (π : V → V/W )
The addition and scalar multiplication are defined by

π(x + y) = π(x) + π(y), π(αx) = απ(x),

with x, y ∈ V and α ∈ K.
Be careful: if α = 0 then απ(x) = 0 + W .

Definition 3.41

If W is a closed subspace of a normed space (V, ‖ · ‖) and π is the quotient map
of V onto V/W then the image of the open unit ball in V is the open unit ball of
V/M .

Lemma 3.2
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Proof of Theorem 3.2

(π(UV ) ⊆ UV/W ):
Let UV be the open unit ball of V and let UV/W be the open unit ball of
V/W . If x ∈ UV then ‖ π(x) ‖= ‖ x + W ‖≤‖ x ‖< 1, so . Here is used
Theorem 3.31 a.

(UV/W ⊆ π(UV )):
If y + W ∈ UV/W then ‖ y + W ‖< 1, so there exists some ε > 0, such that
‖ y + W ‖ + ε < 1. Theorem 3.31b gives that there exists a z ∈ V , such
that z + W = y + W and such that ‖ z ‖< ‖ y + W ‖ + ε < 1.

This proves π(UV ) = UV/W .
�

3.11.4 Important Construction: Completion

If (X, d) is a Metric Space, which is not complete, then it is always possible to
construct a larger space, which is complete. This larger space contains just enough
elements such that every Cauchy sequence in X has a limit in that larger space. It
is an important construction, which is often used.
New points are adjoined to the space (X, d) and d has to be extended to all these
new points. And Cauchy sequences, which had first no limit, find a limit among
those new points. Those new points become limits of sequences in X.

Let (X, d) be a metric space. The set of all the Cauchy sequences with respect to
the metric d is defined by

cs(X, d) = {x = {xn}n∈N | xCauchy sequence inX}.

Definition 3.42

Cauchy sequences x = {xn}n∈N and y = {yn}n∈N are said to be equivalent if
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lim
n→∞

d(xn, yn) = 0

and then is written x ∼ y. It is fairly obvious that ∼ is indeed an equivalence
relation, see section 2.14.
Reflexivity: [xn] ∼ [xn], since d(xn, xn) = 0 for every n and so limn→∞ d(xn, xn) =

0.
Symmetry: If [xn] ∼ [yn], then limn→∞ d(xn, yn) = 0 and since d(xn, yn) =
d(yn, xn) for every n, limn→∞ d(yn, xn) = 0, so that [yn] ∼ [xn].
Transitivity: If [xn] ∼ [yn] and [yn] ∼ [zn] then limn→∞ d(xn, yn) = 0 and

limn→∞ d(yn, zn) = 0. Since 0 ≤ d(xn, zn) ≤ d(xn, yn)+d(yn, zn) for all n, it follows
that 0 ≤ limn→∞ d(xn, zn) ≤ limn→∞ d(xn, yn) + limn→∞ d(yn, zn) = 0, so that
[xn] ∼ [zn].
With cs(X, d) and ∼, there is defined the quotient space

∼
X = cs(X, d)/ ∼ .

For an element x ∈
∼
X, its equivalence class is denoted by ∼x.

For a point x ∈ X, there is defined 〈x〉 ∈
∼
X, to be the equivalence class of the

constant sequence x. So 〈x〉 = {x, x, x, · · ·}, which of course is a Cauchy sequence.

Let (X, d) be a Metric Space and let x = {xn}n∈N and y = {yn}n∈N be Cauchy se-
quences in X. The sequence of real numbers {d(xn, yn}n∈N is a Cauchy sequence,
since for any n,m:

| d(xm, ym)− d(xn, yn) |≤
| d(xm, ym)− d(xn, ym) | + | d(xn, ym)− d(xn, yn) |≤
d(xm, xn) + d(ym, yn).

Every Cauchy sequence in R is convergent, so the sequence of numbers
(d(xn, yn)n∈N converges. This can be used to define a metric at

∼
X.

Remark 3.12

Define the map δ : cs(X, d) × cs(X, d)→ [0,∞) by

δ(x,y) = lim
n→∞

d(xn, yn).
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Let (X, d) be a Metric Space.

A. The map δ : cs(X, d) × cs(X, d)→ [0,∞) has the following properties:

i. δ(x,y) = δ(y,x), ∀x,y ∈ cs(X, d);

ii. δ(x,y) ≤ δ(x, z) + δ(z,y), ∀x,y, z ∈ cs(X, d);

iii. δ(x,y) = 0 ⇒ x ∼ y;

iv. If x,x′,y,y′ ∈ cs(X, d) are such that x ∼ x′ and y ∼ y′,
then δ(y,x) = δ(x′,y′).

B. The map
∼
d :
∼
X ×

∼
X → [0,∞), correctly defined by
∼
d(∼x,∼y) = δ(x,y), ∀x,y ∈ cs(X, d),

is a metric on
∼
X.

C. The map X 3 x 7−→ 〈x〉 ∈
∼
X is isometric, in the sense that

∼
d(〈x〉, 〈y〉) = d(x, y), ∀x, y ∈ X.

Theorem 3.34

Proof of Theorem 3.34

A. The properties i, ii and iii are obvious. See the reflexivity, symmetry and the
transitivity of the equivalence relation ∼, beneath Definition 3.42.
To prove property iv, let x = {xn}n∈N,x′ = {x′n}n∈N,y = {yn}n∈N and y′ = {y′n}n∈N ∈
cs(X, d). The next inequality

d(x′n, y′n) ≤ d(x′n, xn) + d(xn, yn) + d(yn, y′n),

together with the fact that limn→∞ d(x′n, xn) = 0 and limn→∞ d(yn, y′n) = 0
immediately gives

δ(x′,y′) = lim
n→∞

d(x′n, y′n) ≤ lim
n→∞

d(xn, yn) = δ(x,y).
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By symmetry: δ(x,y) ≤ δ(x′,y′).

B. This follows immediately from A.

C. This follows from the definition.

�

Let (X, d) be a Metric Space.

i. For any Cauchy sequence x = {xn}n∈N in X, there exists a limit in
∼
X, so

lim
n→∞

〈xn〉 = ∼x ∈
∼
X.

ii. The metric space (
∼
X,
∼
d) is complete.

Theorem 3.35

Proof of Theorem 3.35

i. For every n ≥ 1, there holds that
∼
d(〈xn〉,

∼
x) = δ(xn, xm) = lim

n→∞
d(xn, xm).

If ε > 0 is given, there exists a N(ε) such that

d(xn, xm) < ε for all n,m ≥ N(ε),

and this shows that
∼
d(〈xn〉,

∼
x) ≤ ε for all n ≥ N(ε).

The result is that

lim
n→∞

∼
d(〈xn〉,

∼
x) = 0.
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ii. Let {∼pn}n∈N be a Cauchy sequence in
∼
X.

For each n is ∼pn an equivalence class in
∼
X, containing Cauchy sequences in X,

converging to ∼pn, see part i. So for each n ≥ 1, there is some element xn ∈ X
such that

∼
d(〈xn〉,

∼
pn) ≤ 1

2n .

The sequence x = {xn}n∈N is a Cauchy sequence in X.

For i ≥ j ≥ 1:

d(xi, xj) =
∼
d(〈xi〉, 〈xj〉) ≤

∼
d(〈xi〉,

∼
pi) +

∼
d(∼pi,

∼
pj) +

∼
d(∼pj , 〈xj〉)

≤
∼
d(∼pi,

∼
pj) + 2

2j .

So x = {xn}n∈N is a Cauchy sequence in X.

There holds that limn→∞
∼
pn = ∼x ∈

∼
X.

First of all, for i ≥ j ≥ 1, there is the inequality
∼
d(∼pj , 〈xi〉) ≤

∼
d(∼pj , 〈xj〉) +

∼
d(〈xj〉, 〈xi〉) ≤

1
2j + d(xj , xi). (3.25)

If ε > 0 is given, there exists a N(ε) such that

d(xj , xi) < ε for all i, j ≥ N(ε),

and inequality (3.25) becomes
∼
d(∼pj , 〈xi〉) ≤

1
2j + ε for all j ≥ N(ε).

Keep j ≥ N(ε) fixed and let i → ∞, together with part i, this gives:
∼
d(∼pj ,

∼x) = lim
j→∞

∼
d(∼pj , 〈xi〉) ≤

1
2j + ε for all j ≥ N(ε).

This altogether proves that

lim
j→∞

∼
d(∼pj ,

∼x) = 0,

so the Cauchy sequence {∼pn}n∈N converges to ∼x ∈
∼
X. �
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The metric space (
∼
X,
∼
d) is called the completion of (X, d).

Definition 3.43

Let (X, d) be a Metric Space and let (
∼
X,
∼
d) be its completion.

If (Y, ρ) is a complete Metric Space and if T : X → Y is a map, which
is Lipschitz continuous, see section 2.10, then there exists an unique Lip-
schitz continuous extension

∼
T :

∼
X → Y of the map T , such that

∼
T (〈x〉) = T (x) for every x ∈ X.

Moreover, the extension
∼
T and T have the same Lipschitz constant L > 0.

Theorem 3.36

Proof of Theorem 3.36

There will be started with some Cauchy sequence x = {xn}n∈N in X. Since
the map T is Lipschitz continuous, it follows that

ρ(T (xm), T (xn)) ≤ Ld(xm, xn) for all m,n ∈ N.

So the sequence {T (xn}n∈N is a Cauchy sequence in Y . The Metric Space
Y is complete , so the sequence {T (xn}n∈N converges in Y and there can be
constructed the map

φ(x) = lim
n→∞

T (xn)

and φ : cs(X, d)→ Y .
If x ∼ x′ then φ(x) = φ(x′).
If x = {xn}n∈N and x′ = {x′n}n∈N then the Lipschitz continuity gives

ρ(T (xn, T (x′n)) ≤ Ld(xn, x′n) for all n ∈ N.

Since limn→∞ d(xn, x′n) = 0, the result becomes that
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lim
n∈N

ρ(T (xn), T (x′n)) = 0

and that means that
lim
n∈N

T (xn) = lim
n∈N

T (x′n),

so φ(x) = φ(x′).
The extended map

∼
T :

∼
X → Y is correctly defined, with the property that

∼
T (∼x) = φ(x) for all x ∈ cs(X, d)

and the equality
∼
T (〈x〉) = T (x) for all x ∈ X

is also satisfied.

Two things have to be checked,
the Lipschitz continuity and the uniqueness of

∼
T .

The Lipschitz continuity.

Take two arbitrary elements ∼p and ∼q out of
∼
X, represented as ∼p = ∼x and

∼
q = ∼y, for two Cauchy sequences ∼x = {xn}n∈N and ∼y = {yn}n∈N in X. Using
the definition of

∼
T gives
∼
T (∼p) = lim

n→∞
T (xn) and

∼
T (∼q) = lim

n→∞
T (yn)

and

ρ(
∼
T (∼p),

∼
T (∼q)) = lim

n→∞
ρ(T (xn), T (yn)).

For every n ∈ N holds

ρ(T (xn), T (yn)) ≤ Ld(xn, yn),

taking the limit yields

ρ(
∼
T (∼p),

∼
T (∼q)) = lim

n→∞
ρ(T (xn), T (yn)) ≤ L lim

n→∞
d(xn, yn) = Ld(∼p,∼q).

The uniqueness of
∼
T .

A map, which is Lipschitz continuous, is also continuous.
Let F :

∼
X → Y be another continuous map with F (〈x〉) = T (x) for all
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x ∈ X. Take an arbitrary point p ∈
∼
X, represented as p = x, for some Cauchy

sequence x = {xn}n∈N ∈ X. Since limn→∞〈xn〉 = p in
∼
X and by the use of

Remark 2.1, there follows that

F (p) = lim
n→∞

F (〈xn〉) = lim
n→∞

T (xn) = φ(x) =
∼
T (p).

�



1204 Dual Spaces

Working with a dual space, it means that there is a vector space X. A dual
space is not difficult, if the vector space X has an finite dimension, for instance
dimX = n. If first instance the vector space X is kept finite dimensional.
To make clear, what the differences are between finite and infinite dimensional
vector spaces there will be given several examples with infinite dimensional vec-
tor spaces. The sequence spaces `1, `∞ and c0, out of section 5.2, are used.
Working with dual spaces, there becomes sometimes the question: “If the vec-
tor space X is equal to the dual space of X or if these spaces are really different
from each other.” Two spaces can be different in appearance but, with the help
of a mapping, they can be “essential identical” .
The scalars of the Vector Space X are taken out of some field K, most of the
time the real numbers R or the complex numbers C.

4.1 Spaces X and X̃ are “essential identical”

To make clear that the spaces X and X̃ are “essential identical”, there is
needed a bijective mapping T between the spaces X and X̃.
If T : X → X̃, then T has to be onto and one to one, such that T−1 exists.
But in some cases, T also satisfies some other conditions. T is called a
isomorphism if it also preserves the structure on the space X and there
are several possibilities. For more information about an isomorphism, see
wiki-homomorphism.
Using the following abbvreviations, VS for a vector space ( see section 3.2),
MS for a metric space ( see section 3.5), NS for a normed vector space (see
section 3.7),
several possibilities are given in the following scheme:

VS: An isomorphism T between vector spaces X and X̃, i.e.
T is a bijective mapping, but it also preserves the linearity{

T (x+ y) = T (x) + T (y)
T (βx) = βT (x) (4.1)

for all x, y ∈ X and for all β ∈ K.

http://en.wikipedia.org/wiki/Homomorphism
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MS: An isomorphism T between the metric space (X, d) and (X̃, d̃).
Besides that T is a bijective mapping, it also preserves the dis-
tance

d̃(T (x), T (y)) = d(x, y) (4.2)

for all x, y ∈ X, also called an distance-preserving isomor-
phism.

If a map T satisfies (4.2) then T is necessarily injective. Because out of
d̃(T (x), T (y)) = 0 follows that d(x, y) = 0, so x = y. If X̃ = T (X)
then the map T : X → X̃ is also bijective. There is said that (X̃, d̃) is an
isometric copy of (X, d) and T is called an isometry . T−1 : T (X) ⇒ X

is also an isometry.

Remark 4.1

NS: An isomorphism T between Normed Spaces X and X̃.
Besides that T is an isomorphism between vector spaces, it also
preserves the norm

‖ T (x) ‖=‖ x ‖ (4.3)

for all x ∈ X, also called an isometric isomorphism.
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4.2 Linear functional and sublinear functional

If X is a Vector Space over K, with K the real numbers R or the complex
numbers C, then a linear functional is a function f : X → K, which is
linear

LF 1: f(x + y) = f(x) + f(y),
LF 2: f(αx) = α f(x),
for all x, y ∈ X and for all β ∈ K.

Definition 4.1

Sometimes linear functionals are just defined on a subspace Y of some Vector
Space X. To extend such functionals on the entire space X, the boundedness
properties are defined in terms of sublinear functionals .

Let X be a Vector Space over the field K. A mapping p : X → R is called a
sublinear functional on X if

SLF 1: p(x + y) ≤ p(x) + p(y),
SLF 2: p(αx) = α p(x),
for all x ∈ X and for all 0 ≤ α ∈ R

Definition 4.2

The norm on a Normed Space is an example of a sublinear functional.

Example 4.1
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If the elements of x ∈ RN are represented by columns

x =

 x1
...
xN


and there is given a row a, with N known real numbers

a =
[
a1 · · · aN

]
then the matrix product

f(x) =
[
a1 · · · aN

]  x1
...
xN

 (4.4)

defines a linear functional f on RN .
If all the linear functionals g, on RN , have the same representation as given
in ( 4.4), then each functional g can be identified by a column b ∈ RN

b =

 b1...
bN

.
In that case each linear functional g can be written as an inner product be-
tween the known element b ∈ RN and the unknown element x ∈ RN

g(x) = b • x,

for the notation, see ( 5.39).

Example 4.2

4.3 Algebraïc dual space of X, denoted by X∗
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Let X be a Vector Space and take the set of all linear functionals f : X → K.
This set of all these linear functionals is made a Vector Space by defining an
addition and a scalar multiplication. If f1, f2 are linear functionals on X and
β is a scalar, then the addition and scalar multiplication are defined by{

(f1 + f2)(x) = f1(x) + f2(x)
f1(β x) = β f1(x) (4.5)

for all x ∈ X and for all β ∈ K.
The set of all linear functionals on X, together with the above defined addi-
tion and scalar multiplication, see ( 4.5), is a Vector Space and is called the
algebraïc dual space of X and is denoted by X∗ .
In short there is spoken about the the dual space X∗, the space of all the lin-
ear functionals on X. X∗ becomes a Vector Space, if the addition and scalar
multiplication is defined as in ( 4.5).

4.4 Vector space X, dimX = n

Let X be a finite dimensional vector space, dimX = n. Then there exists a
basis {e1, ...., en} of X. Every x ∈ X can be written in the form

x = α1e1 + ....+ αnen (4.6)

and the coefficients αi, with 1 = i ≤ n, are unique.

4.4.1 Unique representation of linear functionals

Let f be a linear functional on X, the image of x is

f(x) ∈ K.
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The functional f is uniquely determined if the images of the yk = f(ek) of
the basis vectors {e1, · · · , en} are prescribed.

Theorem 4.1

Proof of Theorem 4.1

Choose a basis {e1, · · · , en} then every x ∈ X has an unique representation

x =
n∑
i=1

αi ei. (4.7)

The functional f is linear and x has as image

f(x) = f(
n∑
i=1

αi ei) =
n∑
i=1

αi f(ei).

Since 4.7 is unique, the result is obtained. �

4.4.2 Unique representation of linear operators between finite dimen-
sional spaces

Let T be a linear operator between the finite dimensional Vector Spaces X
and Y

T : X → Y.

The operator T is uniquely determined if the images of the yk = T (ek) of
the basis vectors {e1, · · · , en} of X are prescribed.

Theorem 4.2
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Proof of Theorem 4.2

Take the basis {e1, · · · , en} of X then x has an unique representation

x =
n∑
i=1

αi ei. (4.8)

The operator T is linear and x has as image

T (x) = T (
n∑
i=1

αi ei) =
n∑
i=1

αi T (ei).

Since 4.8 is unique, the result is obtained. �

Let {b1, · · · , bk} be a basis of Y .

The image of y = T (x) =
∑k

i=1 βi bi of x =
∑n

i=1 αi ei can be obtained
with

βj =
n∑
i=1

τij αi

for 1 ≤ j ≤ k. (See formula 4.10 for τij .)

Theorem 4.3

Proof of Theorem 4.3

Since y = T (x) and yk = T (ek) are elements of Y they have an unique
representation with respect tot the basis {b1, · · · , bk},

y =
k∑
i=1

βi bi, (4.9)

T (ej) =
k∑
i=1

τjk bi, (4.10)

Substituting the formulas of 4.9 and 4.10 together gives
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T (x) =
k∑
j=1

βj bj =
n∑
i=1

αi T (ei) =
n∑
i=1

αi (
k∑
j=1

τij bj) =
k∑
j=1

(
n∑
i=1

αi τij) bj .

(4.11)

Since {b1, · · · , bk} is basis of Y , the coefficients

βj =
n∑
i=1

αi τij

for 1 ≤ j ≤ k. �

4.4.3 Dual basis {f1, f2, ..., fn} of {e1, ...., en}

Going back to the space X with dimX = n, with its base {e1, ...., en} and the
linear functionals f on X.
Given a linear functional f on X and x ∈ X.
Then x can be written in the following form x =

∑n
i=1 αiei. Since f is a linear

functional on X, f(x) can be written in the form

f(x) = f(
n∑
i=1

αiei) =
n∑
i=1

αif(ei) =
n∑
i=1

αiγi,

with γi = f(ei), i = 1, ..., n.
The linear functional f is uniquely determined by the values γi, i = 1, ..., n, at
the basis vectors ei, i = 1, ..., n, of X.
Given n values of scalars γ1, ..., γn, and a linear functional is determined on
X, see in section 4.4.1, and see also example 4.2.
Look at the following n-tuples:

(1, 0, .............., 0),
(0, 1, 0, ..........., 0),

.......,
(0, ......0, 1, 0, .., 0),

.......,
(0, ..............., 0, 1),
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these define n linear functionals f1, ..., fn on X by

fk(ej) = δjk =
{

1 if j = k,
0 if j 6= k.

The defined set {f1, f2, ..., fn} is called the dual basis of the basis {e1, e2, ..., en}
for X. To prove that these functionals {f1, f2, ..., fn} are linear independent,
the following equation has to be solved

n∑
k=1

βkfk = 0.

Let the functional
∑n

k=1 βkfk work on ej and it follows that βj = 0, because
fj(ej) = 1 and fj(ek) = 0, if j 6= k.
Every functional f ∈ X∗ can be written as a linear combination of {f1, f2, ..., fn}.
Write the functional f = γ1f1 + γ2f2 + ...... + γnfn and realize that when
x = α1e1 +α2e2 +.....+αnen that fj(x) = fj(α1e1 +α2e2 +.....+αnen) = αj ,
so f(x) = f(α1e1 + α2e2 + .....+ αnen) = α1γ1 + .......+ αnγn.
It is interesting to note that: dimX∗ = dimX = n.

Let X be a finite dimensional vector space, dimX = n. If x0 ∈ X has the
property that f(x0) = 0 for all f ∈ X∗ then x0 = 0.

Theorem 4.4

Proof of Theorem 4.4

Let {e1, ...., en} be a basis of X and x0 =
∑n

i=1 αi ei, then

f(x0) =
n∑
i=1

αi γi = 0,

for every f ∈ X∗, so for every choice of γ1, · · · , γn. This can only be the case
if αj = 0 for 1 ≤ j ≤ n. �

4.4.4 Second algebraïc dual space of X, denoted by X∗∗
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Let X be a finite dimensional with dimX = n.
An element g ∈ X∗∗, which is a linear functional on X∗, can be obtained by

g(f) = gx(f) = f(x),

so x ∈ X is fixed and f ∈ X∗ variable. In short X∗∗ is called the
second dual space of X. It is easily seen that

gx(αf1 + βf2) = (αf1 + βf2)(x) = αf1(x) + βf2(x) = αgx(f1) + βgx(f2)

for all α, β ∈ K and for all f1, f2 ∈ X∗. Hence gx is an element of X∗∗.
To each x ∈ X there corresponds a gx ∈ X∗∗.
This defines the canonical mapping C of X into X∗∗,

C : X → X∗∗,

C : x→ gx

The mapping C is linear, because

(C(αx+ βy))(f) = g(αx+βy)(f) = f(αx+ βy) = αf(x) + βf(y) =

αgx(f) + βgy(f) = α(C(x))(f) + β(C(y))(f)

for all α, β ∈ K and for all x ∈ X.

The canonical mapping C is injective.

Theorem 4.5

Proof of Theorem 4.5

If C(x) = C(y) then f(x) = f(y) for all f ∈ X∗. f is a linear functional, so

f(x− y) = 0 for all f ∈ X∗. Using theorem 4.4 gives that x = y. �

Result so far is that C is a (vector space) isomorphism of X onto its range
R(C) ⊂ X∗∗. The range R(C) is a linear vectorspace of X∗∗, because C is a
linear mapping on X. Also is said that X is embeddable in X∗∗.
The question becomes if C is surjective, is C onto? (R(C) = X∗∗?)
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The canonical mapping C is surjective.

Theorem 4.6

Proof of Theorem 4.6

The domain of C is finite dimensional. C is injective from C to R(C), so
the inverse mapping of C, from R(C) to C, exists. The dimension of R(C)
and the dimension of the domain of C have to be equal, this gives that
dimR(C) = dimX. Further is know that dim (X∗)∗ = dimX∗(= dimX)
and the conclusion becomes that dimR(C) = dimX∗∗. The mapping C is

onto the space X∗∗. �

C is vector isomorphism, so far it preserves only the linearity, about the preser-
vation of other structures is not spoken. There is only looked at the perserva-
tion of the algebraic operations.
The result is that X and X∗∗ look ”algebraic identical” . So speaking about
X or X∗∗, it doesn’t matter, but be careful: dimX = n <∞.

A Vector Space X is called algebraic reflexive if R(C) = X∗∗.

Definition 4.3

Important to note is that the canonical mapping C defined at the beginning
of this section, is also called a natural embedding of X into X∗∗. There
are examples of Banach spaces (X, ‖ · ‖), which are isometric isomorph with
(X∗∗, ‖ · ‖), but not reflexive. For reflexivity, you need the natural embedding.

4.5 The dual space X ′ of a Normed Space X

In section 4.4 the dimension of the Normed Space X is finite.
In the finite dimensional case the linear functionals are always bounded. If a
Normed Space is infinite dimensional that is not the case anymore. There is
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a distinction between bounded linear functionals and unbounded linear func-
tional. The set of all the linear functionals of a space X is often denoted by
X∗ and the set of bounded linear functionals by X

′ .
In this section there will be looked at Normed Space in general, so they may
also be infinite dimensional. There will be looked in the main to the bounded
linear functionals.
Let X be a Normed Space, with the norm ‖ � ‖. This norm is needed to speak
about a norm of a linear functional on X.

The norm of a linear functional f is defined by

‖ f ‖= sup{
x ∈ X
x 6= 0

} | f(x) |
‖ x ‖

= sup{
x ∈ X
‖ x ‖= 1

} | f(x) | (4.12)

Definition 4.4

If the Normed Space X is finite dimensional then the linear functionals of
the Normed Space X are always bounded. But if X is infinite dimensional
there are also unbounded linear functionals.

A functional f is bounded if there exists a number A such that

| f(x) |≤ A ‖ x ‖ (4.13)

for all x in the Normed Space X.

Definition 4.5

The two definitions of a norm of a linear functional are equivalent because
of the fact that

| f(x) |
‖ x ‖

= | f( x

‖ x ‖
) |

for all 0 6= x ∈ X. Interesting to note is, that the dual space X ′ of a Normed
Space X is always a Banach space, because BL(X,K) is a Banach Space, see
Theorem 7.8 with Y = K, K = R or K = C both are Banach Spaces.
Working with linear functionals, there is no difference between bounded or
continuous functionals. Keep in mind that a linear functional f is nothing else
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as a special linear operator f : X → K. Results derived for linear operators
are also applicable to linear functionals.

A linear functional, on a Normed Space, is bounded
if and only if it is continuous.

Theorem 4.7

Proof of Theorem 4.7

The proof exists out of two parts.

(⇒) Suppose f is linear and bounded, then there is a positive constant
A such that | f(x) |≤ A ‖ x ‖ for all x.
If ε > 0 is given, take δ = ε

A and for all y with ‖ x − y ‖≤ δ

| f(x) − f(y) |= | f(x − y) |≤ A ‖ x − y ‖≤ Aδ = A
ε

A
= ε.

So the functional f is continuous in x.
If A = 0, then f(x) = 0 for all x and f is trivally continuous.

(⇐) The linear functional is continous, so continuous in x = 0.
Take ε = 1 then there exists a δ > 0 such that

| f(x) |< 1 for ‖ x ‖< δ.

For some arbirary y, in the Normed Space, it follows that

| f(y) |= 2 ‖ y ‖
δ

f( δ

2 ‖ y ‖ y) < 2
δ
‖ y ‖,

since ‖ δ

2 ‖ y ‖ y ‖= δ

2 < δ. Take A = 2
δ

in formula 4.13,
this positive constant A is independent of y, the functional f is
bounded.

�

4.6 Difference between finite and infinite dimensional Normed Spaces



133

If X is a finite dimensional Vector Space then there is in certain sense no
difference between the space X∗∗ and the space X, as seen in section 4.4.4.
Be careful if X is an infinite dimensional Normed Space.

(`1)′ = `∞ and (c0)′ = `1

Theorem 4.8

Proof of Theorem 4.8

See the sections 4.6.1 and 4.6.2. �

Theorem 4.8 gives that ((c0)′)‘ = (`1)‘ = `∞. One thing can always be
said and that is that X ⊆ X ′′, see theorem 4.14. So c0 ⊆ (c0)“ = `∞.
c0 is a separable Normed Space and `∞ is a non-separable Normed Space, so
c0 6= (c0)“ but c0 ⊂ `∞( = (c0)“).
So, be careful in generalising results obtained in finite dimensional spaces to
infinite dimensional Vector Spaces.

4.6.1 Dual space of `1 is `∞, ( (`1)′ = `∞)

With the dual space of `1 is meant (`1)′ , the space of bounded linear function-
als of `1. The spaces `1 and `∞ have a norm and in this case there seems to be
an isomorphism between two normed vector spaces, which are bove infinitely
dimensional.
For `1 there is a basis (ek)k∈N and ek = δkj , so every x ∈ `1 can be written as

x =
∞∑
k=1

αkek.

The norm of x ∈ `1 is

‖ x ‖1=
∞∑
k=1
| αk | (<∞)
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and the norm of x ∈ `∞ is
‖ x ‖∞= sup

k∈N
| αk | (<∞).

A bounded linear functional f of `1, (f : `1 → R) can be written in the form

f(x) = f(
∞∑
k=1

αkek) =
∞∑
k=1

αkγk,

with f(ek) = γk.
Take a look at the row (γk)k∈N, realize that ‖ ek ‖1= 1 and

| γk |=| f(ek) |≤‖ f ‖1‖ ek ‖1 = ‖ f ‖1

for all k ∈ N. Such that (γk)k∈N ∈ `∞, since

sup
k∈N
| γk |≤‖ f ‖1 .

Given a linear functional f ∈ (`1)′ there is constructed a row (γk)k∈N ∈ `∞.
Now the otherway around, given an element of `∞, can there be constructed
a bounded linear functionals in (`1)′?
An element (γk)k∈N ∈ `∞ is given and it is not difficult to construct the
following linear functional f on `1

f(x) =
∞∑
k=1

αkγk,

with x =
∑∞

k=1 αkek ∈ `1.
Linearity is no problem, but the boundedness of the linear functional g is more
difficult to proof

| f(x) |≤
∞∑
k=1
| αkγk |≤ sup

k∈N
| γk |

∞∑
k=1
| αk | ≤ sup

k∈N
| γk | ‖ x ‖1=‖ (γk)k∈N ‖∞ ‖ x ‖1 .

The result is, that the functional f is linear and bounded on `1, so f ∈ (`1)1.
Looking at an isomorphism between two normed vector spaces, it is also of
importance that the norm is preserved.
In this case, it is almost done, because

| f(x) |=|
∞∑
k=1

αkγk |≤ sup
k∈N
| γk |

∞∑
k=1
| αk | ≤ sup

k∈N
| γk | ‖ x ‖1=‖ (γk) ‖∞ ‖ x ‖1 .

Take now the supremum over all the x ∈ `1 with ‖ x ‖1= 1 and the result is
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‖ f ‖1≤ sup
k∈N
| γk | =‖ (γk)k∈N ‖∞,

above the result was

‖ (γk)k∈N ‖∞= sup
k∈N
| γk | ≤‖ f ‖1,

taking these two inequalities together and there is proved that the norm is
preserved,

‖ f ‖1=‖ (γk)k∈N ‖∞

The isometric isorphism between the two given Normed Spaces (`1)′ and `∞
is a fact.
So taking a element out of (`1)′ is in certain sense the same as speaking about
an element out of `∞.

4.6.2 Dual space of c0 is `1, ( (c0)‘ = `1)

Be careful the difference between finite and infinite plays an important rule in
this proof.
Take an arbitrary x ∈ c0 then

x =
∑∞

k=1 λkek with limk→∞ λk = 0,

see the definition of c0 in section 5.2.6.
Taking finite sums, there is contructed the following approximation of x

sn =
n∑
k=1

λkek,

because of the ‖ . ‖∞-norm

lim
n→∞

‖ sn − x ‖∞= 0.

If f is a bounded functional on c0, it means that f is continuous on c0 ( see
theorem 4.7), so if sn → x then f(sn)→ f(x) as n→∞.
Known is that
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f(x) =
∞∑
k=1

λkf(ek) =
∞∑
k=1

λkγk.

Look at the row (γk)k∈N, the question becomes if (γk)k∈N ∈ `1?
Speaking about f in (c0)′ should become the same as speaking about the row
(γk)k∈N ∈ `1.
With γk, k ∈ N, is defined a new symbol

λ0
k =

{ γk
| γk |

if γk 6= 0
0 otherwise.

Now it easy to define new sequences xn0 = (η0
k)k∈N ∈ c0, with

η0
k =

{
λ0
k if 1 ≤ k ≤ n,

0 n < k,

and for all n ∈ N.
It is clear that ‖ xn0 ‖∞= 1 and

| f(xn0 ) |=|
n∑
k=1

η0
k γk |=

n∑
k=1
| γk |=

n∑
k=1
| f(ek) |≤‖ f ‖∞ ‖ xn0 ‖∞≤‖ f ‖∞,

(4.14)

so
∑n

k=1 | f(ek) |=
∑n

k=1 | γk |< ∞, and that is for every n ∈ N and ‖ f ‖∞
is independent of n.
Out of the last inequalities, for instance inequality 4.14, follows that

n∑
k=1
| γk |=

∞∑
k=1
| f(ek) |≤‖ f ‖∞ . (4.15)

This means that (γk)k∈N ∈ `1!
That the norm is preserved is not so difficult. It is easily seen that

| f(x) |≤
∞∑
k=1
| λk || γk |≤‖ x ‖∞

∞∑
k=1
| λk |≤‖ x ‖∞

∞∑
k=1
| f(ek) |,

and this means that
| f(x) |
‖ x ‖∞

≤
∞∑
k=1
| f(ek) |,

together inequalty 4.15, gives that ‖ (γk)k∈N ‖1 = ‖ f ‖∞.
Known some f ∈ (c0)‘ gives us an element in `1.
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Is that mapping also onto?
Take some (αk)k∈N ∈ `1 and an arbirtrary x = (λk)k∈N ∈ c0 and define
the linear functional f(x) =

∑∞
k=1 λk αk. The series

∑∞
k=1 λk αk is absolute

convergent and

| f(x) |
‖ x ‖∞

≤
∞∑
k=1
| αk | ≤ ‖ (αk)k∈N ‖1 .

The constructed linear functional f is bounded (and continuous) on c0.
The isometric isorphism between the two given Normed Spaces (c0)′ and `1 is
a fact.

4.7 The extension of functionals, the Hahn-Banach theorem

In section 3.10.1 is spoken about the minimal distance of a point x to some
convex subset M of an Inner Product Space X. Theorem 3.23 could be
read as that it is possible to construct hyperplanes through y0, which separate
x form the subset M , see figures 3.5 and 3.6. Hyperplanes can be seen as
level surfaces of functionals. The inner products are of importantance because
these results were obtained in Hilbert Spaces.
But a Normed Space has not to be a Hilbert Space and so the question becomes
if it is possible to separate points of subsets with the use of linear functionals?
Not anymore in an Inner Product Space, but in a Normed Space.
Let X be a Normed Space and M be some proper linear subspace of X
and let x0 ∈ X such that d(x0,M) = d > 0 with d(·,M) as defined in
definition 3.21. The question is if there exists some bounded linear func-
tional g ∈ X ′ such that

g(x0) = 1, g|M = 0, and may be ‖ g ‖= 1
d

? (4.16)

This are conditions of a certain functional g on a certain subspace M of X
and in a certain point x0 ∈ X. Can this functional g be extended to the entire
Normed SpaceX, preserving the conditions as given? The theorem of Hahn-Banach
will prove the existence of such an extended functional .
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Be careful! Above is given that d(x0,M) = d > 0. If not, if for instance is
given some proper linear subspace M and x0 ∈ X\M , it can happpen that
d(x0,M) = 0, for instance if x0 ∈ M\M .
But if M is closed and x0 ∈ X\M then d(x0,M) = d > 0. A closed linear
subspace M gives no problems, if nothing is known about d(x0,M).

Remark 4.2

Proving the theorem of Hahn-Banach is a lot of work and the lemma of Zorn is
used, see theorem 9.1. Difference with section 3.10 is, that there can not
be made use of an inner product, there can not be made use of orthogonality.
To construct a bounded linear functional g, which satisfies the conditions as
given in formula 4.16 is not difficult. Let x = m + αx0, with m ∈ M
and α ∈ R, define the bounded linear functional g on the linear subspace
M̂ = {m + αx0|m ∈M and α ∈ R} by

g(m+ αx0) = α.

It is easily seen that g(m) = 0 and g(m + x0) = 1, for every m ∈M .
The functional g is linear on M̂{
g((m1 + m2) + (α1 + α2)x0) = (α1 + α2) = g(m1 + α1 x0) + g(m2 + α2 x0)
g(γ(m1 + α1 x0)) = γ α1 = γ g(m1 + α1 x0).

Further, α 6= 0,

‖ m + αx0 ‖= |α| ‖ m
α

+ x0 ‖≥ |α| d(x0,M) = |α| d,

since m
α
∈M , so

|g(m + αx0)|
‖ m + αx0 ‖

≤ |α |
|α| d

= 1
d
, (4.17)

so the linear functional g is bounded on M̂ and ‖ g ‖≤ 1
d .

The distance of x0 to the linear subspace M is defined as an infimum, what
means that there exists a sequence {mk}k∈N such that limk→∞ ‖ x0 − mk ‖
= d. Using the definition and the boundedness of the linear functional g

g(−mk + x0) = 1 ≤‖ g ‖ ‖ −mk + x0 ‖,

let k →∞ and it follows that

‖ g ‖≥ 1
d

(4.18)



139

on M̂ . With the inequalities 4.18 and 4.17 it follows that ‖ g ‖= 1
d

on

M̂ and there is constructed a g ∈ M̂ ′ , which satisfies the conditions given in
4.16. The problem is to extended g to the entire Normed Space X.

First will be proved the Lemma of Hahn-Banach and after that the Theorem of Hahn-Banach
. In the Lemma of Hahn-Banach is spoken about a sublinear functional, see
definition 4.2. If f ∈ X

′ then is an example of a sublinear functional p
given by

p(x) = ‖ f ‖ ‖ x ‖, (4.19)

for every x ∈ X. If the bounded linear functional f is only defined on some
linear subspace M of the Normed Space X, then can also be taken the norm
of f on that linear subspace M in definition 4.19 of the sublinear functional
p. The conditions SLF ii: 1 and SLF ii: 2 are easy to check. First will
be proved the Lemma of Hahn-Banach .

Let X be real linear space and let p be a sublinear functional on X. If f is a
linear functional on a linear subspace M of X which satisfies

f(x) ≤ p(x),

for every x ∈ M , then there exists a real linear functional fE on X such
that

fE |M = f and fE(x) ≤ p(x),

for every x ∈ X.

Theorem 4.9

Proof of Theorem 4.9

The proof is splitted up in several steps.

1. First will be looked at the set of all possible extensions of (M, f)
and the question will be if there exists some maximal extension?
See Step ii: 1.

2. If there exists some maximal extension, the question will be if
that is equal to (X, fE)? See Step ii: 2.



140

Step 1: An idea to do is to enlarge M with one extra dimension, a little bit
as the idea written in the beginning of this section 4.7 and then to
keep doing that until the entire space X is reached. The problem is
to find a good argument that indeed the entire space X is reached.
To prove the existence of a maximal extension the lemma of Zorn
will be used, see section 9.3. To use that lemma there has to be
defined some order �, see section 2.13.
The order will be defined on the set P of all possible linear extensions
(Mα, fα) of (M, f), satisfying the condition that

fα(x) ≤ p(x),

for every x ∈ Mα, so

P = {(Mα, fα) |Mα a linear subspace of X and M ⊂ Mα,

fα|M = f and fα(x) ≤ p(x) for every x ∈ Mα}.

The order � on P is defined by

(Mα, fα) � (Mβ, fβ) ⇐⇒ Mα ⊂ Mβ

and fβ |Mα = fα, so fβ is an extension of fα.
It is easy to check that the defined order � is a partial order on P ,
see definition 2.4. Hence, (P ,�) is a partial ordered set.
Let Q be a total ordered subset of P and let

M̂ =
⋃
{Mγ | (Mγ , fγ) ∈ Q}.

M̂ is a linear subspace, because of the total ordering of Q.
Define f̂ : M̂ → R by

f̂(x) = fγ(x) if x ∈ Mγ .

It is clear, that f̂ is a linear functional on the linear subspace M̂ and

f̂ |M = f and f̂(x) ≤ p(x)

for every x ∈ M̂ . Further is (M̂, f̂) an upper bound of Q, because

Mγ ⊂ M̂ and f̂ |Mγ = fγ .
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Hence, (Mγ , fγ) � (M̂, f̂).
Since Q is an arbitrary total ordered subset of P , Zorn’s lemma
implies that P possesses at least one maximal element (Mε, fε).

Step 2: The problem is to prove that Mε = X and fε = fE . It is clear that
when is proved that Mε = X that fε = fE and the proof of the
theorem is completed.
Assume that Mε 6= X, then there is some y1 ∈ (X \ Mε) and
y1 6= 0, since 0 ∈ Mε. look at the subspace M̂ε spanned by Mε and
y1. Elements are of the form z + α y1 with z ∈ Mε and α ∈ R. If
z1 + α1 y1 = z2 + α2 y1 then z1 − z2 = (α2 − α1) y1, the only
possible solution is z1 = z2 and α1 = α2, so the representation of
elements out of M̂ε is unique.
A linear functional h on M̂ε is easily defined by

h(z + α y1) = fε(z) + αC

with a constant C ∈ R. h is an extension of fε, if there exists some
constant C such that

h(z + α y1) ≤ p(z + α y1) (4.20)

for all elements out of M̂ε. The existence of such a C is proved
in Step ii: 3. If α = 0 then h(z) = fε(z), further Mε ⊂ M̂ε,
so (Mε, fε) � (M̂ε, h), but this fact is in contradiction with the
maximality of (Mε, fε), so

Mε = X.

Step 3: It remains to choose C on such a way that

h(z + α y1) = fε(z) + αC ≤ p(z + α y1) (4.21)

for all z ∈ Mε and α ∈ R \ {0}. Replace z by α z and divide both
sides of formula 4.21 by |α|. That gives two conditions{

h(z) + C ≤ p(z + y1) if z ∈ Mε and α > 0,
−h(z) − C ≤ p(−z − y1) if z ∈ Mε and α < 0.

So the constant C has to be chosen such that
−h(v) − p(−v − y1) ≤ C ≤ −h(w) + p(w + y1)

for all v, w ∈ Mε. The condition, which C has to satisfy, is now
known, but not if such a constant C also exists.
For any v, w ∈ Mε
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h(w) − h(v) = h(w − v) ≤ p(w − v)
= p(w + y1 − v − y1) ≤ p(w + y1) + p(− v − y1),

and therefore
−h(v) − p(− v − y1) ≤ −h(w) + p(w + y1).

Hence, there exists a real constant C such that

sup
v∈Mε

(−h(v) − p(− v − y1)) ≤ C ≤ inf
w∈Mε

(−h(w) + p(w + y1)).

(4.22)

With the choice of a real constant C, which satisfies inequality 4.22,
the extended functional h can be constructed, as used in Step ii: 2.

�

In the Lemma of Hahn-Banach, see theorem 4.9, is spoken about some sub-
linear functional p. In the Theorem of Hahn-Banach this sublinear func-
tional is more specific given. The Theorem of Hahn-Banach gives the existence
of an extended linear functional g of f on a Normed Space X, which preserves
the norm of the functional f on some linear subspaceM of X. In first instance
only for real linear vectorspaces (X,R) and after that the complex case.

Let M be a linear subspace of the Normed Space X over the field K, and
let f be a bounded functional on M . Then there exists a norm-preserving
extension g of f to X, so

g |M = f and ‖ g ‖= ‖ f ‖ .

Theorem 4.10

Proof of Theorem 4.10

The proof is splitted up in two cases.

1. The real case K = R, see Case ii: 1.
2. The complex case K = C, see Case ii: 2.

Case 1: Set p(x) = ‖ f ‖ ‖ x ‖, p is a sublinear functional on X and by the
Lemma of Hahn-Banach, see theorem 4.9, there exists a real linear
functional g on X such that
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g |M = f and g(x) ≤‖ f ‖ ‖ x ‖,

for every x ∈ X. Then

| g(x) | = ± g(x) = g(±x) ≤ p(±x) ≤‖ f ‖ ‖ ± x ‖= ‖ f ‖ ‖ x ‖ .

Hence, g is bounded and

‖ g ‖≤‖ f ‖ . (4.23)

Take some y ∈ M then

‖ g ‖≥ | g(y) |
‖ y ‖

= | f(y) |
‖ y ‖

.

Hence,

‖ g ‖≥‖ f ‖ . (4.24)

The inequalities 4.23 and 4.24 give that ‖ g ‖= ‖ f ‖ and complete
the proof.

Case 2: Let X be a complex Vector Space and M a complex linear subspace.
Set p(x) = ‖ f ‖ ‖ x ‖, p is a sublinear functional on X. The
functional f is complex-valued and the functional f can be written
as

f(x) = u(x) + ı v(x)

with u, v real-valued. Regard, for a moment, X and M as real Vec-
tor Spaces, denoted by Xr and Mr, just the scalar multiplication is
restricted to real numbers. Since f is linear on M , u and v are linear
functionals on Mr. Further

u(x) ≤ | f(x) | ≤ p(x)

for all x ∈ Mr. Using the result of theorem 4.9, there exists a
linear extension û of u from Mr to Xr, such that

û(x) ≤ p(x)

for all x ∈ Xr.
Return to X, for every x ∈ M yields

ı(u(x) + ı v(x)) = ı f(x) = f(ı x) = u(ı x) + ı v(ı x),

so v(x) = −u(ı x) for every x ∈ M .
Define
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g(x) = û(x) − ı û(ı x) (4.25)

for all x ∈ X, g(x) = f(x) for all x ∈ M , so g is an extension of f
from M to X.
Is the extension g linear on X?
The summation is no problem. Using formula 4.25 and the linearity
of u on Xr, it is easily seen that

g((a + ı b)x) = û((a + ı b)x) − ı û((a + ı b) ı x)
= a û(x) + b û(ı x) − ı (a û(ı x) − b û(x))
= (a + ı b) (û(x) − ı û(ı x)) = (a + ı b) g(x),

for all a, b ∈ R. Hence, g is linear on X.
Is the extension g norm-preserving on M?
Since g is an extension of f , this implies that

‖ g ‖≥‖ f ‖ . (4.26)

Let x ∈ X then there is some real number φ such that

g(x) = | g(x) | exp (ı φ).

Then

| g(x) | = exp (−ı φ) g(x)
= Re(exp (−ı φ) g(x)) = Re(g(exp (−ı φ)x))
= û(exp (−ı φ)x) ≤‖ f ‖ ‖ exp (−ı φ)x ‖
= ‖ f ‖ ‖ x ‖ .

This shows that g is bounded and ‖ g ‖≤‖ f ‖, together with
inequality 4.26 it completes the proof.

�

At the begin of this section, the problem was the existence of a bounded linear
functional g on X, such that

g(x0) = 1, g|M = 0, and may be ‖ g ‖= 1
d
, (4.27)

with x0 ∈ X such that d(x0,M) = d > 0.
Before the Lemma of Hahn-Banach, theorem 4.9, there was constructed
a bounded linear functional g on M̂ , the span of M and x0, which satisfied
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the condition given in 4.27. The last question was if this constructed g could
be extended to the entire space X?
With the help of the Hahn-Banach theorem, theorem 4.10, the con-
structed bounded linear functional g on M̂ can be extended to the entire
space X and the existence of a g ∈ X

′ , which satisfies all the conditions,
given 4.27, is a fact.
The result of the question in 4.16 can be summarized into the following theo-
rem:

Let X be a Normed Space over some field K and M some linear subspace
of X. Let x0 ∈ X be such that d(x0,M) > 0. Then there exists a linear
functional g ∈ X ′ such that

i. g(x0) = 1,
ii. g(M) = 0,
iii. ‖ g ‖= 1

d
.

Theorem 4.11

Proof of Theorem 4.11

Read this section 4.7. �
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With the result of theorem 4.11 can be generated all kind of other results,
for instance there is easily made another functional h ∈ X

′ , by h(x) = d ·
g(x), such that

i. h(x0) = d,
ii. h(M) = 0,
iii. ‖ h ‖= 1.
And also that there exist a functional k ∈ X ′ , such that

i. k(x0) 6= 0,
ii. k(M) = 0,
of k is known, that ‖ k ‖ is bounded, because k ∈ X ′ .
Be careful with the choice of x0, see remark 4.2.

Remark 4.3

4.7.1 Useful results with Hahn-Banach

There are enough bounded linear functionals on a Normed Space X to distin-
guish between the points of X.

Let X be a Normed Space over the field K and let 0 6= x0 ∈ X, then there
exists a bounded linear functional g ∈ X ′ such that

i. g(x0) = ‖ x0 ‖
ii. ‖ g ‖= 1.

Theorem 4.12

Proof of Theorem 4.12

Consider the linear subspace M spannend by x0, M = {x ∈ X |x =
αx0 with α ∈ K} and define f : M → K by
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f(x) = f(αx0) = α ‖ x0 ‖,

with α ∈ K. f is a linear functional on M and

|f(x)| = |f(αx0)| = |α| ‖ x0 ‖= ‖ x ‖

for every x ∈M . Hence, f is bounded and ‖ f ‖= 1.
By the theorem of Hahn-Banach, theorem 4.10, there exists a functional
g ∈ X ′ , such that g|M = f and ‖ g ‖= ‖ f ‖. Hence, g(x0) = f(x0) = ‖

x0 ‖, and ‖ g ‖= 1. �

Let X be a Normed Space over the field K and x ∈ X, then

‖ x ‖= sup{| f(x) |
‖ f ‖

| f ∈ X
′
and f 6= 0}.

Theorem 4.13

Proof of Theorem 4.13

The case that x = 0 is trivial.
Let 0 6= x ∈ X. With theorem 4.12 there exists a g ∈ X ′, such that
g(x) = ‖ x ‖, and ‖ g ‖= 1. Hence,

sup{| f(x) |
‖ f ‖

| f ∈ X
′
and f 6= 0} ≥ | g(x) |

‖ g ‖
= ‖ x ‖ . (4.28)

Further,

| f(x) | ≤ ‖ f ‖ ‖ x ‖,

for every f ∈ X ′ , therefore

sup{| f(x) |
‖ f ‖

| f ∈ X
′
and f 6= 0} ≤‖ x ‖ . (4.29)

The inequalities 4.28 and 4.29 complete the proof. �
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4.8 The dual space X ′′ of a Normed Space X

The dual space X ′ has its own dual space X
′′ , the second dual space

of X, it is also called the bidual space of X. If the Vector Space X is fi-
nite dimensional then R(C) = X∗∗, where R(C) is the range of the canonical
mapping C of X to X∗∗.
In the infinite dimensional case, there can be proved that the canonical map-
ping C is onto some subspace of X ′′ . In general R(C) = C(X) ⊆ X

′′ for
every Normed Space X. The second dual space X ′′ is always complete, see
theorem 7.8. So completeness of the space X is essential for the Normed
Space X to be reflexive (C(X) = X

′′), but not enough. Completenes of the
space X is a neccessary condition to be reflexive, but not sufficient.
It is clear that when X is not a Banach Space then X is non-reflexive, C(X) 6=
X
′′ .

With the theorem of Hahn-Banach, theorem 4.10, is derived that the dual
space X ′ of a normed space X has enough bounded linear functionals to make
a distinguish between points of X. A result that is necessary to prove that
the canonical mapping C is unique.
To prove reflexivity, the canonical mapping is needed. There are examples of
spaces X and X ′′ , which are isometrically isomorphic with another mapping
then the canonical mapping, but with X non-reflexive.

Let X be a Normed Space over the field K. Given x ∈ X en let

gx(f) = f(x),

for every f ∈ X ′ . Then gx is a bounded linear functional on X ′ , so gx ∈ X
′′ .

The mapping C : x → gx is an isometry of X onto the subspace Y =
{gx |x ∈ X} of X

′′ .

Theorem 4.14

Proof of Theorem 4.14
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The proof is splitted up in several steps.

1. Several steps are already done in section 4.4.4. The linearity of
gx : X ′ → X

′′ and C : X → X
′′ that is not a problem.

The functional gx is bounded, since

|gx(f)| = |f(x)| ≤ ‖ f ‖ ‖ x ‖,

for every f ∈ X ′ , so gx ∈ X
′′ .

2. To every x ∈ X there is an unique gx. Suppose that gx(f) =
gy(f) for every f ∈ X

′ then f(x − y) = 0 for every f ∈ X
′ .

Hence, x = y, see theorem 4.13. Be careful the normed space
X is may be not finite dimensional anymore, so theorem 4.4
cannot be used. Hence, the mapping C is injective.

3. The mapping C preserves the norm, because

‖ C(x) ‖= ‖ gx ‖= sup{|gx(f)|
‖ f ‖

| f ∈ X
′
and f 6= 0} = ‖ x ‖,

see theorem 4.13.
Hence, C is an isometric isomorphism of X onto the subspace Y ( = C(X)) of

X
′′ . �

Some other terms are for instance for the canonical mapping: the natural embedding
and for the functional gx ∈ X

′′ : the functional induced by the vector x. The
functional gx is an induced functional . With the canonical mapping it is
allowed to regard X as a part of X ′′ without altering its structure as a Normed
Space.

Let (X, ‖ · ‖) be a Normed Space. If X ′ is separable then X is separable.

Theorem 4.15

Proof of Theorem 4.15

The proof is splitted up in several steps.
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1. First is searched for a countable set S of elements in X, such that
possible S = X, see Step ii: 1.

2. Secondly there is proved, by a contradiction, that S = X, see
Step ii: 2.

Step 1: Because X ′ is separable, there is a countable set M = {fn ∈ X
′|n ∈

N} which is dense in X
′ , M = X

′ . By definition 4.4, ‖ fn ‖=
sup‖x‖= 1 |fn(x)|, so there exist a x ∈ X, with ‖ x ‖= 1, such that
for small ε > 0

‖ fn ‖ − ε ‖ fn ‖≤ |fn(x)|,

with n ∈ N. Take ε = 1
2 and let {vn} be sequence such that

‖ vn ‖= 1 and 1
2 ‖ fn ‖≤ |fn(vn)|.

Let S be the subspace of X generated by the sequence {vn},

S = span{vn|n ∈ N}.

Step 2: Assume that S 6= X, then there exists a w ∈ X and w /∈ S. An
immediate consequence of the formulas 4.27 is that there exists a
functional g ∈ X ′ such that

g(w) 6= 0,

g(S) = 0,
‖ g ‖= 1. (4.30)

In particular g(vn) = 0 for all n ∈ N and

1
2 ‖ fn ‖≤ |fn(vn)| = |fn(vn) − g(vn) + g(vn)|

≤ |fn(vn) − g(vn)| + |g(vn)|.

Since ‖ vn ‖= 1 and g(vn) = 0 for all n ∈ N, it follows that
1
2 ‖ fn ‖≤‖ fn − g ‖ . (4.31)

Since M is dense in X ′ , choose fn such that

lim
n→∞

‖ fn − g ‖= 0. (4.32)
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Using the formulas 4.30, 4.30 and 4.32, the result becomes that

1 = ‖ g ‖= ‖ g − fn + fn ‖
≤‖ g − fn ‖ + ‖ fn ‖
≤‖ g − fn ‖ + 2 ‖ g − fn ‖,

such that

1 = ‖ g ‖= 0.

Hence, the assumption is false and S = X.
�

There is already known that the canonical mapping C is an isometric isomor-
phism of X onto the some subspace Y ( = C(X)) of X ′′ , see theorem 4.14
and X ′′ is a Banach Space.

A Normed Space X is isometrically isomorphic to a dense subset of a Ba-
nach Space.

Theorem 4.16

Proof of Theorem 4.16

The proof is not difficult.
X is a Normed Space and C is the canonical mapping C : X → X

′′ .
The spaces C(X) and X are isometrically isomorphic, and C(X) is dense in
C(X). C(X) is a closed subspace of the Banach Space X ′′ , so C(X) is a Ba-
nach Space, see theorem 3.12. Hence, X is isometrically isomorphic with
to the dense subspace C(X) of the Banach Space C(X). �

An nice use of theorem 4.15 is the following theorem.

Let (X, ‖ · ‖) be a separable Normed Space. If X ′ is non-separable then X is
non-reflexive.

Theorem 4.17
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Proof of Theorem 4.17

The proof will be done by a contradiction.
Assume that X is reflexive. Then is X ′′ isometrically isomorphic to X under
the canonical mapping C : X → X

′′ . X is separable, so X ′′ is separable and
with the use of theorem 4.15, the space X ′ is separable. But that contra-
dicts the hypothesis that X ′ is non-separable. �

4.9 Weak and Weak* Convergence

Sometimes the convergence of sequences in the norm of a Normed Space X is
too strong. Here will be introduced new modes of convergence of sequences
in a Normed Space X and in its dual space X ′ . In general, they are not as
strong as the norm convergence, more freely available and useful.

Let X be a normed linear space with norm ‖ � ‖. Let {xn}n∈N be a sequence
in X and x ∈ X, the sequence {xn}n∈N converges strongly or converges
in norm to x, written as xn → x, if

lim
n→∞

‖ xn − x ‖= 0.

Definition 4.6
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Let X be a linear normed space with norm ‖ � ‖. Let {xn}n∈N be a sequence
in X and x ∈ X, the sequence {xn}n∈N converges weakly to x, written as
xn

w−→ x, if

lim
n→∞

µ(xn) = µ(x)

for every µ ∈ X
′ .

Definition 4.7

Let X be a normed linear space with norm ‖ � ‖. Let {µn}n∈N be a sequence
in X ′ and µ ∈ X

′ , the sequence {µn}n∈N converges weak∗ to µ, written
as µn

w∗−−→ x, if

lim
n→∞

µn(x) = µ(x)

for every x ∈ X.

Definition 4.8

So, weak∗ convergence is just pointwise convergence of the operators µn.
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Weak∗ convergence makes only sense for a sequence that lies in the dual
space X ′ of X. If there is a sequence {µn}n∈N in X ′ , there can be looked
to three types of convergence of µn to µ. These are:

i. strong:

µn → µ ⇐=⇒ lim
n→∞

‖ µn − µ ‖= 0,

with ‖ · ‖, the norm used in the dual space X ′ ,

ii. weak:

µn
w−→ µ ⇐=⇒ lim

n→∞
T (µn) = T (µ)

for every T ∈ X
′′ ,

iii. weak∗:

µn
w∗−−→ µ ⇐=⇒ lim

n→∞
µn(x) = µ(x)

for every x ∈ X,

Remark 4.4

4.9.1 Schur’s property and the Radon-Riesz or Kadets-Klee property

A Normed Space (X, ‖ · ‖) has Schur’s property if

xn
w−→ x =⇒ lim

n→∞
‖ xn − x ‖= 0.

Definition 4.9
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A Normed Space (X, ‖ · ‖) has the Radon-Riesz or the Kadets-Klee property
if

xn
w−→ x and lim

n→∞
‖ xn ‖= ‖ x ‖= 0 =⇒ lim

n→∞
‖ xn − x ‖= 0.

Definition 4.10

The space `2 does not have Schur’s property, see Definition 4.9,
but has the Radon-Riesz property, see Definition 4.10.

Theorem 4.18

Proof of Theorem 4.18

Let {en}n∈N be the sequence of unit vectors in `2. The dual space of `2 can be
identified by itself, see Theorem 5.15. It is clear that x(en) → 0, (n→∞)
for each x ∈ `2. This means that sequence {en}n∈N converges weakly to 0.
But ‖ en ‖2= 1 for each n ∈ N. So the sequence {en}n∈N converges not in the
norm to 0.
Thus the space `2 does not satisfy the Schur’s property.
It is clear, that the weak topology and the norm topology, of `2, are different.

Let {xn}n∈N be sequence in `2 and x ∈ `2 such that xn
w−→ x and

‖ xn ‖2→‖ x ‖2, for n→∞. For each n, let xn = {αkn}k∈N then

‖ xn − x ‖22 =
∞∑
k=1

(αkn − αn)(αkn − αn) =

∞∑
k=1
| αkn |2 −

∞∑
k=1

αnαkn −
∞∑
k=1

αnα
k
n +

∞∑
k=1
| αn |2 =

‖ xn ‖22 −x(xn) − xn(x) + ‖ x ‖22→

‖ x ‖22 −x(x) − x(x)+ ‖ x ‖22 = 0
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forn→∞.

Thus, the space `2 satisfies the Radon-Riesz property.
�

The space `1 satisfies Schur’s property, see Definition 4.9.

Theorem 4.19

Proof of Theorem 4.19

Assume that there exists a sequence {xn}n∈N in `1 such that xn
w−→ 0 but

xn 9 0 in `1, so limn→∞ ‖ xn − 0 ‖1 6= 0.
If necessary, there can be looked to a subsequence of {xn}n∈N, with an in-
creasing sequence n1 < n2 < · · · such that

‖ xnj ‖1 =
∞∑
k=1
| xnj (k) |> ε,

xnj (k) = fk(xnj ), with the k−th coordinate functional fk(x) = x(k), x ∈ `1
and k ∈ N.
ChooseN1 such that

∑∞
k=(N1+1) | xn1(k) |< 1

5ε. This is possible since xn1 ∈ `1.

Then
∑N1

k=1 | xn1(k) |≥ 4
5ε, this can also be written as∑N1

k=1 εn1(k)xn1(k) ≥ 4
5ε with εn1(k) = ( xn1(k)

| xn1(k) |) for k = 1, · · · , N1.

Choose an arbitrary sequence of signs {εk = ±1}, but such that εk = εn1(k)
for k ≤ N1, then

|
∞∑
k=1

εkxn1(k) |= |
N1∑
k=1

εn1(k)xn1(k) +
∞∑

k=(N1+1)
εkxn1(k) | ≥

|
N1∑
k=1

εn1(k)xn1(k) | −
∞∑

k=(N1+1)
| xn1(k) | ≥ 4

5ε −
1
5ε = 3

5ε.
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Since xn
w−→ 0 for n → ∞, then fk(xn) → 0 for n → ∞, so there exists a

nj2 > n1 such that
∑N1

k=1 | xnj2 (k) |< 1
5ε. Then choose N2 > N1 such that∑∞

k=(N2+1) | xnj2 (k) |< 1
5ε and consequently

∑N2
k=1 | xnj2 (k) |≥ 4

5ε.
Then for arbitrary choice of signs {εk = ±1} satisfying εk = εn1(k) for k ≤ N1
and εk = εnj2 (k) for N1 < k < N2 follows that

|
∞∑
k=1

εkxnj2 (k) | ≥ |
N2∑

k=(N1+1)
εkxnj2 (k) | −

N1∑
k=1
| xnj2 (k) | −

∞∑
k=(N2+1)

| xnj2 (k) | ≥

|
N2∑

k=(N1+1)
εkxnj2 (k) | − 2

5ε =
N2∑
k=1
| xnj2 (k) | −

N1∑
k=1
| xnj2 (k) | − 2

5ε ≥

4
5ε −

1
5ε −

2
5ε = 1

5ε.

Repeating this process, there is an element w = {wk}k∈N ∈ `∞ constructed,
with wk = εnjm (k) for N(m−1) < k ≤ Nm. The dual space of `1 is equal to
`∞, see subsection 4.6.1. The constructed element w ∈ `∞ has the property
that

w(xnjm ) > 1
5ε,

for all m, but that is in contradiction with xn
w−→ 0.

This proof has been found in the book of (Fabian, 2001).
�
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There are all kind of different spaces, which can be used as illustration for
particular behaviour of convergence or otherwise.

5.1 Function Spaces

The function spaces are spaces, existing out of functions, which have a cer-
tain characteristic or characteristics. Characteristics are often described in
terms of norms. Different norms can be given to a set of functions and so the
same set of functions can get a different behaviour.
In first instance the functions are assumed to be real-valued. Most of the given
spaces can also be defined for complex-valued functions.
Working with a Vector Space means that there is defined an addition and a
scalar multiplication. Working with Function Spaces means that there has to
be defined a summation between functions and a scalar multiplication of a
function.
Let K be the real numbers R or the complex numbers C. Let I be an open
interval (a, b), or a closed interval [a, b] or may be R and look at the set of all
functions S = {f | f : I → K}.

Let f, g ∈ S and let α ∈ K.
The addition (+) between the functions f and g and the scalar multiplica-
tion (·) of α with the function f are defined by:

addition (+): (f + g) means (f + g)(x) := f(x) + g(x) for all x ∈ I,
scalar m. (·): (α · f) means (α · f)(x) := α(f(x)) for all x ∈ I.

The symbol := means: is defined by.

Definition 5.1

The quartet (S,K, (+), (·)), with the above defined addition and scalar multi-
plication, is a Vector Space.
The Vector Space (S,K, (+), (·)) is very big, it exists out of all the functions
defined on the interval I and with their function values in K. Most of the time
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is looked at subsets of the Vector Space (S,K, (+), (·)). For instance there is
looked at functions which are continuous on I, have a special form, or have
certain characteristic described by integrals. If characteristics are given by
certain integrals the continuity of such functions is often dropped.
To get an Inner Product Space or a Normed Space there has to be defined
an inner product or a norm on the Vector Space, that is of interest on that
moment.

5.1.1 Polynomials

A polynomial p of degree less or equal to n is written in the following form

pn(t) = a0 + a1 t+ · · ·+ an t
n =

n∑
i=0

ai t
i.

If pn is exactly of the degree n, it means that an 6= 0. A norm, which can
be defined on this space of polynomials of degree less or equal to n is

‖ pn ‖= max
i=0,···,n

| ai | . (5.1)

Polynomials have always a finite degree, so n < ∞. Looking to these
polynomials on a certain interval [a, b], then another norm can be defined by

‖ pn ‖∞= sup
a≤t≤b

| pn(t) |,

the so-called sup-norm, on the interval [a, b].
With PN ([a, b]) is meant the set of all polynomial functions on the interval
[a, b], with a degree less or equal to N . The number N ∈ N is a fixed number.
With P([a, b]) is meant the set of all polynomial functions on the interval
[a, b], which have a finite degree.

5.1.2 C([a, b]) with ‖ · ‖∞-norm



160

The normed space of all continuous function on the closed and bounded inter-
val [a, b]. The norm is defined by

‖ f ‖∞= sup
x∈[a,b]

| f(x) | . (5.2)

and is often called the sup-norm of the function f at the interval [a, b].

Dense subspaces are of importance, also in the Normed Space
(C([a, b]), ‖ · ‖∞). After that an useful formula is proved, it will be shown
that the set P([a, b]) is dense in (C([a, b]), ‖ · ‖∞). This spectacular result is
know as the Weierstrass Approximation Theorem .

Let n ∈ N and let t be a real parameter then
n∑
k=0

(t− k

n
)2
(
n

k

)
tk(1− t)(n−k) = 1

n
t(1− t)

Theorem 5.1

Proof of Theorem 5.1

First is defined the function G(s) by

G(s) = (st + (1− t))n, (5.3)

using the binomial formula, the function G(s) can be rewritten as

G(s) =
n∑
k=0

(
n

k

)
tk(1− t)(n−k) sk. (5.4)

Differentiating the formulas 5.3 and 5.4 to s results in

G
′
(s) = n t (st + (1− t))n−1 =

n∑
k=0

k

(
n

k

)
tk(1− t)(n−k) sk−1

and
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G
′′
(s) = n(n− 1) t2 (st + (1− t))n−1 =

n∑
k=0

k(k− 1)
(
n

k

)
tk(1− t)(n−k) sk−2.

Take s = 1 and the following functions values are obtained:

G(1) = 1 =
n∑
k=0

(
n

k

)
tk(1− t)(n−k),

G
′
(1) = n t =

n∑
k=0

k

(
n

k

)
tk(1− t)(n−k),

G
′′
(1) = n(n− 1) t2 =

n∑
k=0

k(k − 1)
(
n

k

)
tk(1− t)(n−k).

The following computation

n∑
k=0

(t− k

n
)2
(
n

k

)
tk(1− t)(n−k)

=
n∑
k=0

(t2 − 2 k
n
t+ (k

n
)2 t2)

(
n

k

)
tk(1− t)(n−k)

= t2G(1)− 2
n
tG
′
(1) + 1

n2G
′′
(1) + 1

n2G
′
(1)

= t2 − 2
n
tnt+ 1

n2n(n− 1)t2 + 1
n2nt

= 1
n
t (1 − t),

completes the proof. �

If a and b are finite, the interval [a, b] can always be rescaled to the interval
[0, 1], by t = x − a

b − a
, 0 ≤ t ≤ 1 if x ∈ [a, b]. Therefore will now be looked

at the Normed Space (C([0, 1]), ‖ · ‖∞).
The Bernstein polynomials pn(f) : [0, 1]→ R are defined by

pn(f)(t) =
n∑
k=0

f(k
n

)
(
n

k

)
tk(1− t)(n−k) (5.5)
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with f ∈ C[0, 1] and are used to proof the following theorem, also known as
the Weierstrass Approximation Theorem .

The Normed Space (C([0, 1]), ‖ · ‖∞) is the completion of the Normed Space
(P([0, 1]), ‖ · ‖∞).

Theorem 5.2

Proof of Theorem 5.2

Let ε > 0 be given and an arbitrary function f ∈ C[0, 1]. f is contin-
uous on the compact interval [0, 1], so f is uniformly continuous on [0, 1],
see theorem 2.10. Further f is bounded on the compact interval [0, 1], see
theorem 2.9, so let

sup
t∈[0,1]

| f(t) | = M.

Since f is uniformly continuous, there exists some δ > 0 such that for every
t1, t2 ∈ [0, 1] with | t1 − t2 | < δ, | f(t1) − f(t2) | < ε. Important is that δ only
depends on ε. Using

1 = (t + (1− t))n =
n∑
k=0

(
n

k

)
tk(1− t)(n−k)

the following computation can be done for some arbitrary t ∈ [0, 1]

| f(t) − pn(f)(t) | = |
n∑
k=0

(f(t) − f(k
n

))
(
n

k

)
tk(1− t)(n−k)|

≤
n∑
k=0
|(f(t) − f(k

n
))|
(
n

k

)
tk(1− t)(n−k)

The fact that δ depends only on ε makes it useful to split the summation into
two parts, one part with | t − k

n
| < δ and the other part with | t − k

n
| ≥ δ.

On the first part will be used the uniform continuity of f and on the other
part will be used the boundedness of f , so
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| f(t) − pn(f)(t)| ≤
∑
|t− kn |<δ

|(f(t) − f(k
n

))|
(
n

k

)
tk(1− t)(n−k)

+
∑
|t− kn |≥δ

|(f(t) − f(k
n

))|
(
n

k

)
tk(1− t)(n−k)

≤
n∑
k=0

ε

(
n

k

)
tk(1− t)(n−k) +

∑
|t− kn |≥δ

2M
(
n

k

)
tk(1− t)(n−k).

The fact that |t− k

n
| ≥ δ means that

1 ≤
|t− k

n
|

δ
≤

(t− k

n
)2

δ2 . (5.6)

Inequality 5.6 and the use of theorem 5.1 results in

| f(t) − pn(f)(t)| ≤ ε + 2M
δ2

n∑
k=0

(t− k

n
)2
(
n

k

)
tk(1− t)(n−k)

= ε + 2M
δ2

1
n
t(1− t)

≤ ε + 2M
δ2

1
n

1
4 ,

for all t ∈ [0, 1]. The upper bound (ε + 2M
δ2

1
n

1
4) does not depend on t and

for

n >
M

2 δ2 ε
, this implies that

‖ f(t) − pn(f)(t) ‖∞< 2 ε.

The consequence is that

pn(f) → f for n→∞ in (C([0, 1]), ‖ · ‖∞).

Since f was arbitrary, it follows that P([0, 1]) = C([0, 1]), in the ‖ · ‖∞-norm,

and the proof is complete. �
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The Normed Space (C([a, b]), ‖ · ‖∞) is separable.

Theorem 5.3

Proof of Theorem 5.3

According the Weierstrass Approximation Theorem, theorem 5.2, every con-
tinous function f on the bounded and closed interval [a, b], can be approxi-
mated by a sequence of polynomials {pn} out of (P([a, b]), ‖ · ‖∞). The conver-
gence is uniform, see section 2.12. The coeffcients of these polynomials can
be approximated with rational coefficients, since Q is dense in R (Q = R). So
any polynomial can be uniformly approximated by a polynomial with rational
coeficients.
The set PQ of all polynomials on [a, b], with rational coefficients, is a countable

set and PQ([a, b]) = C[a, b]. �

The Normed Space (C([a, b]), ‖ · ‖∞) is a Banach Space.

Theorem 5.4

Proof of Theorem 5.4

See Section 2.12. �

5.1.3 C([a, b]) with Lp-norm and 1 ≤ p <∞

The normed space of all continuous function on the closed and bounded inter-
val [a, b]. The norm is defined by
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‖ f ‖p= (
∫ b

a
| f(x) |p dx)

(
1
p

)
. (5.7)

and is often called the Lp-norm of the function f at the interval [a, b].

5.1.4 C([a, b]) with L2-inner product

The inner product space of all continuous function on the closed and bounded
interval [a, b]. Let f, g ∈ C([a, b]) then it is easily to define the inner product
between f and g by

(f, g) =
∫ b

a
f(x) g(x) dx (5.8)

and it is often called the L2-inner product between the functions f and g

at the interval [a, b]. With the above defined inner product the L2-norm
can calculated by

‖ f ‖2= (f, f)
1
2 . (5.9)

When the functions are complex-valued then the inner product has to be
defined by

(f, g) =
∫ b

a
f(x) g(x) dx. (5.10)

The value of f(x) is the complex conjugate of the value of f(x).

5.1.5 Lp(a, b) with 1 ≤ p <∞
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In the section 5.1.3 and 5.1.4 there are taken functions which are continu-
ous on the closed and bounded interval [a, b]. To work with more generalized
functions, the continuity can be dropped and there can be looked at classes of
functions on the open interval (a, b). The functions f, g ∈ Lp(a, b) belong to
the same class in Lp(a, b) if and only if

‖ f − g ‖p = 0.

The functions f and g belong to Lp(a, b), if ‖ f ‖p<∞ and ‖ g ‖p<∞. With
the Lebesgue integration theory, the problems are taken away to calculate

the given integrals. Using the theory of Riemann integration gives prob-
lems. For more information about these different integration techniques, see
for instance Chen-2 and see section 5.1.6.
From the Lebesgue integration theory it is known that

‖ f − g ‖p = 0 ⇔ f(x) = g(x) almost everywhere.

With almost everywhere is meant that the set {x ∈ (a, b) | f(x) 6= g(x)}
has measure 0, for more information see wiki-measure.

An interesting example is the function f ∈ Lp(0, 1) defined by

f(x) =
{

1 for x ∈ Q
0 for x /∈ Q (5.11)

This function f is equal to the zero-function almost everywhere,
because Q is countable.

Example 5.1

Very often the expression Lp(a, b) is used, but sometimes is also written
Lp(a, b). What is the difference between these two spaces? Let’s assume
that 1 ≤ p < ∞.
First of all, most of the time there will be written something like Lp(Ω,Σ, µ),
instead of Lp. In short, Ω is a subset out of some space. Σ is a collection
of subsets of Ω and these subsets satisfy certain conditions. And µ is called
a measure, with µ the elements of Σ can be given some number ( they can
be measured), for more detailed information about the triplet (Ω,Σ, µ), see
page 270. In this simple case, Ω = (a, b), for Σ can be thought to the set of
open subsets of (a, b) and for µ can be thought to the absolute value | · |. Given

http://www.maths.mq.edu.au/~wchen/lnilifolder/lnili.html
http://en.wikipedia.org/wiki/Measure_(mathematics)
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are very easy subsets of R, but what to do in the case Ω = (R \ Q) ∩ (a, b)?
How to measure the length of a subset? May be the function defined in 5.1
can be used in a proper manner.
A function f ∈ Lp(Ω,Σ, µ) satisfies

Np(f) = (
∫

Ω
| f |p dµ)

1
p < ∞. (5.12)

Now is the case, that there exist functions g ∈ Lp(Ω,Σ, µ), which have almost
the same look as the function f . There can be defined an equivalence relation
between f and g,

f ∼ g if Np(f − g) = 0, (5.13)

the functions f and g are said to be equal almost everywhere, see page 271.
With the given equivalence relation, it is possible to define equivalence classes
of functions.
Another way to define these equivalence classes of functions is to look at all
those functions which are almost everywhere equal to the zero function

ker(Np) = {f ∈ Lp | Np(f) = 0}.

So be careful! If Np(f) = 0, it does not mean that f = 0 everywhere, but
it means, that the set {x ∈ Ω | f(x) 6= 0} has measure zero. So the
expression Np is not really a norm on the space Lp(Ω,Σ, µ), but a seminorm,
see definition 3.24. The expression Np becomes a norm, if the ker(Np) is
divided out of the space Lp(Ω,Σ, µ).
So it is possible to define the space Lp(Ω,Σ, µ) as the quotient space ( see
section 3.11) of Lp(Ω,Σ, µ) and ker(Np)

Lp(Ω,Σ, µ) = Lp(Ω,Σ, µ) / ker(Np).

The Normed Space Lp(Ω,Σ, µ) is a space of equivalence classes and the norm
is given by the expression Np in 5.12. The equivalence relation is given by
5.13.
Be still careful! Np(f) = 0 means that in Lp(Ω,Σ, µ) the zero-function can be
taken as représentant of all those functions with Np(f) = 0, but f has not to
be zero everywhere. The zero-function represents an unique class of functions
in Lp(Ω,Σ, µ) with the property that Np(f) = 0.
More interesting things can be found at the internet site wiki-Lp-spaces and
see also (Bouziad and Clabrix, 1993, page 109).

http://en.wikipedia.org/wiki/Lp_space
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5.1.6 Riemann integrals and Lebesgue integration

To calculate the following integral∫ b

a
f(x) dx,

with a nice and friendly function f , most of the time the the method of Riemann
is used. That means that the domain of f is partitioned into pieces, for in-
stance
{a = x0 < x1 < x2 < · · ·x0 < xn = b}. On a small piece xi−1 < x < xi
is taken some x and ci = f(x) is calculated, this for i = 1, · · · , n. The
elementary integral is then defined by,∫ b

a
f(x) dx .=

n∑
i=1

ci (xi − xi−1). (5.14)

With .= is meant that the integral is approximated by the finite sum on the
right-side of formula 5.14. For a positive function this means the area beneath
the graphic of that function, see figure 5.1. How smaller the pieces xi−1 <
x < xi, how better the integral is approximated.
Step functions are very much used to approximate functions. An easy example
of the step fuction is the function ψ with ψ(x) = ci at the interval xi−1 <
x < xi then ∫ b

a
ψ(x) dx =

n∑
i=1

ci (xi − xi−1).

How smaller the pieces xi−1 < x < xi, how better the function f is approxi-
mated.
Another way to calculate that area beneath the graphic of a function is to
partition the range of a function and then to ask how much of the domain
is mapped between some endpoints of the range of that function. Partition-
ing the range, instead of the domain, is called the method of Lebesgue .
Lebesgue integrals solves many problems left by the Riemann integrals.
To have a little idea about how Lebesgue integrals are calculated, the charac-
teristic functions are needed. On some subset A, the characteristic function
χA is defined by



169

Figure 5.1 Left: Riemann-integral, right: Lebesgue-integral.

χA(x) =
{

1 if x ∈ A (5.15)
0 if x /∈ A.

(5.16)

As already mentioned the range of a function is partitioned in stead of it’s
domain. The range can be partitioned in a similar way as the domain is
partitioned in the Riemann integral. The size of the intervals have not to be
the same, every partition is permitted.
A simple example, let f be a positive function and continous. Consider the
finite collection of subsets B defined by

Bn,α = {x ∈ [a, b] | α − 1
2n ≤ f(x) < α

2n}

for α = 1, 2, · · · , 22n, see figure 5.2,

Figure 5.2 A subset Bn,α.
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and if α = 1 + 22n

Bn,1 + 22n = {x ∈ [a, b] | f(x) ≥ 2n}.

Define the sequence {fn} of functions by

fn =
1 + 22n∑
α= 1

(α − 1)
2n χBn,α . (5.17)

It is easily seen that the sequence {fn} converges (pointwise) to f at the
interval [a, b]. The function f is approximated by step functions.
The sets Bn,α, which have a certain length (have a certain measure), are
important to calculate the integral. May be it is interesting to look at the
internet site wiki-measures, for all kind of measures . Let’s notate the
measure of Bn,α bym(Bn,α). In this particular case, the function f is continous
on a closed and bounded interval, so f is bounded. Hence, only a limited part
of Bn,α will have a measure not equal to zero.
The function fn is a finite sum, so∫ b

a
fn(x) dx =

1 + 22n∑
α=1

(α − 1)
2n m(χBn,α).

In this particular case,

lim
n→∞

1 + 22n∑
α=1

(α − 1)
2n m(χBn,α) =

∫ b

a
f(x) dx, (5.18)

but be careful in all kind of other situations, for instance if f is not continuous
or if the interval [a, b] is not bounded, etc.

5.1.7 Fundamental convergence theorems of integration

The following theorems are very important in the case that the question be-
comes if the limit and the integral sign may be changed or not. There will be
tried to give an outline of the proofs of these theorems. Be not disturbed and
try to read the outlines of the proofs. See for more information, for instance
(Royden, 1988) or (Kolmogorv and Fomin, 1961).

http://en.wikipedia.org/wiki/Category:Measures_(measure_theory)


171

The best to do, is first to give two equivalent definitions of the Lebesgue integral .
With equivalent is meant that, when f satisfies the conditions given in the defi-
nitions, both integrals give the same value. To understand the definitions there
can be thought to the Riemann integrals which, if possible, are approximated
by lower- and under-sums. With the Lebesgue integration there is worked
with simple functions, see for instance formula 5.17 or theorem 8.5. There
is looked at simple functions ψ with ψ ≥ f or at simple functions ϕ with ϕ ≤ f .

Let f be a bounded measurable function defined on a measurable set E,
with µ(E) <∞. The Lebesgue integral of f over E is defined by∫

E
f dµ = inf (

∫
E
ψ dµ)

for all simple functions ψ ≥ f .

Definition 5.2

Let f be a bounded measurable function defined on a measurable set E,
with µ(E) <∞. The Lebesgue integral of f over E is defined by∫

E
f dµ = sup (

∫
E
ϕ dµ)

for all simple functions ϕ ≤ f .

Definition 5.3
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Lebesgue’s Bounded Convergence Theorem
Let {fn}n∈N be a sequence of measurable functions defined on a set
E of finite measure. Suppose that there exists a positive real num-
ber M such that | fn(x) |≤ M for every n and for all x ∈ E. If
limn→∞ fn(x) = f(x) for every x ∈ E, then

lim
n→∞

∫
E
fn dµ =

∫
E
f dµ.

Theorem 5.5

Proof of Theorem 5.5

Let ε > 0 be given.

a. In the case of uniform convergence:
If the sequence {fn}n∈N should converge uniformly to f , then
there would be no problem to change the integral sign and the
limit. In that case there is some N(ε) such that for all n > N(ε)
and for all x ∈ E, | fn(x) − f(x) |< ε. Thus

|
∫
E
fndµ −

∫
E
fdµ | ≤

∫
E
| fn − f | dµ < εµ(E).

b. Pointwise convergence and uniformly bounded:
The sequence {fn}n∈N converges pointwise and is uniformly bounded.
Define the sets

Hn = {x ∈ E | | fn(x) − f(x) | ≥ ε}

and let
GN = ∪∞n=NHn.

It is easily seen GN+1 ⊂ GN and for each x ∈ E there is some N
such that x ∈ GN , since limn→∞ fn(x) = f(x). Thus ∩∞n=1Gn =
∅, so limn→∞ µ(Gn) = 0.
Given some δ > 0, there is some N such that µ(GN ) < δ.

c. Difference between the integrals:
Take δ = ε

4M , then there is some N(ε) such that µ(GN(ε)) < δ.
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So there is a measurable set A = GN(ε) ⊂ E, with µ(A) < ε
4M ,

such that for n > N(ε) and x ∈ E\A | fn(x) − f(x) |< ε. Thus

|
∫
E
fndµ −

∫
E
fdµ |= |

∫
E

(fn − f)dµ |

≤
∫
E
| fn − f | dµ

=
∫
E\A
| fn − f | dµ +

∫
A
| fn − f | dµ

εµ(E\A) + 2M µ(A) < εµ(E) + ε

2

Hence the proof is completed, since
∫
E fndµ →

∫
E fdµ for n →

∞.
�

Theorem 5.5 is not valid for the Riemann integral,
see example 5.1. May be it is good to remark that the function given in
example 5.1 is nowhere continuous.

Remark 5.1

Fatou’s Lemma
Let {fn}n∈N be a sequence of nonnegative measurable functions and
limn→∞ fn(x) = f(x) almost everywhere on a set E. Then∫

E
f dµ ≤ lim inf

n→∞

∫
E
fn dµ (5.19)

Theorem 5.6

Proof of Theorem 5.6

If limn→∞ fn(x) = f(x) almost everywhere on a set E, it means that there
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exist a set N ⊂ E with µ(N) = 0 such that limn→∞ fn(x) = f(x) is every-
where on E′ = (E\N). And integrals over sets with measure zero are zero.
Let h be a measurable function, bounded by f and zero outside E′, a set of
finite measure. Define the sequence of functions {hn}n∈N by

hn(x) = min (h(x), fn(x))

Out of the definition of the functions hn follows that, the functions hn are
bounded by the function h and are zero outside E′, so∫

E
hdµ =

∫
E′
hdµ. (5.20)

The functions hn are bounded, because the function h is bounded by f ,
so limn→∞ hn(x) = h(x) for each x ∈ E′. This means that∫

E′
hdµ = lim

n→∞

∫
E′
hndµ (5.21)

and since hn ≤ fn, follows with theorem 5.5 that

lim
n→∞

∫
E′
hndµ ≤ lim inf

n→∞

∫
E
fndµ. (5.22)

Put the results of (5.20),(5.21) and (5.22) behind each other and the following
inequality is obtained ∫

E
hdµ ≤ lim inf

n→∞

∫
E
fndµ.

Take the supremum over h and with definition 5.3, the result (5.19) is ob-

tained. �

Monotone Convergence Theorem
Let {fn}n∈N be a non-decreasing sequence of nonnegative measur-
able functions, which means that 0 ≤ f1 ≤ f2 ≤ · · · and let limn→∞ fn(x) =
f(x) almost everywhere. Then

lim
n→∞

∫
E
fn dµ =

∫
E
f dµ.

Theorem 5.7
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Proof of Theorem 5.7

With theorem 5.6 it follows that∫
E
f dµ ≤ lim inf

n→∞

∫
E
fn dµ.

For each n is fn ≤ f , so
∫
E fndµ ≤

∫
E fdµ and this means that

lim sup
n→∞

∫
E
fn dµ ≤

∫
E
fdµ.

Hence

lim
n→∞

∫
E
fn dµ =

∫
E
f dµ.

The theorem is proved. �

Lebesgue’s Dominated Convergence Theorem
Let {fn}n∈N be a sequence of measurable functions such that for al-
most every x on E, limn→∞ fn(x) = f(x). If there exists an integrable
function g, which dominates the functions fn on E, i.e. | fn(x) | ≤
g(x). Then

lim
n→∞

∫
E
fn dµ =

∫
E
f dµ.

Theorem 5.8

Proof of Theorem 5.8

It is sufficient to prove this for nonnegative functions.
From the fact that (g − fn) ≥ 0 for all x ∈ E and n follows with Fatou’s
Lemma, see 5.6, that∫

E
(g − f) dµ ≤ lim inf

n→∞

∫
E

(g − fn) dµ.

Subtract the integral of g and use the fact that



176

lim inf
n→∞

∫
E

(− fn) dµ = − lim sup
n→∞

∫
E
fn dµ.

Thus

lim sup
n→∞

∫
E
fn dµ ≤

∫
E
f dµ ≤ lim inf

n→∞

∫
E
fn dµ.

The proof is completed. �

5.1.8 Inequality of Cauchy-Schwarz (functions)

The exactly value of an inner product is not always needed. But it is nice to
have an idea about maximum value of the absolute value of an inner product.
The inequality of Cauchy-Schwarz is valid for every inner product, here is
given the theorem for functions out of L2(a, b).

Let f, g ∈ L2(a, b) and let the inner product be defined by

(f, g) =
∫ b

a
f(x) g(x) dx.

then

| (f, g) | ≤ ‖ f ‖2 ‖ g ‖2, (5.23)

with ‖ · ‖2 defined as in 5.9.

Theorem 5.9

Proof of Theorem 5.9

See the proof of theorem 3.9.1. Replace x by f and y by g. See section 5.1.5

about what is meant by ‖ g ‖2 = 0. �
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5.1.9 B(Ω) with ‖ · ‖∞-norm

Let Ω be a set and with B(Ω) is meant the space of all real-valued bounded
functions f : Ω→ R, the norm is defined by

‖ f ‖∞= sup
x∈Ω
| f(x) | . (5.24)

It is easily to verify that B(Ω), with the defined norm, is a Normed Linear
Space. ( If the the functions are complex-valued, it becomes a complex Normed
Linear Space.)

The Normed Space (B(Ω), ‖ · ‖∞) is a Banach Space.

Theorem 5.10

Proof of Theorem 5.10

Let ε > 0 be given and let {fn}n∈N be a Cauchy row in B(Ω). Then there exists
a N(ε) such that for every n,m > N(ε) and for every x ∈ Ω, |fn(x)−fm(x)| <
ε. For a fixed x is {fn(x)}n∈N a Cauchy row in R. The real numbers are
complete, so there exists some limit g(x) ∈ R. x is arbitrary chosen, so there
is constructed a new function g.
If x is fixed then there exists aM(x, ε) such that for every n > M(x, ε), |fn(x)−
g(x)| < ε.
It is easily seen that |g(x)− fn(x)| ≤ |g(x)− fm(x)|+ |fm(x)− fn(x)| < 2ε for
m > M(x, ε) and n > N(ε). The result is that ‖ g − fn ‖∞< 2ε for n > N(ε)
and this means that the convergence is uniform.
The inequality ‖ g ‖≤‖ g− fn ‖ + ‖ fn ‖ gives that, for an appropriate choice

of n. The constructed function g is bounded, so g ∈ B(Ω). �
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5.1.10 The functions spaces C(R), Cc(R) and C0(R)

Most of the time are those place of interest, where some function f is not equal
to zero. The support of the function f is the smallest closed set outside f
is equal to zero.

Let f : R→ R be some function, then

supp(f) = {x ∈ R | f(x) 6= 0},

the set supp(f) is called the support of f .

Definition 5.4

The continous functions f : R → R are denoted by C(R), continuous in the
‖ · ‖∞-norm. So if f ∈ C(R) then ‖ f ‖∞= supx∈R | f(x) |.

Definition 5.5

In the integration theory are often used continuous functions with a com-
pact support.

The continuous functions f : R → R, with a compact support, are denoted
by Cc(R)

Cc(R) =] {f : R→ R | f ∈ C(R) and supp(f) is compact}.

Sometimes Cc(R) is also denoted by C00(R).

Definition 5.6

And then there also functions with the characteristic that they vanish at in-
finity.
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The continuous functions f : R→ R, which vanish at infinity, are denoted by
C0(R)

C0(R) =] {f : R→ R | f ∈ C(R) and lim
|x|→∞

| f(x) |= 0}.

Definition 5.7

5.2 Sequence Spaces

The sequence spaces are most of the time normed spaces, existing out of
rows of numbers ξ = (ξ1, ξ2, ξ3, . . .), which have a certain characteristic or
characteristics.
The indices of the elements out of those rows are most of the time natural
numbers, so out of N. Sometimes the indices are be taken out of Z, for in-
stance if calculations have to be done with complex numbers.
Working with a Vector Space means that there is defined an addition and a
scalar multiplication. Working with Sequence Spaces means that there has to
be defined a summation between sequences and a scalar multiplication of a
sequence.
Let K be the real numbers R or the complex numbers C and look to the set
of functions KN = {f | f : N → K}5. The easiest way to describe such an
element out of KN is by a row of numbers, notated by x. If x ∈ KN then
x = (x1, x2, · · · , xi, · · ·), with xi = f(i). A row of numbers out of K de-
scribed by some function f . ( The set KZ can be defined on the same way.)

Important: The sequence spaces are also function spaces, only their domain is most of the time N5

or Z.
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Let x, y ∈ KN and let α ∈ K.
The addition (+) between the sequences x and y and the scalar multiplica-
tion (·) of α with the sequence x are defined by:

addition (+): (x + y) means (x + y)i := xi + yi for all i ∈ N,
scalar m. (·): (α · x) means (α · x)i := αxi for all i ∈ N.

Definition 5.8

The quartet (KN,K, (+), (·)), with the above defined addition and scalar mul-
tiplication, is a Vector Space. The Vector Space (KN,K, (+), (·)) is very big,
it exists out of all possible sequences. Most of the time is looked at subsets
of the Vector Space (KN,K, (+), (·)), there is looked at the behaviour of the
row (x1, x2, · · · , xi, · · ·) for i → ∞. That behaviour can be described by just
looking at the single elements xi for all i > N , with N ∈ N finite. But often
the behaviour is described in terms of series, like limN→∞

∑N
1 | xi |, which

have to be bounded for instance.
To get an Inner Product Space or a Normed Space there have to be defined
an inner product or a norm on the Vector Space, that is of interest on that
moment.

5.2.1 `∞ with ‖ . ‖∞-norm

The norm used in this space is the ‖ . ‖∞-norm, which is defined by

‖ ξ ‖∞= sup
i∈N
| ξi | (5.25)

and ξ ∈ `∞, if ‖ ξ ‖∞<∞.
The Normed Space (`∞, ‖ · ‖∞) is complete.

The space `∞ is not separable.

Theorem 5.11
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Proof of Theorem 5.11

Let S = {x ∈ `∞ |x(j) = 0 or 1, for j = 1, 2, · · ·} and y = (η1, η2, η3, · · ·) ∈
S. y can be seen as a binary representation of of a number γ =

∑∞
i=1

ηi
2i ∈

[0, 1]. The interval [0, 1] is uncountable. If x, y ∈ S and x 6= y then
‖ x − y ‖∞= 1, so there are uncountable many sequences of zeros and ones.
Let each sequence be a center of ball with radius 1

4 , these balls don’t intersect
and there are uncountable many of them.
Let M be a dense subset in `∞. Each of these non-intersecting balls must
contain an element of M . There are uncountable many of these balls. Hence,
M cannot be countable. M was an arbitrary dense set, so `∞ cannot have
dense subsets, which are countable. Hence, `∞ is not separable. �

The dual space (`∞)′ = ba(P(N)).

Theorem 5.12

Proof of Theorem 5.12

This will become a difficult proof6.

1. P(N) that is the power set of N, the set of all subsets of N.
There exists a bijective map between P(N) and the real numbers
R, for more information, see Section 8.2.
-This part is finished.

2. What is ba(P(N))? At this moment, not really an answer to the
question, but may be "bounded additive functions on P(N)".
See Step ii: 2 of Section 8.5 for more information.
-This part is finished.

3. An additive function f preserves the addition operation:

f(x + y) = f(x) + f(y),

At the moment of writing, no idea if it will become a succesful proof.6
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for all x, y out of the domain of f .
-This part gives some information.

4. It is important to realize that `∞ is a non-separable Banach Space.
It means that `∞ has no countable dense subset. Hence, this space
has no Schauder basis. There is no set {zi}i∈N of sequences in `∞,
such that every x ∈ `∞ can be written as

x = lim
N→∞

N∑
i=1

αi zi in the sense that lim
N→∞

‖ x−
N∑
i=1

αi zi ‖∞= 0,

for suitable αi ∈ R, i ∈ N.
Every element x ∈ `∞ is just a bounded sequence of numbers,
bounded in the ‖ · ‖∞-norm.
See also Theorem 5.2.1.
-This part gives some information.

5. `1 ⊂ (`∞)′ , because of the fact that (`1)′ = `∞. (C(`1) ⊂ (`1)′′

with C the canonical mapping.) For an example of a linear func-
tional L ∈ (`∞)′ , not necessarily in `1, see the Banach Limits ,
theorem 5.13.
-This part gives some information.

6. In the literature (Aliprantis, 2006) can be found that

(`∞)
′

= `1 ⊕ `1d = ca ⊕ pa,

with ca the countably additive measures and pa the pure
finitely additive charges7.
It seems that `1 = ca and `1d = pa. Further is written that every
countably additive finite signed measure on N corresponds to ex-
actly one sequence in `1. And every purely additive finite signed
charge corresponds to exactly one extension of a scalar multiple
of the limit functional on c, that is `1d ?
-This part gives some information. The information given is not
completely clear to me. Countable additivity is no problem any-
more, see Definition 8.6, but these charges?

At the moment of writing, no idea what this means!7
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7. Reading the literature, there is much spoken about σ-algebras
and measures, for more information about these subjects, see
section 8.3.
-This part gives some information.

8. In the literature, see (Morrison, 2001, page 50), can be read a way
to prove theorem 5.12. For more information, see section 8.5.
-This part gives a way to a proof of Theorem 5.12, it uses a lot
of information out of the steps made above.

Theorem 5.12 is proved yet, see ii.8!!

It was a lot of hard work. To search through literature, which is not readable
in first instance and then there are still questions, such as these charges in
ii.6. So in certain sense not everything is proved. Still is not understood that
(`∞)′ = `1 ⊕ `1d = ca ⊕ pa, so far nothing found in literature. But as ever,
written the last sentence and may be some useful literature is found, see (Rao

and Rao, 1983). �

Linear functionals of the type described in theorem 5.13 are called Banach Limits .

There is a bounded linear functional L : `∞ → R such that

a. ‖ L ‖= 1.
b. If x ∈ c then L(x) = limn→∞ xn.
c. If x ∈ `∞ and xn ≥ 0 for all n ∈ N then L(x) ≥ 0.
d. If x ∈ `∞ then L(x) = L(σ(x)), where σ : `∞ → `∞ is the

shift-operator,
defined by (σ(x))n = xn+1.

Theorem 5.13

Proof of Theorem 5.13

The proof is splitted up in several parts and steps.
First the parts ii.a and ii.d. Here Hahn-Banach, theorem 4.11, will be
used:
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1. Define M = {v − σ(v) | v ∈ `∞}. It is easy to verify that M is a
linear subspace of `∞. Further e = (1, 1, 1, · · ·) ∈ `∞ and e /∈ M .

2. Since 0 ∈M , dist(e,M) ≤ 1.
If (x − σ(x))n ≤ 0 for all n ∈ N, then ‖ e − (x − σ(x)) ‖∞≥
|1 − (x − σ(x))n| ≥ 1.
If (x − σ(x))n ≥ 0 for all n ∈ N, then xn+1 ≥ xn for all n ∈ N.
The sequence {xn}n∈N is nonincreasing and bounded, because
x ∈ `∞, so limn→∞ xn exists. Thus limn→∞(x − σ(x))n = 0 and
‖ e − (x − σ(x)) ‖∞≥ 1.
This proves that dist(e,M) = 1.

3. By theorem 4.11 there is linear functional L : `∞ → R such that
‖ L ‖= 1, L(e) = 1 and L(M) = 0. The bounded functional L
satisfies ii.a and ii.d of the theorem.
(L(x− σ(x)) = 0, L is linear, so L(x) = L(σ(x)).)

Part ii.b:

1. Let ε > 0 be given. Take some x ∈ c0, then there is a N(ε) such
that for every n ≥ N(ε), |xn | < ε.

2. If the sequence x is shifted several times then the norm of the
shifted sequences become less then ε after some while. Since
L(x) = L(σ(x)), see ii.d, also L(x) = L(σ(x)) = L(σ(σ(x))) =
· · · = L(σ(n)(x)). Hence, |L(σ(n)(x)) | ≤ ‖ σ(n)(x) ‖∞< ε for
all n > N(ε). The result becomes that

|L(x)| = |L(σ(n)(x)) | < ε. (5.26)

Since ε > 0 is arbitrary chosen, inequality 5.26 gives that
L(x) = 0. That means that x ∈ N (L) ( the kernel of L), so
c0 ⊂ N (L).

3. Take x ∈ c, then there is some α ∈ R such that limn→∞ xn = α.
Then x = α e + (x − α e) with (x − α e) ∈ c0 and

L(x) = L(α e+ (x−α e)) = L(α e) +L(x−α e) = α = lim
n→∞

xn.

Part ii.c:

1. Suppose that v ∈ `∞, with vn ≥ 0 for all n ∈ N, but L(v) < 0.
2. v 6= 0 can be scaled. Let w = v

‖ v ‖∞
, then 0 ≤ wn ≤ 1 and since

L is linear, 1
‖ v ‖∞

L(v) = L( v

‖ v ‖∞
) = L(w) < 0. Further is

‖ e − w ‖∞≤ 1 and L(e − w) = 1 − L(w) > 1. Hence,
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L(e − w)
‖ e − w ‖∞

> 1

but this contradicts with ii.a, so L(v) ≥ 0.

Theorem 5.13, about the Banach Limits, is proved. �

Here an example of a non-convergent sequence, which has a unique Banach
limit. If x = (1, 0, 1, 0, 1, 0, · · ·) then x + σ(x) = (1, 1, 1, 1, . . .) and
2L(x) = L(x) + L(x) = L(x) + L(σ(x)) = L(x + σ(x)) = 1. So,
for the Banach limit, this sequence has limit 1

2 .

Example 5.2

5.2.2 `1 with ‖ . ‖1-norm

The norm used in this space is the ‖ . ‖1-norm, which is defined by

‖ ξ ‖1=
∞∑
i=1
| ξi | (5.27)

and ξ ∈ `1, if ‖ ξ ‖1<∞.
The Normed Space (`1, ‖ · ‖1) is complete.
The space `1 is separable, see `p with p = 1 in section 5.2.3.

5.2.3 `p with ‖ . ‖p-norm and 1 ≤ p <∞

The norm used in this space is the ‖ . ‖p-norm, which is defined by
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‖ ξ ‖p= (
∞∑
i=1
| ξi |p)

1
p (5.28)

and ξ ∈ `p, if ‖ ξ ‖p<∞.
The Normed Space (`p, ‖ · ‖p) is complete.

The space `p is separable.

Theorem 5.14

Proof of Theorem 5.14

The set S = {y = (η1, η2, · · · , ηn, 0, 0, · · ·) | ηi ∈ Q, 1 ≤ i ≤ n, N} is a
countable subset of `p.
Given ε > 0 and x = (ξ1, ξ2, ξ3, · · ·) ∈ `p then there exists a N(ε) such that

∞∑
j=N(ε)+1

| ξj |p <
εp

2 .

Q is dense in R, so there is a y ∈ S such that
N(ε)∑
j=1
| ηj − ξj |p <

εp

2 .

Hence, ‖ x − y ‖p = (
∑N(ε)

j=1 | ηj − ξj |p +
∑∞

j=N(ε)+1 | ξj |p)
1
p < ε,

so S = `p. �

The dual space of `p is `q, with 1 < p < ∞ and 1
p

+ 1
q

= 1.

Theorem 5.15

Proof of Theorem 5.15

The proof is done with almost the same steps as done SubSection 4.8.
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Every x ∈ `p has a unique representation

x =
∞∑
i=1

ξi ei

with respect to a Schauder basis (ei)i∈N for `p.
Let f ∈ (`p)′, where (`p)′ is the dual space of `p, f is linear and bounded, so

f(x) =
∞∑
i=1

ξi γi, with γi = f(ei). (5.29)

Let q be such that 1
p

+ 1
q

= 1, the same as q = p(q − 1).

p and q are often called conjugate exponents .
Consider xn = {ξni }i∈N, defined by

ξni =
{ | γi |q

γi
if k ≤ n and γi 6= 0,

0 if k > n or γi = 0.
(5.30)

So is obtained that

f(xn) =
∞∑
i=1

ξni γi =
∞∑
i=1
| γi |q .

Since f ∈ (`p)′ and with the use of 5.30, there follows that

f(xn) ≤‖ f ‖‖ xn ‖= ‖ f ‖ (
n∑
i=1
| ξni |p)

( 1
p ) =

‖ f ‖ (
n∑
i=1
| γni |p(q−1))( 1

p ) = ‖ f ‖ (
n∑
i=1
| γni |q)

( 1
p ).

All together gives that

f(xn) =
n∑
i=1
| γni |q ≤‖ f ‖ (

n∑
i=1
| γni |q)

( 1
p ),

divide by the last factor and using that 1− 1
p

= 1
q
gives

(
n∑
i=1
| γni |q)

(1− 1
p ) = (

n∑
i=1
| γni |q)

( 1
q ) ≤‖ f ‖ .
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Take the limit n→∞ and there is obtained that
∞∑
i=1
| γni |q)

( 1
q ) ≤‖ f ‖, (5.31)

so {γi} ∈ `q.

Let b = {βi}i∈N ∈ `q and there can be constructed a bounded linear functional
g on `p. The definition of g on `p is given by

g(x) =
∞∑
i=1

ξi βi,

where x = {ξi} ∈ `p. g is linear and bounded, use the Hölder-inequality, see
Theorem ii.a. Hence g ∈ (`p)′.

With these two steps of above, there is proven that there is a bijective map
between the spaces `p and (`p)′.
Let c = {γi}i∈N and γi = f(ei). The mapping ψ of (`p)′ onto `p defined by
ψ : f 7−→ c is linear and bijective. Further has to be proven that the map ψ is
norm preserving.
From 5.29 and the Hölder inequality, ii.a, there follows that

| f(x) |= |
∞∑
i=1

ξi γi ≤

(
∞∑
i=1
| ξi |p)( 1

p ) ((
∞∑
i=1
| γi |q))( 1

q ) = ‖ x ‖ ((
∞∑
i=1
| γi |q))( 1

q ),

taking the supremum over all x with ‖ x ‖= 1, gives as result

‖ f ‖≤ ((
∞∑
i=1
| γi |q))( 1

q ). (5.32)

From 5.31 and 5.32 follows that ‖ f ‖= ‖ c ‖q, so the map ψ is norm
preserving and so it is an isometric isomorphism.
�

5.2.4 `2 with ‖ . ‖2-norm
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The norm used in this space is the ‖ . ‖2-norm, which is defined by

‖ ξ ‖2=

√√√√ ∞∑
i=1
| ξi |2 (5.33)

and ξ ∈ `2, if ‖ ξ ‖2<∞.
The Normed Space (`2, ‖ · ‖2) is complete.
The space `2 is separable, see `p with p = 2 in section 5.2.3.

If x ∈ `2 and y ∈ `2 then (x + y) ∈ `2.

Theorem 5.16

Proof of Theorem 5.16

Let x = (x1, x2, · · ·) and y = (y1, y2, · · ·) then (x+y) = (x1 +y1, x2 +y2 + · · ·).
Question: limN→∞(

∑N
i=1 | xi + yi |2) 1

2 <∞?
Take always finite sums and afterwards the limit of N →∞, so

N∑
i=1
| xi + yi |2 =

N∑
i=1
| xi |2 +

N∑
i=1
| yi |2 + 2

N∑
i=1
| xi | | yi | .

Use the inequality of Cauchy-Schwarz, see 3.13, to get

N∑
i=1
| xi + yi |2≤

N∑
i=1
| xi |2 +

N∑
i=1
| yi |2 + 2 (

N∑
i=1
| xi |2)

1
2 (

N∑
i=1
| yi |2)

1
2

= ((
N∑
i=1
| xi |2)

1
2 + (

N∑
i=1
| yi |2)

1
2 )2.

On such way there is achieved that
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lim
N→∞

(
N∑
i=1
| xi + yi |2)

1
2 ≤ lim

N→∞
((

N∑
i=1
| xi |2)

1
2 + (

N∑
i=1
| yi |2)

1
2 )

= (
∞∑
i=1
| xi |2)

1
2 + (

∞∑
i=1
| yi |2)

1
2 <∞.

�

5.2.5 c ⊆ `∞

The norm of the normed space `∞ is used and for every element ξ ∈ c holds
that limi→∞ ξi exists.
The Normed Space (c, ‖ · ‖∞) is complete.
The space c is separable.

5.2.6 c0 ⊆ c

The norm of the normed space `∞ is used and for every element ξ ∈ c0 holds
that limi→∞ ξi = 0.
The Normed Space (c0, ‖ · ‖∞) is complete.
The space c0 is separable.
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The mapping T : c→ c0 is defined by

T (x1, x2, x3, · · ·) = (x∞, x1 − x∞, x2 − x∞, x3 − x∞, · · ·),

with x∞ = limi→∞ xi.
T is

a. bijective,

b. continuous,

c. and the inverse map T−1 is continuous,
in short: T is a homeomorphism .

T is also linear, so T is a linear homeomorphism .

Theorem 5.17

Proof of Theorem 5.17

It is easy to verify that T is linear, one-to-one and surjective.
The spaces c and c0 are Banach spaces.
If x = (x1, x2, x3, · · ·) ∈ c, then

|xi − x∞| ≤ |xi| − |x∞| ≤ 2 ‖ x ‖∞ (5.34)

and

|xi| ≤ |xi| − |x∞| + |x∞| ≤ 2 ‖ T (x) ‖∞ . (5.35)

With the inequalities 5.34 and 5.35, it follows that
1
2 ‖ x ‖∞≤‖ T (x) ‖∞≤ 2 ‖ x ‖∞ . (5.36)

T is continuous, because T is linear and bounded. Further is T bijective and
bounded from below. With theorem 7.10, it follows that T−1 is continuous.
The bounds given in 5.36 are sharp

‖ T (1,−1,−1,−1, · · ·) ‖∞= ‖ (−1, 2, 0, 0, · · ·) ‖∞= 2 ‖ (1,−1,−1,−1, · · ·) ‖∞,

‖ T (1, 1
2 ,

1
2 ,

1
2 , · · ·) ‖∞= ‖ (1

2 ,
1
2 , 0, 0, · · ·) ‖∞= 1

2 ‖ (1, 1
2 ,

1
2 ,

1
2 , · · ·) ‖∞ .
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�

1. T is not an isometry,
‖ T (1,−1,−1,−1, · · ·) ‖∞= 2 ‖ (1,−1,−1,−1, · · ·) ‖∞ 6= ‖
(1,−1,−1,−1, · · ·) ‖∞.

2. Define the set of sequences {e = (1, 1, 1, · · ·), · · · , ej , · · ·} with
ei = (0, · · · , 0, δij , 0, · · ·). If x ∈ c and x∞ = limi→∞ xi then

x = x∞ e +
∞∑
i=1

(xi − x∞) ei.

The sequence {e, e1, e2, · · ·} is a Schauder basis for c.

Remark 5.2

5.2.7 c00 ⊆ c0

The norm of the normed space `∞ is used. For every element ξ ∈ c00 holds
that only a finite number of the coordinates ξi are not equal to zero.
If ξ ∈ c00 then there exists some N ∈ N, such that ξi = 0 for every i > N . (
N depends on ξ.)
The Normed Space (c00, ‖ · ‖∞) is not complete.

5.2.8 RN or CN
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The spaces RN or CN , with a fixed number N ∈ N, are relative simple
in comparison with the above defined Sequence Spaces. The sequences in
the mentioned spaces are of finite length

RN = {x | x = ( x1, · · · , xN ), xi ∈ R, 1 ≤ i ≤ N}, (5.37)

replace R by C and we have the definition of CN .
An inner product is given by

(x, y) =
N∑
i=1

xi yi, (5.38)

with yi the complex conjugate of yi. The complex conjugate is only of interest
in the space CN , in RN it can be suppressed.
Some other notations for the inner product are

(x, y) = x • y =< x, y > (5.39)

Often the elements out of RN or CN are presented by columns, i.e.

x =

 x1
...
xN

 (5.40)

If the elements of RN or CN are represented by columns then the inner product
can be calculated by a matrix multiplication

(x, y) =

 x1
...
xN


T  y1

...
yN

 =
[
x1 · · · xN

]  y1
...
yN

 (5.41)

5.2.9 Inequality of Cauchy-Schwarz (vectors)

The exactly value of an inner product is not always needed. But it is nice to
have an idea about maximum value of the absolute value of an inner product.
The inequality of Cauchy-Schwarz is valid for every inner product, here is
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given the theorem for sets of sequences of the form (x1, · · · , xN ), with N ∈ N
finite.

Let x = (x1, · · · , xN ) and y = ( y1, · · · , yN ) with xi, yi ∈ CN for 1 ≤ i ≤
N , with N ∈ N, then

| (x, y) | ≤ ‖ x ‖2 ‖ y ‖2 . (5.42)

Theorem 5.18

With ‖ · ‖2 is meant expression 5.33, but not the length of a vector. Nothing
is known about how the coördinates are chosen.

Proof of Theorem 3.13

It is known that
0 ≤ (x − α y, x − α y) = ‖ x − α y ‖22

for every x, y ∈ CN and for every α ∈ C, see formula 3.8. This gives

0 ≤ (x, x) − (x, α y) − (α y, x) + (α y, α y)

= ( x, x)− α (x, y) − α( y, x) + αα ( y, y) (5.43)

If ( y, y) = 0 then yi = 0 for 1 ≤ i ≤ N and there is no problem. Assume
y 6= 0 and take

α =
(x, y)
( y, y) .

Put α in inequality 5.43 and use that

(x, y) = (y, x),

see definition 3.29. Writing out, and some calculations, gives the inequality
of Cauchy-Schwarz. �

5.2.10 Inequalities of Hölder, Minkowski and Jensen (vectors)



195

The inequality of Hölder and Minkowski are generalizations of Cauchy-Schwarz
and the triangle-inequality. They are most of the time used in the Sequence
Spaces `p with 1 < p <∞, be careful with p = 1 and p =∞. Hölder’s inequality

is used in the proof of Minkowski’s inequality . With Jensen’s inequality
it is easy to see that `p ⊂ `r if 1 ≤ p < r <∞.

Let aj , bj ∈ K, j = 1, · · · , n, K = R orC.
For 1 < p <∞, let q satisfy 1

p
+ 1
q

= 1.

a. Hölder’s inequality, for 1 < p <∞:∑n
i=1 | ai bi | ≤ (

∑n
i=1 | ai |p)

1
p (
∑n

i=1 | bi |q)
1
q .

If a = {aj} ∈ `p and b = {bj} ∈ `q then
∑∞

i=1 | ai bi | ≤ ‖ a ‖p
‖ b ‖q.

b. Minkowski’s inequality, for 1 ≤ p <∞:∑n
i=1 | ai + bi |

1
p ≤ (

∑n
i=1 | ai |p)

1
p + (

∑n
i=1 | bi |p)

1
p .

If a = {aj} ∈ `p and b = {bj} ∈ `p then ‖ a + b ‖p≤‖ a ‖p
+ ‖ b ‖p.

c. Jensen’s inequality, for 1 ≤ p < r <∞:
(
∑n

i=1 | ai |r)
1
r ≤ (

∑n
i=1 | ai |p)

1
p .

‖ a ‖r≤‖ a ‖p for every a ∈ `p.

Theorem 5.19

Proof of Theorem ??

a. If a ≥ 0 and b ≥ 0 then
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ab ≤ ap

p
+ bq

q
. (5.44)

If b = 0, the inequality 5.44 is obvious, so let b > 0. Look at the
function f(t) = 1

q
+ t

p
− t

1
p with t > 0. The function f is a

decreasing function for 0 < t < 1 and an increasing function for
t > 1, look to the sign of df

dt (t) = 1
p(1 − t−

1
q ). f(0) = 1

q
> 0

and f(1) = 0, so x(t) ≥ 0 for t ≥ 0. The result is that

t
1
p ≤ 1

q
+ t

p
, t ≥ 0. (5.45)

Take t = ap

bq
and fill in formula 5.45, multiply the inequality by

bq and inequality 5.44 is obtained. Realize that q − q
p = 1.

Define

α = (
n∑
i=1
| ai |p)

1
p and β = (

n∑
i=1
| bi |q)

1
q

and assume α > 0 and β > 0. The cases that α = 0 or β = 0,
the Holder’s inequality is true. Take a = aj

α
and b = bj

α
and fill

in in formula 5.44, j = 1, · · · , n. Hence
n∑
i=1

| ai bi |
αβ

≤ ( 1
pαp

n∑
i=1
| ai |p + 1

q βq

n∑
i=1
| bi |q) = 1,

and Hölder’s inequality is obtained.
The case p = 2 is the inequality of Cauchy, see 3.13.

b. The case p = 1 is just the triangle-inequality. Assume that
1 < p <∞.
With the help of Hölder’s inequality
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n∑
i=1

(| ai | + | bi |)p

=
n∑
i=1
| ai | (| ai | + | bi |)p−1 +

n∑
i=1
| bi | (| ai | + | bi |)p−1

≤ (
n∑
i=1
| ai |p)

1
p (

n∑
i=1

(| ai | + | bi |)(p−1)q)
1
q

+ (
n∑
i=1
| bi |p)

1
p (

n∑
i=1

(| ai | + | bi |)(p−1)q)
1
q

= (
n∑
i=1
| ai |p)

1
p +

n∑
i=1
| bi |p)

1
p ) (

n∑
i=1

(| ai | + | bi |)p)
1
q

because (p − 1) q = p, further 1 − 1
q = 1

p .

c. Take x ∈ `p with ‖ x ‖p≤ 1, then | xi |≤ 1 and hence | xi |r≤|
xi |p, so ‖ x ‖r≤ 1.
Take 0 6= x ∈ `p and consider x

‖ x ‖p
then it follows that ‖

x ‖r≤‖ x ‖p for 1 ≤ p < r <∞.
�

Jensen’s inequality ?? ii.c implies that `p ⊂ `r and if xn → x in `p then
xn → x in `r.

Remark 5.3



1986 Types of Spaces

There are different types of spaces. The spaces in Chapter 3 can have all
kind of extra conditions on for instance the topology of such a space.
In Chapter 3 are already discussed certain different type of spaces, see the
flow chart of spaces 3.1. But here are discussed type of space, which are
not so easily to put in a nice flowchart.

6.1 PreCompact\Compact Metric Spaces

In this section will be looked at compact and precompact metric spaces. The
question to be answered is if these spaces are equivalent?
This question arose of the question whether a bounded sequence in a metric
space has a convergent subsequence, like the classical Bolzano-Weierstrass
Theorem 6.1. The Arzela-Ascoli Theorem 6.8 is also proved as a kind of
application of the theory.

6.1.1 Bolzano-Weierstrass

If there are bounded sequences and the convergence of some subsequence is of
importance, the name of Bolzano-Weierstrass is used very much.
There is also spoken about the Bolzano-Weierstrass Property.

A metric space X has the Bolzano-Weierstrass Property if every infinite

subset S in X has an accumulation point, also called a limit point .

Definition 6.1

What has the Bolzano-Weierstrass Property to do with the compactness of
a subset in a metric space. Are these two properties equivalent in a metric
space?
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6.1.1.1 Theorems of Bolzano-Weierstrass

A set S in R is said to be bounded if it lies in an interval [−a, a] for some
0 < a ∈ R.

Definition 6.2

The classical theorem of Bolzano-Weierstrass:
If a bounded set S in R contains infinitely many points, then there is at
least one point in R which is an accumulation point of S.

Theorem 6.1

Proof of Theorem 6.1

Since S is bounded it lies in some interval [−a, a] for some 0 < a ∈ R. At
least one of the intervals [−a, 0] or [0, a] contains an infinite subset of S. Give
one of these intervals the name [a1, b1]. Bisect the interval [a1, b1] and obtain
a subinterval [a2, b2], which contains infinitely many points of S. Continue
this process, such that a countable collection of intevals is obtained of which
the length of the nth interval [an, bn] is equal to bn − an = a

2(n−1) .
The sup of the left endpoint an and the inf of the right endpoint bn must be
equal, say to x. The point x is an accumulation point of S. If r is any positive
number, the interval [an, bn] will be contained in the interval (x− r, x+ r) as
soon as n is large enough so that bn − an = r

2 . The interval (x − r, x + r)
contains a point of S distinct from x, so x is an accumulation point of S. (

This accumulation point x may or may not belong to S.) �
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The more general theorem of Bolzano-Weierstrass:
Any sequence {an}∞n=1 in a compact metric space X has a convergent subse-
quence {anj}∞j=1.

Theorem 6.2

6.1.2 Lebesgue-Number

Being involved with compactness in metric spaces, most of the time, there will
also be spoken about a Lebesgue Number .

Let M = (X, d) be metric space and let U be an open cover of M. A fixed
positive real number 0 < λ ∈ R is called a Lebesgue Number for U if

∀x ∈M : ∃U(x) ∈ U such thatNλ(x, d) ⊆ U(x),

where Nλ(x, d) is the λ-neighbourhood of x in M .

Definition 6.3

The λ-neighbourhood of x in some metric space M = (X, d) is defined
by

Nλ(x, d) = {y ∈M | d(y, x) < λ}.

Not every open cover has a Lebesgue Number.

Example 6.1

Explanation of Example 6.1



201

Take the metric space M = (X, d), with X = (0, 1) ⊂ R and
d(x, y) =| x− y |, with the open cover U = {( 1

n
, 1) | n ≥ 2}.

Let 0 < λ ∈ R be a Lebesgues Number for U . Take some n ∈ N such that
1
n
< λ and take x = 1

n
then Nλ(x, d) = Nλ( 1

n
, d) = (0, 1

n
+ λ). But there is

no ( 1
m
, 1) ∈ U such that Nλ(x, d) ⊆ ( 1

m
, 1). So λ is not a Lebesgue Number

for U . �

Here follows the Lebesgue’s Number Lemma .

Let M = (X, d) be a metric space. Let M be sequentially compact. Then
there exists a Lebesgue Number for every open cover of M .

Theorem 6.3

Proof of Theorem 6.3

Let’s try to prove by contradiction.
Suppose that U is an open cover of M , which has no Lebesgue Number.
Then for any n ∈ N there exists some xn ∈ M such that N 1

n
(xn, d) ⊆ U is

false for every U ∈ U . Otherwise 1
n would be a Lebesgue Number for U .

So there is constructed a sequence (xn). M is sequentially compact and that
means that the sequence (xn) has a subsequence (xn(r)) which converges to
some x ∈M .
U covers M , so there is some U0 ∈ U such that x ∈ U0. U0 is open, so there
is some m ∈ N such that N 2

m
(x, d) ⊆ U0.

Further there exists some R ∈ N such that xn(r) ∈ N 1
n

(x, d) for r ≥ R.
Choose some r ≥ R such that n(r) ≥ m and define s = n(r), then

N1
s
(xs, d) ⊆ N 2

m
(x, d),

since
d(xs, y) < 1

s
⇒ d(x, y) ≤ d(x, xs) + d(xs, y) < 1

m
+ 1
s
≤ 2
m
.

So N1
s
(xs, d) ⊆ U0 but this contradicts the choice of xs!

The conclusion is that there has to be a Lebesgue Number for U . �
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6.1.3 Totally-bounded or precompact

In a metric space M = (X, d) the boundedness of a non-empty subset A is
defined by

∅ 6= A ⊆M is bounded if diam(A) <∞, (6.1)

so there exists some constant K > 0, such that d(x, y) < K for all x, y ∈ A.
This is a little bit different from what is used in definition (2.6). In (6.1) is
used the metric d of the metric space M and not a metric induced by a norm.

The metric space M = (X, d) is said to be totally bounded or precompact
if for any λ > 0, there exists a finite cover of X by
sets of diameter less than λ.

Definition 6.4

Precompact is also called relatively compact .

A metric space M = (X, d) is totally bounded if and only if
every sequence in M has a Cauchy subsequence.

Theorem 6.4

Proof of Theorem 6.4

The proof exists out of two parts. The shortest part will be done first and the
difficult part as second.

(⇐) Let’s try to prove by contradiction.
Assume that M = (X, d) is not totally bounded. Then there exists a
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λ0 > 0 such that X can not be covered by finitely many balls of radius
λ0.
Let x1 ∈ X, then Bλ0(x1, d) 6= X. So there can be chose some x2 ∈
X \ Bλ0(x1, d) and go so on. So for each n ∈ N, there can be chosen
some xn+1 ∈ X \ ∪ni=1Bλ0(xi, d). If m > n then xm /∈ Bλ0(xn, d) and
thus d(xm, xn) ≥ λ0. So there is constructed a sequence (xn) without a
Cauchy subsequence, which contradicts the assumption.

(⇒) Assume that M = (X, d) is totally bounded and let (xn) be a sequence in
M = (X, d). By a so-called diagonal argument, there will be constructed
a Cauchy subsequence of (xn).
There will be used an inductive construction.
Set B0 = X. There exist a finite number of sets A11, A12, · · · , A1n1 ⊆ X
such that

diam(A1i) < 1 with i ∈ {1, 2, · · · , n1} such that
n1∪
i=1

A1i = X.

At least one of these A1i-sets must contain infinitely many terms of the
squence (xn), give it the name B1. Let (x11, x12, x13, · · ·) be a subsequence
of (xn) which lies entirely in B1. B1 ⊆ X and so B1 is also totally
bounded. There exist a a finite number of sets A21, A22, · · · , A2n2 ⊆ B1

such that

diam(A2i) < 1
2 with i ∈ {1, 2, · · · , n2} such that

n2∪
i=1

A2i = B1.

At least one of these A2i-sets must contain infinitely many terms of the
squence (x1n), give it the name B2. Let (x21, x22, x23, · · ·) be a subse-
quence of (x1n) which lies entirely in B2. B2 ⊆ B1 and so B2 is also totally
bounded. There exist a a finite number of sets A31, A32, · · · , A3n3 ⊆ B2

such that

diam(A3i) < 1
3 with i ∈ {1, 2, · · · , n3} such that

n3∪
i=1

A3i = B2.

And go so on.
So there can be constructed a sequence of sets (Bi) with
Bi ⊆ Bi−1 and diam(Bi) < 1

i for all i ∈ N. And there can be choosen a
subsequence (xi1, xi2, xi3, · · ·) of the sequence (x(i−1)1, x(i−1)2, x(i−1)3, · · ·)
which lies entirely in Bi for all i ∈ N. Those subsets Bi ⊆ X are also
totally bounded for all i ∈ N.
The elements xii are taken out of each subsequence and so the sequence
(x11, x22, x33, · · ·) = (xnn) is constructed. The question becomes if the
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sequence (xnn) is a Cauchy subsequence of the sequence (xn).
Let ε > 0 be given and choose some N ∈ N such that 1

N < ε. The
construction of the sequence (xnn) guarantees that the index of the con-
structed subsequence strictly increases. Let m,n ∈ N be such that
m,n ≥ N , then xmm ∈ Bm ⊆ BN and xnn ∈ Bn ⊆ BN . So

d(xmm, xnn) ≤ diam(BN ) < 1
N
< ε

and there follows that (xnn) is a Cauchy subsequence of (xn). �

A metric space M = (X, d) is sequentially compact if and only if M is
complete and totally bounded.

Theorem 6.5

Proof of Theorem 6.5

(⇒)M is sequentially compact. M is also totally bounded by Theorem 6.4.
A convergent sequence is also a Cauchy sequence.
Let (xn) be a Cauchy sequence in M . Since M is sequentially compact,
the sequence (xn) has a convergent subsequence, for instance (xn(r)). If
lim
r→∞

xn(r) = L then

| xn − L |≤| xn − xn(r) | + | xn(r) − L |,

if the indices n and r are taken great enough, the right-hand side can
be made as small as desired. So it follows that the whole sequence (xn)
converges and the conclusion is that M is complete.

(⇐) The assumption is that M is totally bounded and complete. Let (xn)
be some sequence in X. By the use of Theorem 6.4, it follows that the
sequence (xn) has a Cauchy subsequence (xn(r)). M is complete, which
means that the Cauchy subsequence (xn(r)) converges in M . Hence, the
sequence (xn) has a convergent subsequence and there follows that M is
sequentially compact.
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�

But first an example to show that the conditions, as given in the theorem of
Heine-Borel ( see theorem 2.6) are neccessary, but not sufficient for com-
pactness.

A closed and bounded set, that is not compact, is given by
B1(0) = {f ∈ C[0, 1] | ‖ f ‖∞≤ 1}.

Example 6.2

Explanation of Example 6.2

The metric d at C[0, 1] is defined by d(f, g) = ‖ f −g ‖∞, with f, g ∈ C[0, 1].
B1(0) is a subset of the metric space (C[0, 1], d). B1(0) is also closed ( see
theorem 2.11) and is bounded. See further example 2.4, the limit function
in the mentioned example is clearly not continuous.
This shows that there exists a sequence in B1(0), which has no subsequence,
which converges in B1(0). That means that the unit ball in the metric space

(C[0, 1], d) is not a compact set. �

The question, in subsection 6.1.1, about the possible equivalence between the
Bolzano-Weierstrass Property and compactness, in a metric space, is answered
in the following Theorem.

In a metric space M = (X, d) are the following statements equivalent:

a. M has the Bolzano-Weierstrass Property;

b. M is sequentially compact;

c. M is complete and totally bounded;

d. M is compact;

Theorem 6.6

Proof of Theorem 6.6
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The proof exists out of several parts. One part is the result of the foregoing
Theorem 6.5.

(ii.a ⇒ ii.b)
Assume that M has the Bolzano-Weierstrass Property and let (xn)
be a sequence in X. There are two possibilities:

Case I: The set S = {xn|n ∈ N} is finite. Then there is an element
y ∈ X, such that xn = y for inifinitely many n’s. Let V =
{n ∈ N | xn = y} and n1 = min(V ) and let nk = min(V \
{n1, · · · , n(k−1)}) for k ≥ 2. Then (xn(k)) is a constant
subsequence of (xn) and this subsequence is convergent.

Case II: The set S = {xn|n ∈ N} is infinite and by assumption S
has an accumulation point x ∈ X. So for each n ∈ N, Sn =
B 1
n

(x, d) ∩ (S \ {x}) 6= ∅
and let Vn = {n ∈ N | xn ∈ Sn}. The set Vn is an infinite
set for each n ∈ N.
Let n1 = min(V1) and nk = min(Vk \ {n1, · · · n(k−1)}), for
k ≥ 2. Then (xn(k)) is a subsequence of (xn) such that

d(xn(k), x) < 1
k

for each k ∈ N and this subsequence con-
verges to x.

(ii.b ⇔ ii.c)
This is already proved in Theorem 6.5.

(ii.b ⇒ ii.d)
The assumption is that the metric space M is sequentially compact.
Let C be an open cover of M . By Theorem 6.3 the cover C has a
Lebesgue number λ > 0.
From Theorem 6.5 is known that M is totally bounded. So there
exist a finite number of subsets A1, · · · , An ⊆ X such that

n
∪
i=1
Ai = X

and diam(Ai) ≤ λ for each i ∈ {1, · · · , n}. For each i ∈ {1, · · · , n}
there exists a Ci ∈ C such that Ai ⊆ Ci and X =

n
∪
i=1
Ci. Hence the

cover C has a finite subcover and this means that M is compact.

(ii.d ⇒ ii.a)
Let’s try to prove it by contradiction. The assumption is that M is a
compact metric space and let S be an infinite subset of X. Suppose
that S has no accumulation point. Hence for every x ∈ X, there
exists an open neighbourhood Vx such that Vx ∩ (S \ x) = ∅. All
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these open neighbourhoods Vx together {Vx | x ∈ X} = C are an
open cover of X. Since M is compact, there exists a finite subcover
{Vx1 , · · · , Vxn} of C. Each element Vxi must contain at least one
element of S. So

n
∪
i=1
Vxi = X contains finitely many points of S

and S has to be finite, which contradicts the assumption. Hence S
has an accumulation point and the Bolzano-Weierstrass Property is
satisfied.

�

6.1.4 Equicontinuity

Most of the time is worked with a set of maps and sometimes these maps have
the same kind of behaviour at some single point or in every point of some
set, where these maps are used. One of these behaviours is for instance the
variation of such a family of maps over a neighbourhood of some point.

Let (X, d1) and (Y, d2) be two metric spaces and F a family of maps be-
tween X and Y .

a. The family F is equicontinuous in a point x0 ∈ X, if for every
ε > 0 there exists some δ(ε) > 0, such that d2(f(x), f(x0)) < ε
for all f ∈ F and for every x ∈ X with d1(x, x0) < δ(ε).

b. The family F is uniformly equicontinuous, if for every ε > 0
there exists some δ(ε) > 0, such that d2(f(x1), f(x0)) < ε for all
f ∈ F and for every x1, x0 ∈ X with d1(x1, x0) < δ(ε).

c. The family F is said to be equicontinuous if it is equicontinuous
at every point x ∈ X.

Definition 6.5

In definition 6.5-ii.a, the δ may depend on ε and x0, but is independent
of f . In definition 6.5-ii.b, the δ may depend on ε, but is independent of f, x0
and x1.
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Let (X, d1) and (Y, d2) be two metric spaces. Assume that X is compact
and F ⊂ C(X, Y ). Then the following statements are equivalent:

a. F is equicontinuous.

b. F is uniform equicontinuous.

Theorem 6.7

Proof of Theorem 6.7

(ii.b ⇒ ii.a)It is clear that if F is uniform equicontinuous then it is also equicon-
tinuous.

(ii.a ⇒ ii.b)Assume that F is equicontinuous and let ε > 0 be given. Then there
exists some δ(ε, x) > 0 such that f(Bδ(ε,x)(x) ⊂ Bε(f(x)) for all
f ∈ F , with Bδ(ε,x) = {z ∈ X|d1(z, x) < δ(ε, x)} and Bε(f(x)) =
{z ∈ Y |d2(z, f(x)) < ε}. The collection O = {Bδ(ε,x)|x ∈ X} forms
an open covering of X. Since X is compact there exists a Lebesgue
Number 6.3 of the open cover O. So there is some λ > 0 such
that whenever A ⊂ X and diam(A) < λ, that A is contained in
some element of O. This λ is independent of x, so if x, y ∈ X and
d1(x, y) < λ then d2(f(x), f(y)) < ε for all f ∈ F . So F is uniform
equicontinuous.

�

6.1.5 Arzelà Ascoli theorem

Let X be a compact metric space, which means that the topology on X has
the compactness property. Let C(X) be the space of all continuous functions
on X with values in C. In C(X) the metric dist is defined by
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dist(f, g) = max{| f(x) − g(x) |: x ∈ X}.

The space C(X) with the given metric dist makes the space complete.
A subset F of C(X) is bounded if there is positive constant M <∞ such that
| f(x) |< M for each x ∈ X and each f ∈ F . M is independent of x and
independent of f .
Since X is compact, a equicontinuous subset of functions F of C(x) is also
uniform equicontinuous, see theorem 6.7. This means that for every ε > 0
there exists a δ(ε) such that for every x, y ∈ X with

d(x, y) < δ ⇒ dist(f, g) < ε for all f ∈ F ,

with d the metric on X.

The theorem of Arzelà-Ascoli:
If a sequence {fn}∞n=1 in C(X), with X a compact metric space, is bounded
and equicontinuous then it has a uniform convergent subsequence.

Theorem 6.8

Proof of Theorem 6.8

The proof exists out of a several steps.

Step 1: The compact metric space X has a countable dense subset S, so the
compact metric space is separable.
Given some n ∈ N and a point x ∈ X than is

B(x, 1
n

) = {y ∈ X | d(y, x) < 1
n
}

an open ball centered at x with radius 1
n
. For given n ∈ N, the

collection of these balls as all x ∈ X are taken, forms an open cover of
X. Since X is compact there is also a finite subcover that covers X.
Let’s call this finite subset Sn. Each point x ∈ X lies within a distance
1
n

of a point of Sn. The union S of all the sets Sn is countable and
dense in X.



210

Step 2: Let’s find a subsequence of the bounded sequence {fn}∞n=1 that point-
wise converges on S. This will be done by a so-called diagonal argu-
ment.
Let’s make a list {x1, x2, · · ·} of the countable many center points of
the elemenst out of S. Look at the sequence of numbers {fn(x1)}∞n=1,
which is bounded and by the theorem of Bolzano-Weierstrass has a
convergent subsequence, which is written by {fn,1(x1)}∞n=1. The se-
quence {fn,1(x2)}∞n=1 is also bounded and has a convergent subse-
quence {fn,2(x2)}∞n=1. The sequence of functions {fn,2}∞n=1 converges
in x1 and x2. Repeating this proces there is obtained a collection of
subsequences of the original sequence:

f1,1 f1,2 f1,3 · · ·
f2,1 f2,2 f2,3 · · ·
f3,1 f3,2 f3,3 · · ·
· · · · · ·
· · · · · ·
· · · · · ·

where the n-th column converges at the points x1, · · · , xn and each
column is a subsequence of the one left of it. Thus the diagonal se-
quence {fn,n}∞n=1 is a subsequence of the original sequence {fn}∞n=1
that converges at each point of S. Let’s call this diagonal subsequence
{hn}∞n=1.

Step 3: The produced sequence {hn}∞n=1 converges at each point of the dense
set S. Let ε > 0 be given, by compactness of X and the equicontinuity
of the original sequence there exists a δ(ε) > 0 such that for every
x, y ∈ X with d(x, y) < δ(ε) | hn(x) − hn(y) |< ε

3 and for each

n ∈ N. Take M >
1
δ(ε) , so that the set SM , as produced in Step 1, is

dense in X. The sequence {hn}∞n=1 converges at each point of SM , so
there exists a N > 0 such that

for all n,m > N ⇒| hn(s)− hm(s) |< ε

3 for all s ∈ SM .

Take an arbitrary x ∈ X, then x lies within distance less than δ(ε) of
some s ∈ SM and so for all n,m > N

| hn(x)− hm(x) |≤

| hn(x)− hn(s) | + | hn(s)− hm(s) | + | hm(s)− hm(x) |< 3 ( ε3),
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because of the equicontinuity of the original sequence. Thus on X is
the subsequence {hn}∞n=1, of {fn}∞n=1, a Cauchy sequence and therefore
uniform convergent. That is the result, which completes the proof.

�

If X is a compact metric space and {fn}∞n=1 a sequence of functions in C(X),
that converges uniformly, then the collection {fn}∞n=1 is equicontinuous.

Theorem 6.9

Proof of Theorem 6.9

Let f be the limit of the uniform convergent sequence {fn}∞n=1. So given
ε > 0, there exists a N such that for all n > N |fn(x) − f(x)| < ε

3 for all
x ∈ X.
For each j ≤ N the function fj is uniform continuous, so there exists a δj > 0
such that for each x, y ∈ X with d(x, y) < δj |fj(x) − fj(y)| < ε. The
limit function f is also uniform continuous, so there exists a δ0 > 0 such that
for each x, y ∈ X with d(x, y) < δ0 |f(x) − f(y)| < ε

3 .
Set δmin = min(δ0,min{1≤ j≤N}(δj)) > 0. If d(x, y) < δ < δmin then for
n > N

|fn(x) − fn(y)| ≤ |fn(x) − f(x)| + |f(x) − f(y)| + |f(y) − fn(y)| < ε.

Thus this holds for all n, since δ ≤ δj for j ≤ N as well, so the collection of

functions {fn}∞n=1 is equicontinuous. �

The theorem of Arzelà-Ascoli 6.8 is the key to the following result.

If X is a compact metric space then a subset F of C(X) is compact if and
only if it is closed, bounded and equicontinuous.

Theorem 6.10

Proof of Theorem 6.10
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The proof exists out of a several steps.

A continuous function on a compact metric spaceX is bounded, see theorem 2.9,
so the function

d(f, g) = sup
x∈X
|f(x) − g(x)|

is well-defined. (C(X), d) is a metric space and convergence with respect to d
is equivalent to uniform convergence 2.12. And if X is a compact metric
space, the metric space (C(X), d) is complete.
Because of the metric spaces and the compactness, equicontinuïty and uniform
equicontinuïty are equivalent, see theorem 6.7.

(⇒) The set F is a compact set in a metric space, so it is closed and
bounded, see theorem 2.5. It remains to show that the set F is
equicontinuous.
Equicontinuous means "uniform ( in f ∈ F) uniform ( in the points
of X) continuity". Suppose that the subset F is not equicontinuous.
That means that there exists an ε > 0 such that for each δ > 0,
there is a pair of points x0, y0 ∈ X and a function f0 ∈ F such that
d(x0, y0) < δ and |f0(x) − f0(y)| ≥ ε.
So for each n ∈ N, there is a pair of points xn, yn ∈ X and a function
fn ∈ F such that d(xn, yn) < 1

n
and |fn(x)− fn(y)| ≥ ε. This fixes

a sequence of functions {fn}∞n=1 in F , which has no equicontinuous
subsequence.

This is in contradiction with theorem 6.9, because every sequence
in C(X) has a uniform convergent subsequence.
So the subset F is equicontinuous.

(⇐) Let {fn}∞n=1 be a sequence in F . Then the sequence {fn}∞n=1 is
bounded and equicontinuous, X is compact, so by theorem 6.8,
there exists a convergent subsequence. Since F is closed, the limit of
the subsequence is an element of F . Sequentially compactness and
compactness are equivalent in a metric space, see theorem 6.6, so
the subset F is compact.

�



2137 Linear Maps

7.1 Linear Maps

In this chapter a special class of mappings will be discussed and that are
linear maps .
In the literature is spoken about linear maps, linear operators and linear func-
tionals. The distinction between linear maps and linear operators is not quite
clear. Some people mean with a linear operator T : X → Y , a linear map
T that goes from some Vector Space into itself, so Y = X. Other people look
to the fields of the Vector Spaces X and Y , if they are the same, then the
linear map is called a linear operator.
If Y is another vectorspace then X, then the linear map can also be called a
linear transformation .
About the linear functionals there is no confusion. A linear functional is a
linear map from a Vector Space X to the field K of that Vector Space X.

Let X and Y be two Vector Spaces. A map T : X → Y is called a linear
map if

LM 1: T (x + y) = T (x) + T ( y) for every x, y ∈ X and

LM 2: T (αx) = αT (x), for every α ∈ K and for every x ∈ X.

Definition 7.1

If nothing is mentioned then the fields of the Vector Spaces X and Y are
assumed to be the same. So there will be spoken about linear operators or
linear functionals.
The definition for a linear functional is given in section 4.1.
Now there are repeated several notations, which are of importance, see sec-
tion 2.1 and figure 7.1:

Domain : D(T) ⊂ X is the domain of T ;
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Range : R(T) ⊂ Y is the range of T ,
R(T ) = {y ∈ Y | ∃x ∈ XwithT (x) = y};

Nullspace : N (T) ⊂ D(T ) is the nullspace of T ,
N (T ) = {x ∈ D(T ) | T (x) = 0}.
The nullspace of T is also called the kernel of T ;

New is the definition of the Graph of an operator:

Let T : D(T )→ Y be a linear operator, by G(T) is defined the graph of T ,

G(T ) = {(x, y) ∈ X × Y | x ∈ D(T ) and y = T (x) ∈ R(T )}.

Definition 7.2

Further: T is an operator from D(T ) onto R(T ), T : D(T ) → R(T ); T is an
operator from D(T ) into Y , T : D(T )→ Y ; if D(T ) = X then T : X → Y .
The R(T ) is also called the image of D(T ). If V ⊂ D(T ) is some subspace
of X then T (V ) is called the image of V . And if W is some subset of R(T )
then {x ∈ X | T (x) ∈ W} is called the inverse image of W , denoted by
T−1(W ).
The range and the nullspace of a linear operator have more structure then just
an arbitrary mapping out of section 2.1.

If X, Y are Vector Spaces and T : X → Y is a linear operator then:

a. R(T ), the range of T , is a Vector Space,

b. N (T ), the nullspace of T , is a Vector Space,

c. G(T ), the graph of T , is a linear subspace of X × Y .

Theorem 7.1

Proof of Theorem 7.1
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X

D(T )

N (T )

T

Y

R(T )

0 0

Figure 7.1 Domain, Range, Nullspace

a. Take y1, y2 ∈ R(T ) ⊆ Y , then there exist x1, x2 ∈ D(T ) ⊆
X such that T (x1) = y1 and T (x2) = y2. Let α ∈ K then
(y1 + α y2) ∈ Y , because Y is a Vector Space and

Y 3 y1 + α y2 = T (x1) + αT (x2) = T (x1 + αx2).

This means that there exists an element z1 = (x1 + αx2) ∈
D(T ), because D(T ) is a Vector Space, such that T (z1) = y1 +
α y2, so (y1 + α y2) ∈ R(T ) ⊆ Y .

b. Take x1, x2 ∈ D(T ) ⊆ X and let α ∈ K then (x1 + αx2) ∈ D(T )
and

T (x1 + αx2) = T (x1) + αT (x2) = 0

The result is that (x1 + αx2) ∈ N (T ).

c. Take (x1, y1) ∈ G(T ) and (x2, y2) ∈ G(T ), this means that
y1 = T (x1) and y2 = T (x2), then (x1, y1) + (x2, y2) = (x1 +
x2, T (x1) + T (x2)) = ( (x1 + x2), T ((x1 + x2)) ) ∈ G(T ). Let
α ∈ K then α (x1, y1) = (αx1, α T (x1)) = ( (αx1), T ((αx1)) ) ∈
G(T ).

�
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Linear operators can be added together and multiplied by a scalar, the obvious
way to do that is as follows.

If T, S : X → Y are linear operators and X, Y are Vector Spaces, then the
addition and the scalar multiplication are defined by

LO 1: (T + S)x = Tx + Sx and

LO 2: (αT )x = α (Tx) for any scalar α
and for all x ∈ X.

Definition 7.3

The set of all the operators X → Y is a Vector Space, the zero-operator
0̃ : X → Y in that Vector Space maps every element of X to the zero element
of Y .

If (T − λI)(x) = 0 for some x 6= 0 then λ is called an eigenvalue of
T . The vector x is called an eigenvector of T , or eigenfunction of T , x ∈
N (T − λI).

Definition 7.4

It is also possible to define a product between linear operators .

Let X, Y and Z be Vector Spaces, if T : X → Y and S : Y → Z are linear
operators then the product S T : X → Z of these linear operators is defined
by

(S T )x = S(T x)

for every x ∈ X.

Definition 7.5

The product operator ST : X → Z is a linear operator,

1. (ST )(x + y) = S(T (x + y)) = S(T (x) + T (y)) = S(T (x)) +
(S(T (y)) = (ST )(x) + (ST )(y) and

2. (ST )(αx) = S(αT (x)) = αS(T (x)) = α (ST )(x)
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for every x, y ∈ X and α ∈ K.

7.2 Bounded and Continuous Linear Operators

An important subset of the linear operators are the bounded linear operators
. Under quite general conditions the bounded linear operators are equivalent
with the continuous linear operators.

Let X and Y be normed spaces and let T : D(T ) → Y be a linear operator,
with D(T ) ⊂ X. The operator is bounded if there exists a positive real
number M such that

‖ T (x) ‖≤ M ‖ x ‖, (7.1)

for every x ∈ D(T ).

Definition 7.6

Read formula 7.1 carefully, on the left is used the norm on the Vector Space
Y and on the right is used the norm on the Vector Space X. If necessary there
are used indices to indicate that different norms are used. The constant M is
independent of x.
If the linear operator T : D(T )→ Y is bounded then

‖ T (x) ‖
‖ x ‖

≤ M, for all x ∈ D(T ) \ {0},

soM is an upper bound, and the lowest upper bound is called the norm of the operator
T , denoted by ‖ T ‖.
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Let T be a bounded linear operator between the normed spaces X and Y
then

‖ T ‖= sup
x ∈ D(T ) \ {0}

(‖ T (x) ‖
‖ x ‖

).

is called the norm of the operator.

Definition 7.7

Using the linearity of the operator T ( see LM ii: 2) and the homogeneity
of the norm ‖ · ‖ ( see N 3), the norm of the operator T can also be defined
by

‖ T ‖= sup
x ∈ D(T ),
‖ x ‖= 1

‖ T (x) ‖,

because

‖ T (x) ‖
‖ x ‖

= ‖ 1
‖ x ‖

T (x) ‖= ‖ T ( x

‖ x ‖
) ‖ and ‖ x

‖ x ‖
‖= 1

for all x ∈ D(T ) \ {0}.

A very nice property of linear operators is that boundedness and continuity
are equivalent.

Let T : D(T ) → Y be a linear operator, X and Y are normed spaces and
D(T ) ⊂ X, then

a. T is continuous if and only if T is bounded,

b. if T is continuous in one point then T is continuous on D(T ).

Theorem 7.2

Proof of Theorem 7.2

Let ε > 0 be given.
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a. (⇒) T is continous in an arbitrary point x ∈ D(T ). So there
exists a δ > 0 such that for every y ∈ D(T ) with ‖ x − y ‖≤
δ, ‖ T (x) − T (y) ‖≤ ε. Take an arbitrary z ∈ D(T ) \ {0}
and construct x0 = x + δ

‖ z ‖
z, then (x0 − x) = δ

‖ z ‖
z

and ‖ x0 − x ‖= δ. Using the continuity and the linearity
of the operator T in x and using the homogenity of the norm
gives that

ε ≥‖ T (x0)−T (x) ‖= ‖ T (x0−x) ‖= ‖ T ( δ

‖ z ‖
z) ‖= δ

‖ z ‖
‖ T (z) ‖ .

And the following inequality is obtained: δ

‖ z ‖
‖ T (z) ‖≤ ε,

rewritten it gives that the operator T is bounded
‖ T (z) ‖≤ ε

δ
‖ z ‖ .

The constant δ
ε
is independent of z, since z ∈ D(T ) was

arbitrary chosen.

(⇐) T is linear and bounded. Take an arbitrary x ∈ D(T ). Let
δ = ε

‖ T ‖
then for every y ∈ D(T ) with ‖ x − y ‖< δ

‖ T (x)−T (y) ‖= ‖ T (x− y) ‖≤‖ T ‖ ‖ x− y ‖<‖ T ‖ δ = ε.

The result is that T is continuous in x, x was arbitrary
chosen, so T is continuous on D(T ).

b. (⇒) If T is continuous in x0 ∈ D(T ) then is T bounded, see part
a ((⇒)), so T is continuous, see Theorem 7.2 ii.a.

�

Let (X, ‖ · ‖0) and (Y, ‖ · ‖1) be normed spaces and T : X → Y be a linear
operator. If T is bounded on Br(0, ‖ · ‖0), for some r > 0 then

‖ T (x) ‖1≤ α ‖ x ‖0 for all x ∈ X and some α > 0.

Theorem 7.3
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Proof of Theorem 7.3

Let ‖ F (x) ‖1≤ β, for all x ∈ Br(0, ‖ · ‖0), r > 0. If x = 0 then F (x) = 0,
and if x 6= 0, then since r x

‖ x ‖0
∈ Br(0, ‖ · ‖0), the result is that

‖ F (x) ‖1 = ‖ x ‖0
r

‖ F ( r x

‖ x ‖0
) ‖1≤

β

r
‖ x ‖0 .

Take α = β

r
.

�

Let T : D(T ) → Y be a bounded linear operator, with D(T ) ⊆ X and X, Y
are normed spaces then the nullspace N (T ) is closed.

Theorem 7.4

Proof of Theorem 7.4

Take a convergent sequence {xn}n∈N in N (T ).
The sequence {xn}n∈N is convergent, so there exists some x ∈ D(T )
such that ‖ x − xn ‖→ 0 if n→∞.
Using the linearity and the boundedness of the operator T gives that

‖ T (xn) − T (x) ‖= ‖ T (xn − x) ‖≤‖ T ‖ ‖ xn − x ‖→ 0 (n→∞). (7.2)

The sequence {xn}n∈N is a subset of N (T ), so T (xn) = 0 for every n ∈ N.
By 7.2 follows that T (x) = 0, this means that x ∈ N (T ), so N (T ) is closed,
see Theorem 2.2.
�

7.3 Space of bounded linear operators
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Let X and Y be in first instance arbitrary Vector Spaces. Later on there can
also be looked at Normed Spaces, Banach Spaces and other spaces, if necessary.
Important is the space of linear operators from X to Y , denoted by L(X, Y ) .

Let L(X, Y ) be the set of all the linear operators of X into Y . If S, T ∈
L(X, Y ) then the sum and the scalar multiplication are defined by{

(S + T )(x) = S(x) + T (x),
(αS)(x) = α (S(x))

for all x ∈ X and for all α ∈ K.

Definition 7.8

The set L(X, Y ) is a Vector Space under the linear operations given in
Definition 7.8.

Theorem 7.5

Proof of Theorem 7.5

It is easy to check the conditons given in definition 3.1 of a Vector Space.
�

There will be looked at a special subset of L(X, Y ), but then it is of impor-
tance that X and Y are Normed Spaces. There will be looked at the bounded
linear operators of the Normed Space X into the Normed Space Y , denoted
by BL(X, Y ) .

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Normed Spaces over the field K.
The set BL(X, Y ) is a linear subspace of L(X, Y ).

Theorem 7.6
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Proof of Theorem 7.6

The set BL(X, Y ) ⊂ L(X, Y ) and BL(X, Y ) 6= ∅, for instance 0 ∈ BL(X, Y ),
the zero operator. For a linear subspace two conditions have to be checked,
see definition 3.2. Let S, T ∈ BL(X, Y ), that means that there are positive
constants C1, C2 such that{

‖ S(x) ‖Y ≤ C1 ‖ x ‖X
‖ T (x) ‖Y ≤ C2 ‖ x ‖X

for all x ∈ X. Hence,

1.

‖ (S + T )(x) ‖Y≤‖ S(x) ‖Y + ‖ T (x) ‖Y≤ C1 ‖ x ‖X +C2 ‖ x ‖X ≤ (C1 + C2) ‖ x ‖X ,

2.

‖ (αS)(x) ‖Y = |α| ‖ S(x) ‖Y≤ (|α|C1) ‖ x ‖X ,

for all x ∈ X and for all α ∈ K. The result is that BL(X, Y ) is a subspace of
L(X, Y ).
�

The space BL(X, Y ) is more then just an ordinary Vector Space, if X and Y
are Normed Spaces.

If (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Normed Spaces, then BL(X, Y ) is a
Normed Space, the norm is defined by

‖ T ‖= sup
06=x∈X

‖ T (x) ‖Y
‖ x ‖X

= sup{
x ∈ X
‖ x ‖= 1

‖ T (x) ‖Y

for every T ∈ BL(X, Y ).

Theorem 7.7

Proof of Theorem 7.7
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The norm of an operator is already defined in definition 7.7. It is not difficult
to verify that the defined expression satisfies the conditions given in defini-
tion 3.23.
�

‖ T ‖ is the radius of the smallest ball in Y , around 0 (∈ Y ), that contains
all the images of the unit ball, {x ∈ X | ‖ x ‖X = 1} in X.

Remark 7.1

One special situation will be used very much and that is the case that Y
is a Banach Space, for instance Y = R or Y = C.

If Y is a Banach Space, then BL(X, Y ) is a Banach Space.

Theorem 7.8

Proof of Theorem 7.8

The proof will be split up in several steps.
First will be taken an Cauchy sequence {Tn}n∈N of operators in BL(X, Y ).
There will be constructed an operator T? Is T linear? Is T bounded? And
after all the question if Tn → T for n → ∞? The way of reasoning can be
compared with the section about pointwise and uniform convergence, see sec-
tion 2.12. Let’s start!
Let ε > 0 be given and let {Tn}n∈N be an arbitrary Cauchy sequence of oper-
ators in (BL(X, Y ), ‖ · ‖).

1. Construct a new operator T :
Let x ∈ X, then is {Tn(x)}n∈N a Cauchy sequence in Y , since

‖ Tn(x) − Tm(x) ‖Y≤‖ Tn − Tm ‖ ‖ x ‖X .

Y is complete, so the Cauchy sequence {Tn(x)}n∈N converges in
Y . Let Tn(x)→ T (x) for n→∞. Hence, there is constructed an
operator T : X → Y , since x ∈ X was arbitrary chosen.

2. Is the operator T linear?
Let x, y ∈ X and α ∈ K then
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T (x+y) = lim
n→∞

Tn(x+y) = lim
n→∞

Tn(x)+ lim
n→∞

Tn(y) = T (x) +T (y)

and

T (αx) = lim
n→∞

Tn(αx) = lim
n→∞

αTn(x) = αT (x)

Hence, T is linear.
3. Is T bounded?

The operators Tn ∈ BL(X, Y ) for every n ∈ N, so

‖ Tn(x) ‖Y≤‖ Tn ‖ ‖ x ‖X .

for every x ∈ X. Further is every Cauchy sequence in a Normed
Space bounded. There exists some N(ε) such that n,m > N(ε),
using the inverse triangle inequality gives

| ‖ Tn ‖ − ‖ Tm ‖ | ≤‖ Tn − Tm ‖< ε

such that

−ε+ ‖ TN(ε) ‖< ‖ Tn ‖< ε+ ‖ TN(ε) ‖,

for all n > N(ε). N(ε) is fixed, so {‖ Tn ‖}n∈N is bounded. There
exists some positive constant K, such that ‖ Tn ‖< K for all
n ∈ N. Hence,

‖ Tn(x) ‖Y < K ‖ x ‖X

for all x ∈ X and n ∈ N. This results in

‖ T (x) ‖Y≤‖ T (x)−Tn(x) ‖Y + ‖ Tn(x) ‖Y≤‖ T (x)−Tn(x) ‖Y +K ‖ x ‖X ,

for all x ∈ X and n ∈ N. Be careful! Given some x ∈ X and
n→∞ then always

‖ T (x) ‖Y ≤ K ‖ x ‖X ,

since Tn(x)→ T (x), that means that ‖ Tn(x) − T (x) ‖Y < ε for
all n > N(ε, x), since there is pointwise convergence.
Achieved is that the operator T is bounded, so T ∈ BL(X, Y ).

4. Finally, the question if Tn → T in (BL(X, Y ), ‖ · ‖)?
The sequence {Tn(x)}n∈N is a Cauchy sequence in BL(X, Y ), so
there is a N(ε) such that for all n,m > N(ε) : ‖ Tn − Tm ‖< ε

2 .
Hence,

‖ Tn(x) − Tm(x) ‖Y <
ε

2 ‖ x ‖X
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for every x ∈ X. Let m→∞ and use the continuity of the norm
then

‖ Tn(x) − T (x) ‖Y ≤
ε

2 ‖ x ‖X

for every n > N(ε) and x ∈ X, this gives that
‖ Tn(x) − T (x) ‖Y

‖ x ‖X
≤ ε

2 ,

for every 0 6= x ∈ X and for every n > N(ε). The result is that

‖ Tn − T ‖Y < ε.

Hence, Tn → T , for n→∞ in (BL(X, Y ), ‖ · ‖).
The last step completes the proof of the theorem.
�

7.4 Invertible Linear Operators

In section 2.1 are given the definitions of onto, see 2.5 and one-to-one, see 2.3
and 2.4, look also in the Index for the terms surjective (=onto) and injective
(=one-to-one).
First the definition of the algebraic inverse of an operator .

Let T : X → Y be a linear operator and X and Y Vector Spaces. T is (alge-
braic) invertible, if there exists an operator S : Y → x such that ST = IX is
the identity operator on X and TS = IY is the identity operator on Y . S is
called the algebraic inverse of T , denoted by S = T−1.

Definition 7.9

Sometimes there is made a distinction between left and right inverse oper-
ators, for a nice example see wiki-l-r-inverse. It is of importance to know
that this distiction can be made. In these lecture notes is spoken about the
inverse of T . It can be of importance to restrict the operator to it’s domain

http://en.wikipedia.org/wiki/Inverse_element
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D(T ), see figure 7.2. The operator T : D(T )→ R(T ) is always onto, and the
only thing to control if the inverse of T exists, that is to look if the operator
is one-to-one.

X Y

D(T ) R(T )

x

y = T (x)

T−1

T

Figure 7.2 The inverse operator: T−1

Let X and Y be Vector Spaces and T : D(T ) → Y be a linear operator with
D(T ) ⊆ X and R(T ) ⊆ Y . Then

a. T−1 : R(T )→ D(T ) exists if and only if

T (x) = 0 ⇒ x = 0.

b. If T−1 exists then T−1 is a linear operator.

Theorem 7.9

Proof of Theorem 7.9

a. (⇒) If T−1 exists, then is T injective and is obtained out of
T (x) = T (0) = 0 that x = 0.

(⇐) Let T (x) = T (y), T is linear so T (x − y) = 0 and this
implies that x − y = 0, using the hypothesis an that
means x = y. T is onto R(T ) and T is one-to-one, so T
is invertibe.
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b. The assumption is that T−1 exists. The domain of T−1 is R(T )
and R(T ) is a Vector Space, see Theorem 7.1 ii.a. Let y1, y2 ∈
R(T ), so there exist x1, x2 ∈ D(T ) with T (x1) = y1 and
T (x2) = y2. T−1 exist, so x1 = T−1(y1) and x2 = T−1(y2).
T is also a linear operator such that T (x1 + x2) = (y1 + y2)
and T−1(y1 + y2) = (x1 + x2) = T−1(y1) + T−1(y2). Evenso
T (αx1) = α y1 and the result is that T−1(α y1) = αx1 =
αT−1(y1). The operator T−1 satisfies the conditions of linearity,
see Definition 7.1. (α is some scalar.)

�

In this paragraph is so far only looked at Vector Spaces and not to Normed
Spaces. The question could be if a norm can be used to see if an operator is
invertible or not?
If the spaces X and Y are Normed Spaces, there is sometimes spoken about
the topological inverse T−1 of some invertible operator T . In these lecture
notes is still spoken about the inverse of some operator and no distinction will
be made between the various types of inverses.

Look to the operator T : `∞ → `∞ defined by

T (x) = y, x = {αi}i∈N ∈ `∞, y = {αi
i
}i∈N.

The defined operator T is linear and bounded. The range R(T ) is not closed.

The inverse operator T−1 : R(T )→ `∞ exists and is unbounded.

Example 7.1

Explanation of Example 7.1

The linearity of the operator T is no problem.
The operator is bounded because

‖ T (x) ‖∞= sup
i∈N
| αi
i
| ≤ sup

i∈N
| 1
i
| sup
i∈N
| αi |= ‖ x ‖∞ . (7.3)

The norm of T is easily calculated by the sequence x = { 1 }i∈N. The image
of x becomes T (x) = { 1

i
}i∈N with ‖ T (x) ‖∞= ‖ { 1

i
}i∈N ‖∞= 1, such
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that ‖ T (x) ‖∞= ‖ x ‖∞. Inequality 7.3 and the just obtained result for the
sequence x gives that ‖ T ‖= 1.
The R(T ) is a proper subset of `∞. There is no x0 ∈ `∞ such that T (x0) =
{ 1 }i∈N, because ‖ x0 ‖∞= ‖ {i}i∈N ‖∞ is not bounded.
Look to the operator T : `∞ → R(T ). If T (x) = 0 ∈ `∞ then x = 0 ∈ `∞,
so T is one-to-one. T is always onto R(T ). Onto and one-to-one gives that
T−1 : R(T )→ `∞ exists.
Look to the sequence {yn}n∈N with

yn = (1, 1√
2
, · · · , 1√

n︸ ︷︷ ︸
n

, 0, · · ·)

and the element y = (1, 1√
2
, · · · , 1√

n
,

1√
n+ 1

, · · ·). It is easily seen that
yn ∈ `∞ for every n ∈ N and y ∈ `∞ and

lim
n→∞

‖ y − yn ‖∞= lim
n→∞

1√
n + 1

= 0.

If R(T ) is closed then there is an element x ∈ `∞ with T (x) = y.
Every yn is an element out of the range of T , since there is an element xn ∈ `∞
with T (xn) = yn,

xn = (1,
√

2, · · · ,
√
n︸ ︷︷ ︸

n

, 0, · · ·).

with ‖ xn ‖∞=
√
n <∞ for every n ∈ N.

The sequence {xn}n∈N does not converge in `∞, since limn→∞ ‖ xn ‖∞=
limn→∞

√
n not exists. The result is that there exists no element x ∈ `∞ such

that T (x) = y,
the R(T ) is not closed.
Another result is that the limit for n→∞ of

‖ T−1(yn) ‖∞
‖ yn ‖∞

=
√
n

1

does not exist. The inverse operator T−1 : R(T ) → `∞ is not bounded.
�

In example 7.1, the bounded linear operator T is defined between Normed
Spaces and there exists an inverse operator T−1. It is an example of an
operator which is topological invertible, T−1 is called the topological inverse
of T .
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Let T : X → Y be a linear operator and X and Y Normed Spaces. T is
(topological) invertible , if the algebraic inverse T−1 of T exists and also
‖ T ‖ is bounded. T−1 is simply called the inverse of T .

Definition 7.10

Example 7.1 makes clear that the inverse of a bounded operator need not
to be bounded. The inverse operator is sometimes bounded.

Let T : X → Y be a linear and bounded operator from the Normed Spaces
(X, ‖ · ‖1) onto the Normed Space (Y, ‖ · ‖2),
T−1 exists and is bounded if and only if there exists a constant K > 0 such
that

‖ T (x) ‖2≥ K ‖ x ‖1 (7.4)

for every x ∈ X. The operator T is called bounded from below .

Theorem 7.10

Proof of Theorem 7.10

(⇒) Suppose T−1 exists and is bounded, then there exists a constant
C1 > 0 such that ‖ T−1(y) ‖1≤ C1 ‖ y ‖2 for every y ∈ Y . The
operator T is onto Y that means that for every y ∈ Y there is
some x ∈ X such that y = T (x), x is unique because T−1 exists.
Altogether

‖ x ‖1 = ‖ T−1(T (x)) ‖1≤ C1 ‖ T (x) ‖2⇒‖ T (x) ‖2≥
1
C1
‖ x ‖1
(7.5)

Take K = 1
C1

.

(⇐) If T (x) = 0 then ‖ T (x) ‖2 = 0, using equality 7.4 gives that
‖ x ‖1 = 0 such that x = 0. The result is that T is one-to-one,
together with the fact that T is onto, it follows that the inverse
T−1 exists.
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In Theorem 7.9 ii.b is proved that T−1 is linear.
Almost on the same way as in 7.5 there can be proved that T−1

is bounded,

‖ T (T−1(y)) ‖2≥ K ‖ T−1(y) ‖1⇒‖ T−1(y) ‖1≤
1
K
‖ y ‖2,

for every y ∈ Y , so T−1 is bounded.

�

The inverse of a composition of linear operators can be calculated, if the
individual linear operators are bijective, see figure 7.3.

X Y Z
S

S−1

T

T−1

(S T )

(S T )−1 = (T−1 S−1)

Figure 7.3 Inverse Composite Operator

If T : X → Y and S : Y → Z are bijective linear operators, where X, Y and
Z are Vector Spaces. Then the inverse (S T )−1 : Z → X exists and is given
by

(S T )−1 = T−1 S−1.

Theorem 7.11

Proof of Theorem 7.11
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The operator (S T ) : X → Z is bijective, T−1 and S−1 exist such that

(S T )−1 (ST ) = (T−1 S−1) (S T ) = T−1 (S−1 S)T = T−1 (IY T ) = T−1 T = IX

with IX and IY the identity operators on the spaces X and Y .
�

7.4.1 Power Series in BL(X,X)

Sometimes the inverse of an operator can be given by a Neumann series.

Let T ∈ BL(X,X), where (X, ‖ · ‖) is a Banach Space and suppose that
‖ I − T ‖< 1. Then T is invertible, where T−1 is given by the
Neumann series

T−1 =
∞∑
n=0

(I − T )n. (7.6)

The given series 7.6 converges in the operator norm and T−1 ∈ BL(X,X)

Theorem 7.12

Proof of Theorem 7.12

The proof will be done in several steps:

i. Since I and T are bounded, so (I − T )n are bounded for every
n ∈ N ∩ {0}.

ii. If |x| < 1 then 1
1− x =

∑∞
n=0 x

n, replace x = 1 − y and this
leads to
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1
y

=
∞∑
n=0

(1− y)n.

iii. There is given that ‖ I − T ‖= α < 1, so

‖ x ‖= ‖ (I − T )(x) + T (x) ‖≤
‖ (I − T )(x) ‖ + ‖ T (x) ‖≤ α ‖ x ‖ + ‖ T (x) ‖ .

Therefore ‖ T (x) ‖≥ (1 − α) ‖ x ‖, T is bounded from below
and the result is that the operator T is invertible and
‖ T−1 ‖≤ (1− α)−1, see Theorem 7.10.

iv. Define the operator TN by

TN =
N∑
n=0

(I − T )n,

TN ∈ L(X,X) for eachN . SinceX is a Banach Space, BL(X,X)
is a Banach Space, see Theorem 7.8. If N > M then

‖ TN − TM ‖≤‖
N∑

n=M+1
(I − T )n ‖≤

N∑
n=M+1

‖ (I − T )n ‖≤

N∑
n=M+1

‖ (I − T ) ‖n≤
N∑

n=M+1
αn → 0,

if N,M → ∞. Therefore {TN}N∈N is a Cauchy sequence in
BL(X,X), so there exists some S ∈ BL(X,X) such that
‖ TN − S ‖→ 0 for N →∞.

v. It has to be shown that S = T−1. Let y ∈ X and
let x = S(y). There has to be shown that T (x) = y, or
equivalently (I − T )(x) = (x− y).
Let’s try to do:
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(I − T )(x) = (I − T )S(y) = (I − T )( lim
N→∞

TN )(y) =

(I − T )( lim
N→∞

N∑
n=0

(I − T )n)(y) = ( lim
N→∞

N∑
n=1

(I − T )n)(y) =

( lim
N→∞

N∑
n=0

(I − T )n)(y)− I(y) = S(y)− y = (x− y).

Therefore, S = T−1 ∈ BL(X,X).
�

Let (X, ‖ · ‖) be a Banach Space.

a. If A ∈ BL(X,X) and invertible and B ∈ BL(X,X), with
‖ A−1B ‖< 1, then A+B invertible.

b. The set IBL(X,X) of bounded invertible linear operators is
open in BL(X,X).

c. The inversion operator INV : A → A−1 is continuous on
BL(X,X) ∩ IBL(X,X).

Theorem 7.13

Proof of Theorem 7.13

The proofs of the different propositions.

a. Use Theorem 7.12 with T = I + (A−1B) then
(I − T ) = −A−1B : X → X and
‖ I−T ‖=‖ −A−1B ‖=‖ A−1B ‖< 1, so T−1 = (I+(A−1B))−1

exists and is given by

(I + (A−1B))−1 =
∞∑
n=0

(−1)n(A−1B)n

and (I + (A−1B))−1A−1 = (A(I + A−1B))−1 = (A+B)−1.
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b. Be careful: a bounded operator can be invertible, with a un-
bounded inverse operator, see Example 7.1.
Let A ∈ IBL(X,X) ∩ BL(X,X) then A−1 ∈ BL(X,X). Take
ε = 1
‖ A−1 ‖

and let B ∈ Bε(A) ⊂ IBL(X,X) then

B = (B − A) + A = A(I + A−1(B − A))

with ‖ A−1(B−A) ‖≤‖ A−1 ‖‖ (B−A) ‖< 1, soB is invertible,
see part ii.a.

c. Here to proof that the operator INV is continuous in A. The
operator A is invertible and it’s inverse A−1 is bounded. Given

is some 0 < ε <
‖ A−1 ‖

2 .

i. First the wrong version!

‖ INV (A)− INV (B) ‖=‖ A−1(A−B)B−1 ‖≤

‖ A−1 ‖‖ B−1 ‖‖ (A−B) ‖

The problem is to find a δ(ε) > 0, independent of ‖ B−1 ‖.

ii. Here the proper version. The parts ii.a and ii.b will be
used. Take B in Bδ(A) ⊂ (IBL(X,X)∩BL(X,X)), with

δ <
ε

3 ‖ A−1 ‖2
(< 1

6 ‖ A−1 ‖
),

then

‖ A−1(B − A) ‖≤‖ A−1 ‖‖ (B − A) ‖< ε

3 ‖ A−1 ‖
< 1,

so (I+A−1(B−A))−1 exists and ‖ INV (A)−INV (B) ‖=

‖ A−1 −B−1 ‖= ‖ A−1 − (B − A+ A)−1 ‖=

‖ A−1 − (A(A−1(B − A) + I))−1 ‖=

‖ A−1 − (I + A−1(B − A))−1A−1 ‖=

‖ (I −
∞∑
n=0

(−1)n(A−1(B − A))n)A−1 ‖=
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‖ (
∞∑
n=1

(−1)n(A−1(B − A))n)A−1 ‖≤

‖ A−1 ‖
∞∑
n=1
‖ A−1 ‖n‖ (B − A) ‖n≤

‖ A−1 ‖2 ε

3 ‖ A−1 ‖2
1

(1− ε

3 ‖ A−1 ‖
)
≤ ε

10 < ε.

�

7.5 Projection operators

For the concept of a projection operator, see section 3.10.1.

See theorem 3.22, y0 is called the projection of x on M , denoted by

PM : x → y0, or y0 = PM (x),

PM is called the projection operator on M , PM : X →M .

Definition 7.11

But if M is just a proper subset and not a linear subspace of some Inner
Product Space then the operator PM , as defined in 7.11, is not linear. To get
a linear projection operator M has to be a closed linear subspace of a Hilbert
Space H.
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Projection Theorem
If M is a closed linear subspace of a Hilbert Space H then

H = M ⊕ M⊥,

x = y + z.

Every x ∈ H has a unique representation as the sum of y ∈ M and z ∈ M⊥,
y and z are unique because of the direct sum of M and M⊥.

Theorem 7.14

Proof of Theorem 7.15

For the proof, see Theorem 3.25. �

Let T : X → Y be a linear operator and X and Y Normed Spaces, the
operator T is called idempotent, if T 2 = T , thus

T 2(x) = T (Tx) = T (x)

for every x ∈ X.

Definition 7.12

The projection operator PM maps

a. X onto M and

b. M onto itself

c. M⊥ onto {0}.
and is idempotent .

Remark 7.2
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The projection operator PM on M is idempotent, because PM (PM (x)) =
PM (y0) = y0 = PM (x), so (PMPM )(x) = PM (x).

Remark 7.3

0 PM(x)M

PM⊥(x) = (I − PM)(x)

x

Figure 7.4 Orthogonal projection on a subspace M .

The projection operator PM is called an orthogonal projection on M , see
figure 7.4, because the nullspace of PM is equal to M⊥ ( the orthogonal
complement of M) and PM is the identity operator on M . So every x ∈ H
can be written as

x = y + z = PM (x) + PM⊥(x) = PM (x) + (I − PM )(x).
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7.6 Adjoint operators

In first instance, it is the easiest way to introduce adjoint operators in the
setting of Hilbert Spaces, see page 89. But the concept of the adjoint operator
can also be defined in Normed Spaces.

If T : H → H is a bounded linear operator on a Hilbert Space H, then there
exists an unique operator T ∗ : H → H such that

(x, T ∗y) = (Tx, y) for all x, y ∈ H.

The operator T ∗ is linear and bounded, ‖ T ∗ ‖= ‖ T ‖ and (T ∗)∗ = T . The
operator T ∗ is called the adjoint of T .

Theorem 7.15

Proof of Theorem 7.15

The proof exists out of several steps. First the existence of such an operator
T ∗ and then the linearity, the uniqueness and all the other required properties.

a. Let y ∈ H be fixed. Then the functional defined by f(x) =
(Tx, y) is linear, easy to prove. The functional f is also bounded
since | f(x) |= | (Tx, y) |≤‖ T ‖ ‖ x ‖ ‖ y ‖. The Riesz repre-
sentation theorem, see theorem 3.29, gives that there exists an
unique element u ∈ H such that

(Tx, y) = (x, u) for all x ∈ H. (7.7)

The element y ∈ H is taken arbitrary. So there is a rule, given
y ∈ H, which defines an element u ∈ H. This rule is called the
operator T ∗, such that T ∗(y) = u, where u satisfies 7.7.

b. T ∗ satisfies (x, T ∗y) = (Tx, y), for all x, y ∈ H, by definition
and that is used to prove the linearity of T ∗. Take any x, y, z ∈ H
and any scalars α, β ∈ K then
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(x, T ∗(αy + βz)) = (T (x), αy + βz)
= α(T (x), y) + β(T (x), z)
= α(x, T ∗(y)) + β(x, T ∗(z))
= (x, αT ∗(y)) + (x, βT ∗(z))
= (x, αT ∗(y) + βT ∗(z))

If (x, u) = (x, v) for all x ∈ H then (x, u− v) = 0 for all x and
this implies that u − v = 0 ∈ H, or u = v. Using this result,
together with the results of above, it is easily deduced that

T ∗(αy + βz) = αT ∗(y) + βT ∗(z).

There is shown that T ∗ is a linear operator.

c. Let T ∗1 and T ∗s be both adjoints of the same operator T . Then
follows out of the definition that (x, (T ∗1 − T ∗2 )y) = 0 for all
x, y ∈ H. This means that (T ∗1 − T ∗2 )y = 0 ∈ H for all y ∈ H,
so T ∗1 = T ∗2 and the uniqueness is proved.

d. Since

(y, Tx) = (T ∗(y), x) for all x, y ∈ H,

it follows that (T ∗)∗ = T . Used is the symmetry ( or the con-
jugate symmmetry) of an inner product.

e. The last part of the proof is the boundedness and the norm of
T ∗.
The boundedness is easily achieved by

‖ T ∗(y) ‖2 = (T ∗(y), T ∗(y))
= (T (T ∗(y)), y)
≤‖ T (T ∗(y)) ‖ ‖ y ‖
≤‖ T ‖ ‖ T ∗(y) ‖ ‖ y ‖ .

So, if ‖ T ∗(y) ‖6= 0 there is obtained that

‖ T ∗(y) ‖≤‖ T ‖ ‖ y ‖,

which is also true when ‖ T ∗(y) ‖= 0. Hence T ∗ is bounded
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‖ T ∗ ‖≤‖ T ‖ . (7.8)

Formula 7.8 is true for every operator, so also for the operator
T ∗, what means that ‖ T ∗∗ ‖≤‖ T ∗ ‖ and T ∗∗ = T . Combining
the results of above results in ‖ T ∗ ‖=‖ T ‖.

�

If S is a subspace of a Hilbert space H then S⊥ is closed.

Lemma 7.1

Proof of Theorem 7.1

S⊥ is a linear subspace of H. Let {tn}n∈N be a sequence in S⊥ converging to
t0. An inner product is continuous, so for all s ∈ S,

(t0, s) = lim
n→∞

(tn, s) = 0,

so t0 ∈ S⊥. �

If T : H → H is a bounded linear operator on a Hilbert Space H, and T ∗ its
adjoint operator then:

a. N(T ) = (R(T ∗))⊥,

b. R(T ) = (N(T ∗)⊥.

Theorem 7.16

Proof of Theorem 7.16

The operators T and T ∗ are bounded, so the nullspaces N(T ) and N(T ∗) are
closed, see Theorem 7.4.
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a. If x ∈ N(T ) then 0 = (T (x), y) = (x, T ∗(y)) for every y ∈ H,
so x ∈ (R(T ∗))⊥.
If x ∈ (R(T ∗))⊥ then 0 = (x, T ∗(y)) = (T (x), y) for every
y ∈ H, that means that T (x) = 0, so x ∈ N(T ).

b. If y ∈ R(T ) and x ∈ H such that y = T (x). Let z∗ inN(T ∗)
then

(y, z) = (T (x), z) = (x, T ∗(z)) = 0,

so R(T ) ⊂ (N(T ∗)⊥. Since (N(T ∗)⊥ is closed, see Lemma 7.1,
there follows that

R(T ) ⊂ (N(T ∗))⊥.

If z ∈ R(T )⊥ then for all x ∈ H

(x, T ∗(z)) = (T (x), z) = 0,

so T ∗(z) = 0. This means that R(T )⊥ ⊂ N(T ∗). Take on both
sides the orthogonal complement and there follows that

(N(T ∗))⊥ ⊂ (R(T ))⊥⊥ = R(T ).

�

If T : H → H is a bounded linear operator on a Hilbert Space H then T is
said to be

a. self-adjoint if T ∗ = T ,

b. unitary , if T is bijective and if T ∗ = T−1,

c. normal if T T ∗ = T ∗ T .

Definition 7.13
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If T : H → H is a bounded self-adjoint linear operator on a Hilbert Space H
then

a. the eigenvalues of T are real, if they exist, and

b. the eigenvectors of T corresponding to the eigenvalues λ, µ,
with λ 6= µ, are orthogonal,

for eigenvalues and eigenvectors, see definition 7.4.

Theorem 7.17

Proof of Theorem 7.17

a. Let λ be an eigenvalue of T and x an corresponding eigenvector.
Then x 6= 0 and Tx = λx. The operator T is selfadjoint so

λ (x, x) = (λx, x) = (Tx, x) = (x, T ∗x)

= (x, Tx) = (x, λx) = λ (x, x).

Since x 6= 0 gives division by ‖ x ‖2 (6= 0) that λ = λ. Hence λ
is real.

b. T is self-adoint, so the eigenvalues λ an µ are real. If Tx = λx
and Ty = µ y, with x 6= 0 and y 6= 0, then

λ(x, y) = (λx, y) = (Tx, y) =
(x, Ty) = (x, µy) = µ(x, y).

Since λ 6= µ, it follows that (x, y) = 0, which means that x and
y are orthogonal.

�

7.7 Mapping Theorems
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In this chapter are given important theorems, sometimes called the fundamen-
tal theorems for operators. Most of the time this will be operators on Banach
Spaces, but the definition of certain kind of operators are given with respect
to Normed Spaces.
The idea was to start with the Closed Graph Theorem , but to prove that

theorem, the theorem of Baire’s Category Theorem is needed, evenso to

the proof of the Open Mapping Theorem . The Open Mapping Theorem
and the Closed Graph Theorem are said to be equivalent to the so-called
Bounded Inverse Theorem .
Another important theorem is the Banach-Steinhaus Theorem , also called
the Uniform Boundedness Principle . These theorems are of great impor-
tance within the functionanalysis.
The Baire’s Category Principle is also mentioned in Section 9.3. The proof
of one of the variants of Baire’s theorem will be given is this section. The
theorem will be defined for complete Metric Spaces and that declares also
the fact that the important theorems are often given with respect to Banach
Spaces.
The Ti-spaces, i = 0, · · · , 4, are also of importance, see for the definition of
these spaces Section 3.3.1.
A lot of interesting material can be found in the book of (Kuttler, 2009).
But first are given the definitions of a closed linear operator and an open map-
ping.

Let (X, ‖ · ‖1) and (Y, ‖ · ‖2) be normed spaces. Then the linear operator
T : D(T ) → Y is called a closed linear operator if its graph G(T ), see
definition 7.2, is closed in the normed space X ×Y . The norm on X ×Y is
defined by

‖ (x, y) ‖= ‖ x ‖1 + ‖ y ‖2 .

Definition 7.14

Let T : X → Y be a linear operator between Normed Spaces X and Y .
See theorem 2.7 for the fact that:
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T is continuous if and only if xn → x implies that T (xn)→ T (x). Nothing is
said about x and T (x).

Let T : X → Y be a linear operator between the normed spaces (X, ‖ · ‖1)
and (Y, ‖ · ‖2). G(T ) is closed if and only if the convergence of the sequences
{xn} ⊂ X and {T (xn)} ⊂ Y implies xn → x ∈ D(T ) and T (xn)→ y = T (x).

Theorem 7.18

Proof of Theorem 7.18

G(T ) is closed if and only if (x, y) ∈ G(T)⇒ (x, y) ∈ G(T ). With theorem 2.2
(x, y) = G(T) if and only if there exist (xn, T (xn)) ∈ G(T ) such that (xn, T (xn))→
(x, y), hence

xn → x, T (xn)→ y;

and (x, y) ∈ G(T ) if and only if x ∈ D(T ) and T (x) = y.
�

Boundedness does not imply closedness:
Let T : D(T ) → D(T ) ⊂ X be the identity operator on D(T ), where D(T )
is a proper dense subspace of a Normed Space X. Then it is trivial that T is
linear and bounded, but T is not closed. This follows from Theorem 7.18.
Take x ∈ X \ D(T ) and a sequence {xn} ⊂ D(T ) which converges to x.

Example 7.2
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Closedness does not imply boundedness:
Let X = C[0, 1], with norm ‖ x ‖= supt∈[0,1] |x(t)|, and T : D(T ) → X

and T (x) = d
dtx, with D(T ) the subspace of functions x ∈ X which have a

continuous derivative. It is worth noting that D(T ) is not closed in X.
The operator T is unbounded, take: xn(t) = tn with n ∈ N.
Let {xn} ⊂ D(T ) and {T (xn)} be such that both sequences converge,
xn → x and T (xn) = x

′
n → y. The convergence in the norm of C[0, 1]

is uniform, so from x
′
n → y, there follows that∫ t

0
y(τ)dτ =

∫ t

0
lim
n→∞

x
′
n(τ)dτ = lim

n→∞

∫ t

0
x
′
n(τ)dτ = x(t) − x(0).

That gives that x(t) = x(0) +
∫ t

0 y(τ)dτ , so x ∈ D(T ) and x′ = y,
Theorem 7.18 implies that T is closed.

Example 7.3

Let T : X → Y be a bijective linear operator between the normed spaces
(X, ‖ · ‖1) and (Y, ‖ · ‖2). If T is closed linear operator then T−1 is also a
closed linear operator.

Theorem 7.19

Proof of Theorem 7.19

Suppose that {yn}n∈N ⊂ Y such that yn → y and T−1(yn)→ x.
The question is, if T−1(y) = x.
T is bijective, so there exist a sequence {xn}n∈N ⊂ X, with xn → x, take
xn = T−1(yn) for n = 1, 2, · · ·. So xn → x and T (xn)→ y.
Since T is closed operator, the G(T ) is closed, so x ∈ X and y = T (x) ∈
D(T−1) and x = T−1(y).
�

Be careful in the use of the following theorem ??, the bounded operator is
defined on the whole space!
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Let T : X → Y be a linear operator between the normed spaces (X, ‖ · ‖1)
and (Y, ‖ · ‖2). If T is bounded then G(T ) is closed, so T is a closed.

Theorem 7.20

Proof of Theorem 7.20

Let xn → x in X then x ∈ X and
‖ T (xn) − T (x) ‖2≤‖ T ‖ ‖ xn − x ‖1→ 0.
�

Let (X, ‖ · ‖0) and (Y, ‖ · ‖1) be Normed Spaces. Let T : D(T ) → Y be a
bounded linear operator with D(T ) ⊂ X.
If D(T ) is a closed subset of X then T is closed.

Theorem 7.21

Proof of Theorem 7.21

If {xn}n∈N ⊂ D(T ) such that xn → x and is such that {T (xn)} also con-
verges. D(T ) is closed, so x ∈ D(T) = D(T ) and T (xn) → T (x), since T is
bounded. Hence T is closed by Theorem 7.18.
�

Let (X, ‖ · ‖0) be a Normed Space and (Y, ‖ · ‖1) a Banach Spaces. Let T be
a linear operator with D(T ) ⊂ X and R(T ) ⊂ Y . Suppose that T is closed
and continuous. Then D(T ) is closed.

Theorem 7.22

Proof of Theorem 7.22
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Suppose that x ∈ D(T ) then there exists a sequence {xn}n∈N ⊂ D(T )
such that xn → x. The sequence {T (xn)}n∈N is a Cauchy sequence since
‖ T (xn) − T (xm) ‖1≤‖ T ‖ ‖ xn − xm ‖0. So the sequence {T (xn)}n∈N has
some limit y ∈ Y . T is closed, so T (x) = y but then x ∈ D(T ).
�

Let (X, ‖ · ‖0) and (Y, ‖ · ‖1) be two Normed Spaces and T is some linear
operator, defined on its domain D(T ) ⊂ X.
The closure of an operator T : X → Y is the operator T , whose domain
and action are:

• D(T) := {x ∈ X | ∃y ∈ Y, such that for any sequence
{xn} ⊂ D(T )withxn → x, T (xn)→ y}

• T(x) := y for any x ∈ D(T).

Definition 7.15

Definition 7.15 is well-posed, because y is uniquely identified by x and D(T)
is a linear operator. Also D(T ) ⊂ D(T) and T(x) = T (x) for every x ∈ D(T ).

Let (X, d1) and (Y, d2) be metric spaces. Then the map T : D(T ) → Y is
called an open mapping if for every open set in D(T ) ⊂ X the image is an
open set in Y .

Definition 7.16

Do not confuse definition 7.16 with the property of an continuous map
T : D(T ) → R(T ) of which T−1(W ) is always open, for every open set
W ⊂ R(T ).
Take for instance f : x → sin (x) at the open interval (0, 2 π), here the im-
age is the closed interval [−1, +1].

Remark 7.4
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7.7.1 Baire’s Category Theorem

Baire made a great contribution to the functional analysis, nowadays known
as the Baire’s Category Theorem. It is first given with not too much mathe-
matical terms.

Baire’s Category Theorem
Let (X, d) be complete Metric Space and let (Fn)n≥1 be a sequence of closed
sets with empty interiors. Then the interior of ∪n≥1Fn is also empty.

Theorem 7.23

In other words, the Euclidean plane R2 can not be written as the union of
countably many straight lines.
The term (everywhere) dense is already defined in definition 2.2.

Let (X, d) be a Metric Space and let M ⊆ X be given.

1. M is nowhere dense or rare if X \M is dense in X.
2. M is meager or of first category in X, if it is the union of

countable many sets each of which is nowhere dense in X.
3. M is nonmeager or second category in X, if it is

not meager in X.

Definition 7.17

The next version of Baire’s Category Theorem comes from the book writ-
ten by (Limaye, 2008). This version gives the importance of the completeness
condition.
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Baire’s Category Theorem
Let (X, d) be a Metric Space.
Then the intersection of a finite number dense open subsets of X is dense in
X.
If X is complete, then the intersection of a countable number of dense open
subsets of X is dense in X.

Theorem 7.24

Proof of Theorem 7.24

Let D1, D2, · · · be dense open subsets of X, so Di = X for each i ∈ N.
For x0 ∈ X and r0 > 0, consider U0 = Br0(x0, d).
D1 is open and dense in X, let x1 ∈ (D1 ∩ U0).
D1 ∩ U0 is open in X, so there is some r1 > 0 such that
U1 = Br1(x1, d) ⊂ (D1 ∩ U0).
The construction of the sets Ui can be inductively repeated.
Suppose that Un−1 = Brn−1(xn−1, d) and Un = Brn(xn, d) are such that
Un ⊂ (Dn ∩ Un−1).
Dn+1 is open and dense in X, let xn+1 ∈ (Dn+1 ∩ Un).
Dn+1 ∩ Un is open in X, so there is some rn+1 > 0 such that
Un+1 = Brn+1(xn+1, d) ⊂ (Dn+1 ∩ Un).
So there are x1, x2, · · · in X and positive numbers r1, r2, · · · such that
Um = Brm(xm, d) ⊂ (Dm ∩ Um−1) for m = 1, 2 · · ·.
So it is clear that for some given n = 1, 2, · · ·, xn ∈ ((∩nm=1Dm) ∩ U0) 6= ∅.
x0 and r0 are arbitrary chosen, and so it becomes clear that (∩nm=1Dm) is
dense in X, exactly according to definition 2.2.

What in the case that X is complete? Just as above, a sequence {xm}m∈N
in X and a decreasing sequence of positive numbers {rm}m∈N can be found.
There can also be assumed that rm ≤

1
m

as well as Um ⊂ (Dm ∩ Um−1) for
m = 1, 2, · · ·.
Fix a positive number N .
If i, j ≥ N then follows for xi, xj ∈ UN = BrN (xN , d) that:

d(xi, xj) ≤ d(xi, xN ) + d(xN , xj) <
2
rN
≤ 2

N
.
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Hence the sequence {xm}m∈N is a Cauchy sequence in X. Since X is complete
the Cauchy sequence converges in X, let xm → x ∈ X.
But there is more to achieve. Since xn ∈ UN for all n ≥ N , it follows that
x ∈ UN .
Since UN ⊂ (DN ∩U0) for allN = 1, 2, · · ·, the result is that x ∈ ((∩∞N=1DN )∩
U0), so (∩∞N=1DN ) ∩ U0) 6= ∅.
And again, since x0 and r0 are arbitrary chosen, it becomes clear that (∩∞m=1Dm)
is dense in X.
�

Actually not the intention, but is interesting to define Baire Spaces and their
equivalent definitions.

Let (X, d) be a Metric Space.
X is called a Baire Space if and only if the intersection of any countable
number of dense open subsets of X is dense in X.

Definition 7.18

Let M ⊆ X be some set. The closure of M is denoted by M and the in-
terior of M is denoted by M◦.

A subset M is nowhere dense in the Metric Space (X, d)
if and only if (M)◦ = ∅.

Theorem 7.25

Proof of Theorem 7.25

(M)◦ = ∅ ⇐⇒ every open subset of X contains a point of X \M
⇐⇒ X \M is dense in X, see definition ii.1.
�
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The given definition of a Baire Space in definition 7.18 is equivalent with
one of the following conditions:

1. The interior of the union of any countable number of nowhere
dense closed subsets of X is empty.

2. When the union of any countable set of closed sets of X has
an interior point, then one of those closed sets must have an
interior point.

3. The union of any countable set of closed sets of X, whose interi-
ors are empty, also has an interior which is empty.

Theorem 7.26

Proof of Theorem 7.26

((1)⇐⇒(3)):
A subset M is nowhere dense in X if and only if the interior
of its closure is empty, see theorem 7.25. So (1) and (3) are
saying the same thing in different words.

((3)⇐⇒(2)):
Let {Un}n∈N be a countable set of closed sets in X and let U =⋃∞
m=1 Um.

((3)⇒(2))
Let (3) hold.
Suppose that Un◦ = ∅ for n = 1, 2, · · ·, by (3) follows that
U◦ = ∅. This contradicts the assumption in (2), the fact that
U◦ 6= ∅.

((3)⇐(2))
Let (2) hold.
Suppose that U◦ 6= ∅, by (2) follows that there is some n0 ∈ N
such that U◦n0 6= ∅. This contradicts the assumption in (3), the
fact that U◦n = ∅ for n = 1, 2, · · ·.

((definition 7.18)⇐⇒(3)):

((definition 7.18)⇒(3))
Let (definition 7.18) hold.
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Let {Un}n∈N be some arbitrary countable set of nowhere dense
closed sets in X, so U◦m = ∅ for every m ∈ N. There holds that:

U◦m = ∅ ⇐⇒ X \ U◦m = X ⇐⇒ X \ Um = X \ U◦m = X.

This means that X \Un is dense and by definition is X \Un open,
because Un is closed.
Define Vn = X \ Un with n = 1, 2 · · ·. The sets Vn, with
n = 1, 2 · · ·, are countable, dense and open. Consider ∩∞n=1Vn,
since (definition 7.18) holds

∞⋂
n=1

Vn = X ⇐⇒ X \ (
∞⋃
n=1

Un) = X ⇐⇒

X \ ((
∞⋃
n=1

Un)◦) = X ⇐⇒ (
∞⋃
n=1

Un)◦ = ∅

So the interior of
⋃∞
n=1 Un is empty in X, so (3) holds.

((definition 7.18)⇐(3))
Let (3) hold.
Let {Vn}n∈N be some arbitrary countable set of dense open sets
in X, so Vm = X for every m ∈ N. There holds that:

Vm = X ⇐⇒ X \ Vm = ∅ ⇐⇒ (X \ Vm)◦ = X \ Vm = ∅.

This means that X \ Vm is nowhere dense and by definition is
X \ Vm closed, because Vm is open.
Define Un = X \ Vn with n = 1, 2 · · ·. The sets Un, with
n = 1, 2 · · ·, are countable, nowhere dense and closed. Consider⋃∞
n=1 Un, since (3) holds

(
∞⋃
n=1

Un)◦ = ∅ ⇐⇒ (X \
∞⋂
n=1

Vn)◦ = ∅ ⇐⇒

X \ (
∞⋂
n=1

Vn) = ∅ ⇐⇒
∞⋂
n=1

Vn = X

So ∩∞n=1Vn is dense in X, so definition 7.18 holds.
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�

7.7.2 Closed Graph Theorem

The Closed Graph Theorem is an alternative way to check if a linear operator
is bounded. If a linear operator is bounded, will be characterised by its graph.
First some Lemma, which will be useful to construct an approximation with
elements out of some subset of the Vector Space X.

Let X be some Vector Space over K.
There are subsets U, V of X and k ∈ K such that U ⊂ V + k U .
Then for every x ∈ U , there exists a sequence {vi}i∈N in V such that

x − (v1 + k v2 + · · · + kn−1 vn) ∈ knU, n = 1, 2, · · · .

Lemma 7.2

Proof of Lemma 7.2

Let x ∈ U . There exists some v1 ∈ U such that (x − v1) ∈ kU , since there is
assumed that U ⊂ V + k U .
Assume that there are found v1, · · · , vn ∈ V with the property that there
exists some u ∈ U such that

x − (v1 + k v2 + · · · + kn−1 vn) = kn u.

Since U ⊂ V + k U , there exists some vn+1 ∈ V and some u0 ∈ U such that
(u − vn+1) = k u0, so u = vn+1 + k u0 and there follows that

x − (v1 + k v2 + · · · + kn−1 vn + kn vn+1) = kn+1 u0 ∈ kn+1 U.

In an inductive way there is obtained a sequence {vi}i∈N with the desired
property.
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�

The result of Lemma 7.2 will be used to prove the following theorem.

Closed Graph Theorem
Let (X, ‖ · ‖0) and (Y, ‖ · ‖1) be Banach Spaces and T : X → Y be a closed
linear operator. Then T is continuous.

Theorem 7.27

Proof of Theorem 7.27

Because of Theorem 7.2, it is enough to prove that T is bounded on X or
that T is bounded on some neighbourhood of 0 ∈ X, see Theorem 7.3.
For each n ∈ N, let

Vn = {x ∈ X |‖ T (x) ‖1≤ n}.

The question is, if some Vn contains a neighbourhood of 0 in X? There holds
that

X =
∞⋃
n=1

Vn =
∞⋃
n=1

Vn,

where Vn is the closure of Vn in X. This means that
∞⋂
n=1

(X \ Vn) = ∅.

Since (X, ‖ · ‖0) is a Banach Space, Theorem 7.26 gives that there exists
some p ∈ N, some x0 ∈ X and some δ > 0, such that Bδ(x0, ‖ · ‖0) ⊂ Vp.
What can be told about Bδ(0, ‖ · ‖0)?
If x ∈ X and ‖ x ‖0< δ then (x0 + x) ∈ Bδ(x0, ‖ · ‖0) ⊂ Vp. If {vn}n∈N
and {wn}n∈N are sequences in Vp such that vn → (x + x0) and wn → x0, then
(vn − wn)→ x. Since

‖ T (vn − wn) ‖1≤‖ T (vn) ‖1 + ‖ T (wn) ‖1≤ 2 p,

there holds that (vn − wn) ∈ V2p, thus x ∈ V2p. So Bδ(0, ‖ · ‖0) ⊂ V2p.
That means that given some η > 0 and some x ∈ Bδ(0, ‖ · ‖0), that there is
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some x1 ∈ V2p, such that ‖ x − x1 ‖0< η. Take η = α δ, with 0 < α < 1,
for instance α = 1

3 . Hence

Bδ(0, ‖ · ‖0) ⊂ V2p + α Bδ(0, ‖ · ‖0).

Use Lemma 7.2, take some x ∈ Bδ(0, ‖ · ‖0), let U = Bδ(0, ‖ · ‖0) and
V = V2p and k = α. Then there exists a sequence {vi}i∈N in V2p such that

x − (v1 + α v2 + · · · + αn−1vn) ∈ αnBδ(0, ‖ · ‖0)

for n = 1, 2 · · · . Let

wn = v1 + α v2 + · · · + αn−1vn

with n = 1, 2 · · · . Since ‖ x − wn ‖0< αn δ, it follows that wn → x in X.
Let n > m then

‖ T (wn)−T (wm) ‖1 = ‖ T (
n∑

i=(m+1)
α(i−1)vi) ‖1≤

n∑
m+1

α(i−1) ‖ T (vi) ‖1≤
αm

1 − α
2p.

Hence {T (vn)}n∈N is a Cauchy sequence in the Banach Space (Y, ‖ · ‖1), so
{T (vn)}n∈N converges in (Y, ‖ · ‖1). T is a closed map, so T (wn) → T (x) in
(Y, ‖ · ‖1). Let m = 0 and w0 = 0 then ‖ T (wn) ‖1≤

1
1 − α

2p. Hence

‖ T (x) ‖1 = lim
n→∞

‖ T (wn) ‖1≤
1

1 − α
2p,

x is an arbitrary element out of Bδ(0, ‖ · ‖0), α = 1
3 so Bδ(0, ‖ · ‖0) ⊂ V3p.

Thus the linear map T is bounded on the neighbourhood Bδ(0, ‖ · ‖0) of 0.
�

It is of interest to mention, that in the proof of Theorem 7.27, are used the
facts, that the spaces (X, ‖ · ‖0) and (Y, ‖ · ‖1) are Banach Spaces and that the
operator T is a closed operator. The Banach Space (X, ‖ · ‖0) is of importance
to use Theorem 7.24, the theorem of Baire. The Banach Space (Y, ‖ · ‖1)
is of importance to get convergence of a constructed Cauchy sequence. The
closedness of the operator is of importance to get information about the limit
of the constructed Cauchy sequence in (Y, ‖ · ‖1).

7.7.3 Open Mapping Theorem



256

The proof of the following Lemma 7.3 and the proof of
the Closed Graph Theorem 7.27 have much in common.

Let (X, ‖ · ‖0) and (Y, ‖ · ‖1) be Banach Spaces. Let T : X → Y be a
bounded linear operator from X onto Y . The image of the open unit ball
B0 = B1(0, ‖ · ‖0) ⊂ X contains an open ball about 0 ∈ Y .

Lemma 7.3

Proof of Lemma 7.3

Define Bn = B2−n(0, ‖ · ‖0) ⊂ X, with n = 1, 2, · · ·.
Let’s try to do the proof stepwise:

a. T (B1) contains an open ball Bε(0, ‖ · ‖1);
b. T (Bn) contains an open ball Wn about 0 ∈ Y ;
c. T (B0) contains an open ball about 0 ∈ Y .
Let’s start with step ii.a:
Look at the open ball B1 ⊂ X. Take some fixed x ∈ X and some integer
k > 2 ‖ x ‖0, then x ∈ k B1, so

X =
∞∑
k=1

k B1.

The linear operator T is surjective, so

Y = T (X) = T (
∞∑
k=1

k B1) =
∞∑
k=1

k T (B1).

Since Y is complete, it is also closed, so

Y =
∞∑
k=1

k T (B1).

And now the use of theorem 7.26.
Note that in the Closed Graph Theorem, the mentioned theorem was used in
D(T ) = X, the domain of the operator T , here that same theorem is used
at the R(T ) = Y , the range of the operator T . Since Y is complete, there is
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some p ∈ N, some y0 ∈ Y and some δ > 0, such that Bδ(y0, ‖ · ‖1) ⊂ p T (B1).
This implies that T (B1) contains an open ball, Bε(

y0
p
, ‖ · ‖1) ⊂ T (B1) with

0 < ε <
δ

p
. And there follows that

Bε(
y0
p
, ‖ · ‖1) − y0

p
= Bε(0, ‖ · ‖1) ⊂ (T (B1) − y0

p
). (7.9)

Let’s try to do step ii.b:
Let y ∈ (T (B1) − y0

p
) then (y0

p
+ y) ∈ T (B1). There is already known that

y0
p
∈ T (B1). Because T (B1) is closed, there are sequences {un}n∈N ⊂ T (B1)

and {vn}n∈N ⊂ T (B1) such that un → (y0
p

+ y) and vn → (y0
p

) in Y . Since T

is surjective, there are sequence {wn}n∈N ⊂ B1 and {zn}n∈N ⊂ B1 such that
un = T (wn) and vn = T (zn) for all n ∈ N.
Since wn, zn ∈ B1 there follows that

‖ wn − zn ‖0≤‖ wn − zn ‖0 + ‖ wn − zn ‖0<
1
2 + 1

2 = 1,

such that (wn − zn) ∈ B0. There is easily seen that

T (wn − zn) = T (wn) − T (zn) → y ∈ T (B0),

such that

(T (B1) − y0
p

) ⊂ T (B0). (7.10)

The formulas 7.9 and 7.10 gives a result that

Bε(
y0
p
, ‖ · ‖1) − y0

p
= Bε(0, ‖ · ‖1) ⊂ T (B0)

Since the operator T is linear, so T (Bn) = 2−nT (B0),
and that gives as result that

Wn = B(2−n ε)(0, ‖ · ‖1) ⊂ T (Bn). (7.11)

The final step ii.c:
The completeness of the space Y is already used, but the completeness of X
not.
Let’s try to prove that

W1 ⊂ T (B0).
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Let y ∈ W1, from 7.11, with n = 1, follows that W1 ⊂ T (B1). Since T (B1)
is closed, there exists a w ∈ T (B1) such that ‖ y − w ‖1<

ε

4 . The operator
T is surjective, so there is some x1 ∈ B1 with w = T (x1), hence

‖ y − T (x1) ‖1<
ε

4 . (7.12)

From 7.12, with n = 2, follows that y − T (x1) ∈ W2 ⊂ T (B2). As before
there exists some x2 ∈ B2, such that

‖ (y − T (x1)) − T (x2) ‖1<
ε

23 ,

hence y − (T (x1) + T (x2)) ∈ W3 ⊂ T (B3).
In the nth step follows the existence of some xn ∈ Bn, such that

‖ (y −
n∑
i=1

T (xi) ‖1<
ε

2(n+1) , (7.13)

n = 1, 2, · · ·.
Look at the sequence {zn}n∈N, with zn = x1 + · · · + xn ∈ X, with xi ∈ Bi,
what means that ‖ xi ‖0< 2−i. This sequence is a Cauchy sequence, because
for n > m,

‖ zn − zm ‖0≤
n∑

i=(m+1)
‖ xi ‖0<

n∑
i=(m+1)

1
2i <

2
2(m+1) → 0,

as m→∞. X is complete, this means that the constructed sequence {zn}n∈N
converges to an element x ∈ X, so zn → x for n→∞. It is easily seen that

∞∑
i=1
‖ xi ‖0<

∞∑
i=1

1
2i = 1

and that means that x ∈ B0. The linear operator T is continuous, because it
is bounded, and that gives that T (zn)→ T (x) in Y . Out of 7.13 follows that
T (x) = y and that means that y ∈ T (B0).
Because y ∈ W1 was arbitrary, the desired result is obtained:

W1 ⊂ T (B0).

�
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Open Mapping Theorem
Let (X, ‖ · ‖0) and (Y, ‖ · ‖1) be Banach Spaces and T : X → Y be a
bounded linear operator onto Y . Then T is an open mapping.

Theorem 7.28

Proof of Theorem 7.28

There has to be shown that for every open set A ⊂ X, the image T (A) is open
in Y . There has to be shown that for every y = T (x) ∈ T (A), the set T (A)
contains an open ball about y = T (x).
In Lemma 7.3 is only proved, that the image of the open unit ball in X
contains an open ball around 0 ∈ Y . May be there can something be done by
shifting elements to the origin and by the use of scaling?
Let A be some open subset of X and take some arbitrary y = T (x) ∈ T (A).
The existence of x ∈ A is no problem because the operator T is surjective.
Since A is open, the set A contains an open ball around x. That means that
set A − x contains an open set around 0 ∈ X and hence an open ball with
center 0 ∈ X.
Let r be the radius of that open ball, then 1

r
(A − x) contains the open unit

ball B1(0, ‖ · ‖0) ⊂ X.
Known is that T (1

r
(A − x)) = 1

r
T (A − x), so with the use of Lemma 7.3,

that the set r−1T (A − x) contains an open ball around 0 ∈ Y , and so also the
set T (A − x) = T (A) − T (x). But this means that the set T (A) contains an
open ball around T (x) = y. y was arbitrary, so the set T (A) is open.
�

7.7.4 Bounded Inverse Theorem
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Bounded Inverse Theorem
Let (X, ‖ · ‖0) and (Y, ‖ · ‖1) be Banach Spaces. If T : X → Y is a bijective
bounded linear operator, then T−1 : Y → X is a bounded linear operator.

Theorem 7.29

Proof of Theorem 7.29

The operator T−1 is linear, see Theorem 7.9, part ii.b. Since T is bounded,
it is also a closed operator, see Theorem 7.20. And so the operator T−1 is
also a closed operator, see Theorem 7.19. Since Y and X are Banach Spaces,
the Closed Graph Theorem (Theorem 7.27) implies that T−1 is bounded.
�

7.8 Completely Continuous and Compact Linear Maps

In this section there will be tried to generalize several properties of linear
transformations between finite dimensional spaces to linear transformations
between infinite dimensional spaces.

Let X and Y be two Linear Spaces. A linear map T : X → Y is called of
finite rank if the range of T is finite dimensional, so dim(R(T )) < ∞.

Definition 7.19
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Let X and Y be two Normed Spaces. A map T : X → Y is called
completely continuous if the image of all weakly convergent sequences in
X are convergent in norm in Y .

Definition 7.20

Let X and Y be two Normed Spaces. A map T : X → Y is called
compact if the image of every bounded set in X is precompact in Y .

Definition 7.21
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In this chapter it is the intention to make clear why certain concepts are used.

8.1 Total and separable

First of all linear combinations, it is important to note that linear combi-
nations are always finite. That means that if there is looked at the span
of {1, t1, t2, · · · , tn, · · ·} that a linear combination is of the form pn(t) =∑n

i=0 ai t
i with n finite.

That’s also the reason that for instance exp t is written as the limit of finite
sums

exp (t) = lim
n→∞

n∑
i=1

ti

i! ,

see figure 8.1.

Figure 8.1 Taylor Series of exp (t)
with N = 4.

Let’s assume that t ∈ [−1, +1] and define the inner product

(f, g) =
∫ 1

−1
f(t) g(t) dt (8.1)
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with f, g ∈ C[−1,+1], the continuous functions on the interval [−1,+1].
It is of importance to note that the finite sums are polynomials. And these
finite sums are elements of the space P [−1,+1], equipped with the ‖ ‖̇∞-norm,
see paragraph 5.1.1. So exp (t) is not a polynomial, but can be approximated
by polynomials. In certain sense, there can be said that exp (t) ∈ P [−1,+1]
the closure of the space of all polynomials at the interval [−1,+1],

lim
n→∞

‖ exp (t) −
n∑
i=1

ti

i! ‖∞= 0.

Be careful, look for instance to the sequence { | tn | }n∈N. The pointwise limit
of this sequence is

f : t→
{ 1 if t = −1

0 if −1 < t < +1
1 if t = +1,

so f /∈ C[−1,+1] and P [−1,+1] 6= C[−1,+1].
Using the sup-norm gives that

lim
n→∞

‖ f(t) − tn ‖∞= 1 6= 0.

Someone comes with the idea to write exp (t) not in powers of t but as a
summation of cos and sin functions. But how to calculate the coefficients
before the cos and sin functions and which cos and sin functions?
Just for the fun

(sin (a t), sin (b t)) = (b + a) sin (b− a) − (b − a) sin (b+ a)
(b + a) (b − a) ,

(sin (a t), sin (a t)) = 2 a − sin 2 a
2 a ,

(cos (a t), cos (b t)) = (b + a) sin (b− a) + (b − a) sin (b+ a)
(b + a) (b − a) ,

(cos (a t), cos (a t)) = 2 a + sin 2 a
2 a ,

with a, b ∈ R. A span {1, sin (a t), cos (b t)}a,b∈R is uncountable, a linear com-
bination can be written in the form

a0 +
∑
α∈Λ

(aα sin (α t) + bα cos (α t)),

with Λ ⊂ R. Λ can be some interval of R, so may be the set of α’s is uncount-
able. It looks a system that is not nice to work with.
But with a = nπ and b = mπ with n 6= m and n,m ∈ N then
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(sin (a t), sin (b t)) = 0,
(sin (a t), sin (a t)) = 1,
(cos (a t), cos (b t)) = 0,
(cos (a t), cos (a t)) = 1,

that looks a nice orthonormal system.
Let’s examine the span of

{ 1√
2
, sin (π t), cos (π t), sin (2 π t), cos (2π t), · · ·}. (8.2)

A linear combination out of the given span has the following form

a0√
2

+
N0∑
n=1

(an sin (nπ t) + bn cos (nπ t))

with N0 ∈ N. The linear combination can be written on such a nice way,
because the elements out of the given span are countable.

Orthonormal sets versus arbitrary linear independent sets.
Assume that some given x in an Inner Product Space (X, (·, ·)) has to repre-
sented by an orthonormal set {en}.

1. If x ∈ span({e1, e2, · · · , en}) then x =
∑n

i=1 ai ei. The Fourier-
coefficients are relative easy to calculate by ai = (x, ei).

2. Adding an element extra to the span for instance en+1 is not a
problem. The coefficients ai remain unchanged for 1 ≤ i ≤ n,
since the orthogonality of en+1 with respect to {e1, · · · , en}.

3. If x /∈ span({e1, e2, · · · , en}), set y =
∑n

i=1 ai ei then (x − y) ⊥
y and ‖ y ‖≤‖ x ‖.

Remark 8.1

The Fourier-coefficients of the function exp(t) with respect to the given or-
thonormal base 8.2 are
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a0 = (1/
√

2, exp (t)) =
(e− (1

e
))

√
2

,

an = (exp (t), sin (nπ t) = [exp (t)(sin (nπ t) − π n cos (nπ t))
((nπ)2 + 1) ]1−1 = −π n (−1)n

((nπ)2 + 1) (e− (1
e

)),

bn = (exp (t), cos (nπ t) = [exp (t)(cos (nπ t) + π n sin (nπ t))
((nπ)2 + 1) ]1−1 = (−1)n

((nπ)2 + 1) (e− (1
e

)),

for n = 1, 2, · · ·. See also figure 8.2, there is drawn the function

gN (t) = a0
2 +

N∑
k=1

(ak sin (k π t) + bk cos (k π t)) (8.3)

with N = 40 and the function exp (t), for −1 ≤ t ≤ 1.

Figure 8.2 Fourier Series of exp (t)
with N = 40.

Instead of the Fourier Series, the Legendre polynomials can also be used to
approximate the function exp (t). The following Legendre polynomials are
an orthonormal sequence, with respect to the same inner product as used to
calculate the Fourier Series, see 8.1. The first five Legendre polynomials are
given by
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P0(t) = 1√
2
,

P1(t) = t

√
3
2 ,

P2(t) = (3 t2 − 1)
2

√
5
2 ,

P3(t) = (5 t3 − 3 t)
2

√
7
2 ,

P4(t) = (35 t4 − 30 t2 + 3)
8

√
9
2 .

To get an idea of the approximation of exp (t), see figure 8.3.

Figure 8.3 Legendre approximation
of exp (t) with N = 4.

From these three examples the Fourier Series has a strange behaviour near
t = −1 and t = 1. Using the ‖ · ‖∞-norm then the Fourier Series doesn’t
approximate the function exp (t) very well. But there is used an inner product
and to say something about the approximation, the norm induced by that
inner product is used. The inner product is defined by an integral and such
an integral can hide points, which are bad approximated. Bad approximated
in the sense of a pointwise limit. Define the function g, with the help of the
functions gN , see 8.3, as
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g(t) := lim
N→∞

gN (t)

for −1 ≤ t ≤ +1. Then g(−1) = (exp (−1) + exp (1))
2 = g(1), so g(−1) 6=

exp (−1) and g(1) 6= exp (1), the functions exp (t) and g(t) are pointwise not
equal. For −1 < t < +1, the functions g(t) and exp (t) are equal, but if you
want to approximate function values near t = −1 or t = +1 of exp (t) with
the function gN (t), N has to be taken very high to achieve a certain accuracy.
The function g(t) − exp (t) can be defined by

g(t) − exp (t) =


(− exp (−1) + exp (1))

2 for t = −1
0 for −1 < t < +1
(exp (−1)− exp (1))

2 for t = +1.

It is easily seen that ‖ g(t) − exp (t) ‖∞ 6= 0 and (g(t) − exp (t), g(t) −
exp (t)) = ‖ g(t) − exp (t) ‖22 = 0. A rightful question would be, how that
inner product is calculated? What to do, if there were more of such disconti-
nuities as seen in the function g(t) − exp (t), for instance inside the interval
(−1,+1)? Using the Lebesgue integration solves many problems, see sec-
tions 5.1.6 and 5.1.5.
Given some subset M of a Normed Space X, the question becomes if with
the span(M) every element in the space X can be descibed or can be approx-
imated. So if for every element in X there can be found a sequence of linear
combinations out of M converging to that particular element? If that is the
case M is total in X, or span(M) = X. In the text above are given some
examples of sets, such that elements out of L2[−1, 1] can be approximated.
Their span is dense in L2[−1, 1].
It is also very special that the examples, which are given, are countable.
Still are written countable series, which approximate some element out of
the Normed Space L2[−1, 1]. If there exists a countable set, which is dense in
X, then X is called separable.
Also is seen that the norm plays an important rule to describe an approxima-
tion.

8.2 Part ii.1 in the proof of Theorem 5.12, (P(N) ∼ R)

The map

f : x → tan (π2 (2x − 1)) (8.4)
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is a one-to-one and onto map of the open interval (0, 1) to the real numbers
R.
If y ∈ (0, 1) then y can be written in a binary representation

y =
∞∑
i=1

ηi
2i

with ηi = 1 or ηi = 0.
There is a problem, because one number can have several representations.
For instance, the binary representation (0, 1, 0, 0 · · ·) and (0, 0, 1, 1, 1, · · ·) both
represent the fraction 1

4 . And in the decimal system, the number 0.0999999 · · ·
represents the number 0.1.
To avoid these double representation in the binary representation, there will
only be looked at sequences without infinitely repeating ones.
Because of the fact that these double representations are avoided, it is possible
to define a map g of the binary representation to P(N) by

g((z1, z2, z3, z4, · · · , zi, · · ·)) = {i ∈ N | zi = 1}.

for instance g((0, 1, 1, 1, 0, 1, 0, · · ·)) = {2, 3, 4, 6} and g((0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, · · ·)) =
{2, 4, 6, 8, 10, · · ·} (the even numbers).
So it is possible to define a map

h : R→ P(N).

The map h is one-to-one but not onto, since the elimination of the infinitely
repeating ones.
So there can also be defined an one-to-one map8

k : P(N)→ (0, 1),

by

k(S) = 0.n1n2n3n4 · · ·ni · · · where
{
ni = 7 if i ∈ S,
ni = 3 if i /∈ S.

The double representations with zeros and nines are avoided, for instance
k({2, 3, 4, 7}) = 0.37773373333333. With the map f , see 8.4, there can be
defined an one-to-one map of P(N) to R.
With the theorem of Bernstein-Schröder, see the website wiki-Bernstein-Schroeder,
there can be proved that there exists a bijective map between R and P(N),

To the open interval (0, 1) ⊂ R.8

http://en.wikipedia.org/wiki/Cantor-Bernstein-Schroeder_theorem
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sometimes also written as R ∼ P(N).
The real numbers are uncountable, but every real number can be represented
by a countable sequence!

8.3 Part ii.7 in the proof of Theorem 5.12, (σ-algebra and measure)

A measure, see Definition 8.2 is not defined on all subsets of a set Ω, but on
a certain collection of subsets of Ω. That collection Σ is a subset of the power
set P(Ω) of Ω and is called a σ-algebra.

A σ-algebra Σ satisfies the following:

σA 1: Ω ∈ Σ.

σA 2: If M ∈ Σ then M c ∈ Σ, with M c = Ω \M , the complement of M
with respect to Ω.

σA 3: If Mi ∈ Σ with i = 1, 2, 3, · · ·, then
∞
∪
i=1
Mi ∈ Σ.

Definition 8.1

A σ-algebra is not a topology, see Definition 3.14. Compare for instance
TS 3 with σA ii: 3. In TS 3 is spoken about union of an arbitrary collection
of sets out of the topology and in σA ii: 3 is spoken about a countable union
of subsets out of the σ-algebra.
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Some remarks on σ-algebras:

1. By σA ii: 1: Ω ∈ Σ, so by σA ii: 2: ∅ ∈ Σ.

2. ∩∞i=1Mi = (
∞
∪
i=1
M c
i )c, so countable intersections are in Σ.

3. If A,B ∈ Σ⇒ A \B ∈ Σ. (A \B = A ∩Bc)

Remark 8.2

The pair (Ω,Σ) is called a measurable space . A set A ∈ Σ is called a

measurable set . A measure is defined by the following definition.

A measure µ on (Ω,Σ) is a function to the extended interval [0,∞], so µ :
Σ→ [0,∞] and satisfies the following properties:

1. µ(∅) = 0.

2. µ is countable additive or σ-additive, that means that for a
countable sequence {Mn}n of disjoint elements out of Σ

µ(∪
n
Mn) =

∑
n

µ(Mn).

Definition 8.2

The triplet (Ω,Σ, µ) is called a measure space .
An outer measure need not to satisfy the condition of σ-additivity, but is
σ-subadditive on P(X).
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An outer measure µ∗ on (Ω,Σ) is a function to the extended interval [0,∞],
so µ∗ : Σ→ [0,∞] and satisfies the following properties:

1. µ∗(∅) = 0.

2. µ∗(A) ≤ µ∗(B) if A ⊆ B; µ∗ is called monotone.

3. µ∗(
∞
∪
i=1
Ai) ≤

∑∞
i=1 µ

∗(Ai) for every sequence {Ai} of subsets in
Ω; µ∗ is σ-subadditive,

Definition 8.3

see (Aliprantis and Burkinshaw, 1998, see here).
If F is a collection of subsets of a set Ω containing the empty set and let
µ : F → [0,∞] be a set function such that µ(∅) = 0. For every subset A of Ω
the outer measure generated by the set function µ is defined by

µ∗(A) = inf{
∞∑
i=1

µ(Ai) | {Ai} a sequence of F with A ⊆
∞
∪
i=1
Ai}.

Definition 8.4

With the outer-measure, relations can be defined which hold almost everywhere .
Almost everywhere is abbreviated by a.e. and for the measurable space (Ω,Σ, µ)
are here some examples of a.e. relations which can be defined:

1. f = g a.e. if µ∗{x ∈ Ω | f(x) 6= g(x)} = 0.
2. f ≥ g a.e. if µ∗{x ∈ Ω | f(x) < g(x)} = 0.
3. fn → g a.e. if µ∗{x ∈ Ω | fn(x) 9 g(x)} = 0.
4. fn ↑ g a.e. if fn ≤ fn+1 a.e. for all n and fn → g a.e.
5. fn ↓ g a.e. if fn ≥ fn+1 a.e. for all n and fn → g a.e.
A σ-algebra B on the real numbers R can be generated by all kind of intervals,
for instance [a,∞), (−∞, a), (a, b), or [a, b] with a ∈ R.
Important is to use the rules as defined inDefinition 8.1 and see alsoRemark 8.2.
Starting with [a,∞) ∈ B then also [a,∞)c = (−∞, a) ∈ B. With that result
it is easy to see that [a, b) = [a,∞) ∩ (−∞, b) ∈ B. Assume that a < b, then
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evenso [a, b] ∈ B because [a, b] = ∩∞n=1[a, b + 1
n) = ((−∞, a) ∪ (b,∞))c ∈ B,

(a, b) = ((−∞, a]∪ [b,∞))c ∈ B and also {a} = ∩∞n=1([a,∞)∩ (−∞, a+ 1
n)) =

((−∞, a) ∪ (a,∞))c ∈ B
The same σ-algebra can also be generated by the open sets (a, b). Mem-
bers of a σ-algebra generated by the open sets of a topological space are
called Borel sets . The σ-algebra generated by open sets is also called a
Borel σ-algebra .
The Borel σ-algebra on R equals the smallest family B that contains all open
subsets of R and that is closed under countable intersections and countable
disjoint unions. More information about Borel sets and Borel σ-algebras can
be found in (Srivastava, 1998, see here).
Further the definition of a σ-measurable function .

Let the pair (Ω,Σ) be a measurable space, the function
f : Ω→ R is called σ-measurable, if for each Borel subset B of R:

f−1(B) ∈ Σ.

Definition 8.5

Using Definition 8.5, the function
f : Ω → R is σ-measurable, if f−1([a,∞)) ∈ Σ for each a ∈ R or if
f−1((−∞, a])) ∈ Σ for each a ∈ R.

If f, g : Ω→ R are σ-measurable, then the set

{x ∈ Ω | f(x) ≥ g(x)}

is σ-measurable.

Theorem 8.1

Proof of Theorem 8.1

Let r1, r2, · · · be an enumeration of the rational numbers of R, then
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{x ∈ Ω | f(x) ≥ g(x)}

=
∞
∪
i=1

(
{x ∈ Ω | f(x) ≥ ri } ∩ {x ∈ Ω | g(x) ≤ ri }

)
=
∞
∪
i=1

(
f−1([ri,∞)) ∩ g−1((−∞, ri])

)
,

which is σ-measurable, because it is a countable union of σ-measurable sets.
�

8.4 Discrete measure

Let Ω be a non empty set and P(Ω) the family of all the subsets of Ω, the power
set of Ω. Choose a finite or at most countable subset I of Ω and a sequence of
strictly positive real numbers {αi | i ∈ I}. Consider µ : P(Ω)→ {[0,∞) ∪∞}
defined by µ(A) =

∑
i∈I αiχA(i), where

χA(i) = χ{i∈A} =
{ 1 if i ∈ A,

0 zero otherwise. (8.5)

χ is called the indicator function of the set A.
By definition µ(∅) = 0 and µ is σ-additive , what means that if A =

∞
∪
i=1
Ai

with
Ai ∩ Aj = ∅ for any i 6= j, then µ(A) =

∑∞
i=1 µ(Ai).

To define µ the values are needed of µ({i}) for any i in the finite or countable
set I.

8.5 Development of proof of Morrison
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First of all, Morrison takes some set Ω and not especially P(N), the power set
of the natural numbers. A lot of information about the measure theory has
been found at the webpages of Coleman and Sattinger and in the books of
(Pugachev and Sinitsyn, 1999), (Rana, 2004), (Swartz, 1994) and (Yeh, 2006,
see here).

Step 1:
The first step is to proof that the linear space of bounded functions f :
Ω → R, which are σ-measurable, denoted by B(Ω,Σ), is a Banach Space.
The norm for each f ∈ B(Ω,Σ) is defined by ‖ f ‖∞= sup{|f(ω)| | ω ∈ Ω}.
The spaceB(Ω) equiped with the ‖ · ‖∞ is a Banach Space, see Theorem 5.1.9.
In fact it is enough to prove that B(Ω,Σ) is a closed linear subspace of B(Ω),
see Theorem 3.12.
If f, g are bounded on Ω then the functions f + g and α f , with α ∈ R, are
also bounded, because B(Ω) is a linear space, and B(Ω,Σ) ⊆ B(Ω). The
question becomes, if the functions (f + g) and (α f) are σ-measurable?

If f, g are σ-measurable functions and α ∈ R then is

1. f + g is σ-measurable and

2. α f is σ-measurable.

Theorem 8.2

Proof of Theorem 8.2

Let c ∈ R be a constant, then the function (g− c) is σ-measurable, because
(g − c)−1([a,∞)) = {x ∈ Ω | g(x)− c ≥ a} = {x ∈ Ω | g(x) ≥ a+ c} ∈ Σ.
If a ∈ R then

(f + g)−1([a,∞)) = {x ∈ Ω | f(x) + g(x) ≥ a} = {x ∈ Ω | f(x) ≥ a− g(x)}

is σ-measurable, with the remark just made and Theorem 8.1.
If a, α ∈ R and α > 0 then

(αf)−1([a,∞)) = {x ∈ Ω | αf(x) ≥ a} = {x ∈ Ω | f(x) ≥ a

α
}

is σ-measurable, evenso for the case that α < 0.
If α = 0 then 0−1([a,∞)) = ∅ or 0−1([a,∞)) = Ω, this depends on the sign

http://www.maths.manchester.ac.uk/~mdc/old/341/MeasureTheory.html
http://www.math.usu.edu/~dhs/
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of a, in all cases elements of Σ, so (αf) is σ-measurable. �

Use Theorem 8.2 and there is proved that B(Ω,Σ) is a linear subspace of
B(Ω). But now the question, if B(Ω,Σ) is a closed subspace of B(Ω)?

Let {fn}n∈N be a sequence of measurable functions, and limn→∞ fn = f
a.e. then is f a measurable function.

Theorem 8.3

Proof of Theorem 8.3

Since limn→∞ fn = f a.e., the set A = {x ∈ Ω | limn9∞ fn(x) 6= f(x)} has
outer measure zero, so µ∗(A) = 0. The set A is measurable and hence Ac is
measurable set.
Important is that

f−1((a,∞)) =
(
A ∩ f−1((a,∞))

)
∪
(
Ac ∩ f−1((a,∞))

)
,

if both sets are measurable, then is f−1((a,∞)) measurable.
The set A ∩ f−1((a,∞)) is measurable, because it is a subset of a set of
measure zero. Further is

Ac ∩ f−1((a,∞)) = Ac ∩
( ∞
∪
n=1

( ∞
∩
i=n

f−1
i ((a+ 1

n
,∞))

))
since the functions fi are measurable, the set Ac∩f−1((a,∞)) is measurable.
�

The question remains if the limit of a sequence of Σ-measurable functions
is also Σ-measurable? What is the relation between the outer measure and
a σ-algebra? See (Melrose, 2004, page 10) or (Swartz, 1994, page 37), there
is proved that the collection of µ∗-measurabe sets for any outer measure is
a σ-algebra.

Hence (B(Ω,Σ), ‖ · ‖∞) is a closed subspace of the Banach Space (B(Ω), ‖
· ‖∞), so (B(Ω,Σ), ‖ · ‖∞) is a Banach Space.

Step 2:
The next step is to investigate ba(Σ) , the linear space of finitely additive,
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bounded set functions µ : Σ → R, see also (Dunford and Schwartz, 8 71,
IV.2.15).
Linearity is meant with the usual operations. Besides finitely additive set functions ,

there are also countably additive set functions or σ-additive set functions .

Let {Ai}i∈N be a countable set of pairwise disjoint sets in Σ, i.e. Ai∩Aj =
∅ for i 6= j with i, j ∈ N.

1. A set function µ : Σ → R is called countably additive (or σ-additive)
if

µ(
∞
∪
i=1
Ai) =

∞
∪
i=1
µ(Ai).

2. A set function µ : Σ→ R is called finitely additive if

µ(
N
∪
i=1
Ai) =

N
∪
i=1
µ(Ai),

for every finite N ∈ N.

Definition 8.6

If there is spoken about bounded set functions , there is also some norm.
Here is taken the so-called variational norm .

The variational norm of any µ ∈ ba(Σ) is defined by

‖ µ ‖vn = sup
{ n∑
i=1
|µ(Ai)|

∣∣∣n ∈ N, A1, · · · , An

are pairewise disjoint members ofΣ
}
,

the supremum is taken over all partitions of Ω into a finite number of dis-
joint measurable sets.

Definition 8.7

In the literature is also spoken about the total variation , but in that
context there is some measurable space (Ω,Σ) with a measure µ. Here we
have to do with a set of finitely additive, bounded set functions µ. There is
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made use of the extended real numbers R = R ∪ {∞} ∪ {−∞}. Some-
times is spoken about R∗ with R∗ = R ∪ {∞} or R∗ = R ∪ {−∞}, there
is said to avoid problems like (∞ + (−∞)). For the arithmetic operations
and algebraic properties in R, see the website wiki-extended-reals.
What is the difference between a countable additive set function and a mea-
sure? A measure µ makes use of the extended real numbers µ : Σ→ [0,∞],
it is a countable additive set function and has the condition that µ(∅) = 0,
see Definition 8.2.
Measures have positive values, a generalisation of it are signed measures ,
which are allowed to have negative values, (Yeh, 2006, page 202).

Given is a measurable space (Ω,Σ). A set function µ on Σ is called a
signed measure on Σ if:

1. µ(E) ∈ (−∞,∞] or µ(E) ∈ [−∞,∞) for every E ∈ Σ,
2. µ(∅) = 0,
3. if finite additive: for every finite disjoint sequence {E1, · · · , EN} in

Σ,
∑N

k=1 µ(Ek) exists in R∗ and
∑N

k=1 µ(Ek) = µ(
N
∪
k=1

(Ek)).
4. if countable additive: for every disjoint sequence {Ei}i∈N in Σ,

∑
k∈N

µ(Ek)

exists in R∗ and
∑
k∈N

µ(Ek) = µ( ∪
k∈N

(Ek)).

If µ is a signed measure then (Ω,Σ, µ) is called a signed measure space.

Definition 8.8

Thus a measure µ on the measurable space (Ω,Σ) is a signed measure with
the condition that µ(E) ∈ [0,∞] for every E ∈ Σ.

http://en.wikipedia.org/wiki/Extended_real_number_line
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Given a signed measure space (Ω,Σ, µ). The total variation of µ is a
positive measure |µ| on Σ defined by

|µ|(E) = sup
{ n∑
k=1
|µ(Ek)|

∣∣∣E1, · · · , En ⊂ Σ,

Ei ∩ Ej = ∅(i 6= j),
n
∪
k=1

Ek = E, n ∈ N
}
.

Definition 8.9

Important: ‖ µ ‖vn = |µ|(Ω).
It is not difficult to prove that the expression ‖ · ‖vn, given in Defintion 8.7
is a norm. Realize that when ‖ µ ‖vn = 0, it means that |µ(A)| = 0 for every
A ∈ Σ, so µ

∣∣∣Σ = 0. The first result is that (ba(Σ), ‖ · ‖vn) is a Normed
Space,
but (ba(Σ), ‖ · ‖vn) is also a Banach Space.
Let ε > 0 and N ∈ N be given. Further is given an Cauchy sequence
{µi}i∈N, so there is an N(ε) > 0 such that for all i, j > N(ε), ‖ µi − µj ‖vn<
ε. This means that for every E ∈ Σ:

|µi(E)− µj(E)| ≤ |µi − µj |(E)
≤ |µi − µj |(X)
=‖ µi − µj ‖vn< ε. (8.6)

Hence, the sequence {µi(E)}i∈N is a Cauchy sequence in R. Every Cauchy
sequence in R converges, so define

λ(E) = lim
n→∞

µn(E)

for every E ∈ Σ. Remains to prove that, λ is a finitely additive, bounded
set function and lim

i→∞
‖ µi − λ ‖= 0.

Let E =
N
∪
k=1

Ek, Ek are disjoint elements of Σ, then
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|λ(E)−
N∑
k=1

λ(Ek)| ≤ |λ(E)− µi(E)|+ |µi(E)−
N∑
k=1

λ(Ek)| (8.7)

≤ |λ(E)− µi(E)|+ |
N∑
k=1

µi(Ek)−
N∑
k=1

λ(Ek)|.

Since λ(E) = lim
n→∞

µn(E), there is some k0(ε) such that for every i > k0(ε),
|λ(E)− µi(E)| < ε. There is also some ck(ε) such that for i > ck(ε),
|(µi(Ek)− λ(Ek)| <

ε

N
and that for 1 ≤ k ≤ N . ( N is finite!)

Hence for i > max{k0(ε), c1(ε), · · · , cN (ε)}, |
∑N

k=1(µi(Ek) − λ(Ek))| <
N
ε

N
= ε,

so λ is finitely additive, because

|λ(E)−
N∑
k=1

λ(Ek)| < 2ε.

In the case of countable additivity there are more difficulties, because E =
lim
N→∞

N
∪
k=1

Ek. So inequality 8.7 has to be changed to

|λ(E)−
M∑
k=1

λ(Ek)| ≤

|λ(E)− µi(E)|+ |µi(E)−
M∑
k=1

µi(Ek)|+ |
M∑
k=1

µi(Ek)−
M∑
k=1

λ(Ek)|

with i→∞ and M →∞.

Remark 8.3

Inequality 8.6 gives that for all n,m > k0(ε) and for every E ∈ Σ

|µn(E)− µm(E)| < ε.
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On the same way as done to prove the uniform convergence of bounded
functions, see Theorem 5.10:

|µn(E)− λ(E)|
≤ |µn(E)− µm(E)|+ |µm(E)− λ(E)|

There is known that

|µn(E)− µm(E)| ≤‖ µn − µm ‖vn< ε

for m,n > k0(ε) and for all E ∈ Σ, further m > k0(ε) can be taken large
enough for every E ∈ Σ such that

|µm(E)− λ(E)| < ε.

Hence |µn(E) − λ(E)| < 2 ε for n > k0(ε) and for all E ∈ Σ, such that
‖ µn − λ ‖vn = |µn − λ|(Ω) ≤ 2 ε. The given Cauchy sequence converges in
the ‖ · ‖vn-norm, so (ba(Σ), ‖ · ‖vn) is a Banach Space.

Step 3:
The next step is to look to simple functions or finitely-many-valued functions .
With these simple functions will be created integrals, which define bounded
linear functionals on the space of simple functions. To integrate there is
needed a measure, such that the linear space ba(Σ) becomes important.
Hopefully at the end of this section the connection with `∞ becomes clear,
at this moment the connection is lost.

Let (Ω,Σ) be a measurable space and let {A1, · · · , An} be a partition of
disjoint subsets, out of Σ, of Ω and {a1, · · · , an} a sequence of real num-
bers. A simple function s : Ω→ R is of the form

s(ω) =
n∑
i=1

ai χAi(ω) (8.8)

with ω ∈ Ω and χA denotes the indicator function or characteric function
on A, see formula 5.16.

Definition 8.10
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The simple functions are closed under addition and scalar multiplication.

Theorem 8.4

Proof of Theorem 8.4

The scalar multipication gives no problems, but the addition? Let s =∑M
i=1 aiχAi and t =

∑N
j=1 bjχBj , where Ω =

M
∪
i=1
Ai =

N
∪
j=1

Bj . The collec-
tions {A1, · · · , AM} and {B1, · · · , BN} are subsets of Σ and in each collec-
tion, the subsets are pairwise disjoint.

Define Cij = Ai∩Bj . Then Ai ⊆ X =
N
∪
j=1

Bj and so Ai = Ai∩ (
N
∪
j=1

Bj) =
N
∪
j=1

(Ai ∩ Bj) =
N
∪
j=1

Cij . On the same way Bj =
N
∪
j=1

Cij . The sets Cij are
disjoint and this means that

χAi =
N∑
j=1

χCij and χBj =
M∑
i=1

χCij .

The simple functions s and t can be rewritten as

s =
M∑
i=1

(ai
N∑
j=1

χCij ) =
M∑
i=1

N∑
j=1

aiχCij and

t =
N∑
j=1

(bj
M∑
i=1

χCij ) =
M∑
i=1

N∑
j=1

biχCij .

Hence

(s + t) =
M∑
i=1

N∑
j=1

(ai + bi)χCij

is a simple function. �

With these simple functions s (∈ B(Ω,Σ)), it is relative easy to define an
integral over Ω.
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Let µ ∈ ba(Σ) and let s be a simple function, see formula 8.8, then∫
Ω
s dµ =

n∑
i=1

ai µ(Ai),

denote that
∫

Ω · dµ is a linear functional in s.

Definition 8.11

Further it is easy to see that

|
∫

Ω
s dµ| ≤

n∑
i=1
|aiµ(Ai)|

≤‖ s ‖∞
n∑
i=1
|µ(Ai)| ≤‖ s ‖∞ ‖ µ ‖vn . (8.9)

Thus,
∫

Ω · dµ is a bounded linear functional on the linear subspace of simple
functions in B(Ω,Σ), the simple Σ-measurable functions.

Step 4:
With simple Σ-measurable functions a bounded measurable function can be
approximated uniformly.

Let s : Ω → R be a positive bounded measurable function. Then there
exists a sequence of non-negative simple functions {φn}n∈N, such that
φn(ω) ↑ s(ω) for every ω ∈ Ω and the convergence is uniform on Ω.

Theorem 8.5

Proof of Theorem 8.5

For n ≥ 1 and 1 ≤ k ≤ n 2n, let

Enk = s−1
(

[ (k − 1)
2n ,

k

2n )
)
and Fn = s−1

(
[n,∞)

)
.

Then the sequence of simple functions
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φn =
n 2n∑
k=1

(k − 1) 2−n χEnk + nχFn

satisfy

φn(ω) ≤ s(ω) for all ω ∈ Ω

and for all n ∈ N. If (k − 1)
2n ≤ s(ω) ≤ k

2n then φn(ω) ≤ s(ω) for all
ω ∈ Enk. Further is

E(n+1)(2k−1) = s−1
(

[2 (k − 1)
2n+1 ,

(2k − 1)
2(n+1) )

)
= s−1

(
[ (k − 1)

2n ,
k

2n−
1
2

1
2n )
)
⊂ Enk

and E(n+1)(2k−1) ∪E(n+1)(2k) = Enk, so φ(n+1)(ω) ≥ φn(ω) for all ω ∈ Enk.
Shortly written as φ(n+1) ≥ φn for all n ∈ N.
If ω ∈ Ω and n > s(ω) then

0 ≤ s(ω) − φn(ω) < 1
2n ,

so φn(ω) ↑ s(ω) and the convergence is uniform on Ω. �

Theorem 8.5 is only going about positive bounded measurable funtions. To
obtain the result in Theorem 8.5 for arbitrary bounded measurable func-
tions, there has to be made a decompostion.

If the functions s and t are given then

s ∨ t = max{s, t}, s ∧ t = min{s, t}
s+ = s ∨ 0, s− = (−s) ∧ 0.

Definition 8.12

If s and t are measurable then are also measurable
s ∨ t, s ∧ t, s+, s− and |s|.

Theorem 8.6



284

Proof of Theorem 8.6

See Theorem 8.2, there is proved that (s+ t) is measurable and that if α is
a scalar, that αs is measurable, hence (s− t) is measurable.
Out of the fact that

{s+ > a} =
{

Ω if a < 0,
{x ∈ Ω | s(x) > a} if a ≥ 0,

it follows that s+ is measurable. Using the same argument proves that s−
is measurable.
Since | s | = s+ + s−, it also follows | s | is measurable.
The following two identities

s ∨ t = (s + t) + | (s − t) |
2 , s ∧ t = (s + t) − | (s − t) |

2

show that s ∨ t and s ∧ t are measurable. �

Let s : Ω → R be measurable. Then there exists a sequence of sim-
ple functions {φn}n∈N such that {φn}n∈N converges pointwise on Ω with
|φ(ω)| ≤ |s(ω)| for all ω ∈ Ω. If s is bounded, the convergence is uniform
on Ω.

Theorem 8.7

Proof of Theorem 8.7

The function s can be written as s = s+ − s−. Apply Theorem 8.5 to s+

and s−. �

The result is that the simple Σ-measurable functions are dense in B(Ω,Σ)
with respect to the ‖ · ‖∞-norm.

Step 5:
In Step ii: 1 is proved that (B(Ω,Σ), ‖ · ‖∞) is Banach Space and in Step
ii: 4 is proved that the simple functions are a linear subspace of B(Ω,Σ)
and these simple functions are lying dense in (B(Ω,Σ), ‖ · ‖∞). Further
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is defined a bounded linear functional ν(·) =
∫

Ω · dµ, with respect to the
‖ · ‖∞-norm, on the linear subspace of simple functions in B(Ω,Σ), see
Definition 8.11.
The use of Hahn-Banach, see Theorem 4.10, gives that there exists an
extension ν̃(·) of the linear functional ν(·) to all elements of B(Ω,Σ) and the
norm of the linear functional ν(·) is preserved, i.e. ‖ ν̃ ‖= ‖ ν ‖.
Hahn-Banach gives no information about the uniqueness of this extension.

Step 6:
What is the idea so far? With some element µ ∈ ba(Σ) there can be de-
fined a bounded functional ν(·) =

∫
Ω · dµ on B(Ω,Σ), so ν ∈ B(Ω,Σ)′ and

‖ ν ‖= ‖ µ ‖vn.
The Banach Space (`∞, ‖ · ‖∞), see Section 5.2.1, can be seen as the set
of all bounded functions from N to P(N) ∼ R (see Section 8.2), where
for x ∈ `∞, ‖ x ‖∞= sup

{
|x(α)|

∣∣α ∈ N}. So (`∞)′ = B(N,R)′ =
B(N,P(N))′ = ba(P(N)).

The question is if ba(Σ) and B(Ω,Σ)′ are isometrically isomorph or not?

Any bounded linear functional u on the space of bounded functions B(Ω,Σ)
is determined by the formula

u(s) =
∫

Ω
s(ω)µ(dω) =

∫
Ω
s dµ, (8.10)

where µ(·) is a finite additive measure.

Theorem 8.8

Proof of Theorem 8.8

Let u be a bounded linear functional on the space B(Ω,Σ), so u ∈ B(Ω,Σ)′ .
Consider the values of the functional u on the characteristic functions χA
on Ω, A ∈ Σ. The expression u(χA) defines an finite additive function µ(A).
Let A1, · · · , An be a set of pairwise nonintersecting sets, Ai ∩ Aj = ∅ if
i 6= j, then

µ(
n
∪
j=1

Aj) = u(
n∑
j=1

χAj ) =
n∑
j=1

u(χAj ) =
n∑
j=1

µ(Aj).



286

The additive function µ is bounded, if the values of µ(Aj) are finite, for all
j ∈ {1, · · · , n}. Determine now the value of the functional u on the set of
simple functions

s(ω) =
n∑
i=1

aiχAi(ω), Ai ∩ Aj = ∅, i 6= j.

The functional u is linear, so

u(s) =
n∑
i=1

aiu(χAi) =
n∑
i=1

aiµ(χAi). (8.11)

Formula 8.11, represents an integral of the simple function s(ω) with respect
to the additive measure µ. Therefore

u(s) =
∫

Ω
s(ω)µ(dω) =

∫
Ω
sdµ.

Thus a bounded linear functional on B(Ω,Σ) is determined on the set of
simple functions by formula 8.10.
The set of simple functions is dense in the space B(Ω,Σ), see Theorem 8.7.
This means that any function from B(Ω,Σ) can be represented as the limit
of an uniform convergent sequence of simpe functions. Out of the continu-
ity of the functional u follows that formula 8.10 is valid for any function
s ∈ B(Ω,Σ). �

The norm of the functional u determined by formula 8.10 is equal to
the value of the variational norm of the additive measure µ on the whole
space Ω:

‖ u ‖= ‖ µ ‖vn

Theorem 8.9

Proof of Theorem 8.9

The norm of the functional u does not exceed the norm of the
measure µ, since
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|u(s)| = |
∫

Ω
sdµ| ≤‖ s ‖∞‖ µ ‖vn,

see formula 8.9, so

‖ u ‖≤‖ µ ‖vn . (8.12)

The definition of the total variation of the measure µ, see Defintion 8.9
gives that for any ε > 0 there exists a finite collection of pairwise disjoint
sets {A1, · · · , An}, (Ai ∩ Aj = ∅, i 6= j), such that

n∑
i=1
|µ(Ai)| > |µ|(Ω) − ε.

Take the following simple function

s(ω) =
n∑
i=1

µ(Ai)
|µ(Ai)|

χAi(ω),

and be aware of the fact that ‖ s ‖∞= 1, then

u(s) =
n∑
i=1

µ(Ai)
|µ(Ai)|

µ(Ai) =
n∑
i=1
|µ(Ai)| ≥ |µ|(Ω) − ε.

Hence

‖ u ‖≥‖ µ ‖vn, (8.13)

comparing the inequalities 8.12 and 8.13, the conclusion is that

‖ u ‖= ‖ µ ‖vn .

�

Thus there is proved that to each bounded linear functional u on B(Ω,Σ)
corresponds an unique finite additive measure µ and to each such measure
corresponds the unique bounded linear functional u on B(Ω,Σ) determined
by formula 8.11. The norm of the functional u is equal to the total variation
of the correspondent additive measure µ.
The spaces B(Ω,Σ)′ and ba(Σ) are isometrically isomorph.
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Most of the readers of these lecture notes have only a little knowledge of
Topology. They have the idea that everything can be measured, have a
distance, or that things can be separated. May be it is a good idea to
read wiki-topol-space, to get an idea about what other kind of topologi-
cal spaces their exists. A topology is needed if for instance their is spoken
about convergence, connectedness, and continuity.
In first instance there will be referred to WikipediA, in the future their will
be given references to books.

9.1 Axioms

There is assumed that there exists a nonempty set R, the real numbers, which
satisfy 10 axioms. These axioms can be divided in three groups, the field ax-
ioms, the order axioms and the completeness axiom. The last axiom is also
known as the least-upper-bound axiom or the axiom of continuity.

9.1.1 Field Axioms

All the usual laws of arithmetic can be derived with the following axioms.

http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Main_Page
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Axiom 1: x+ y = y + x, xy = yx,
the commutative laws .

Axiom 2: x+ (y + z) = (x+ y) + z, x(yz) = (xy)z,
the associative laws .

Axiom 3: x(y + z) = xy + xz,
the distributive law .

Axiom 4: Given any two real numbers x and y then there exists a real
number z, such that x+ z = y. This z is written by y − x and
x− x is written by 0 and −x is written for 0− x.

Axiom 5: There exists a real number x 6= 0. There exists a real number
z such that xz = y. This real number z is written by y

x
and x

x

is written by 1. Further is 1
x

written by x−1, the reciprocal
of x.

Axiom 9.1

9.1.2 Order Axioms

The usual rules for inequalities can be done with the following axioms. The
existence of a relation < is assumed to exist between the real numbers.
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Axiom 6: Exactly one of the following relations holds:
x = y, x < y, y < x.
Note that x > y means that y < x.

Axiom 7: If x < y then for every z holds that x+ z < y + z.

Axiom 8: If x > 0 and y > 0 then xy > 0.

Axiom 9: If x > y and y > z then x > z.

Axiom 9.2

Note that with x ≤ y is meant: x < y or x = y.

9.1.3 Completeness Axiom

Axiom 10: Every nonempty set S of real numbers which is bounded above
has a supremum . So there is a real number c such that c =

supS, the least upper bound of S.

Axiom 9.3

Note that a consequence of this axiom is, that if the set S is bounded be-
low that it has a infimum , the greatest lower bound .

9.1.4 Axiom of Choice
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Searching in the literature about it, it becomes more and more interesting.
But let not to do too much. Keep in mind that the mathematics is based on
several rules. It is nice to find out, what the minimal number of rules is to
define such machinery as the mathematics, or parts of the mathematics. There
can also be searched to statements, which in first instance have nothing to do
with each other, but seem to be equivalent.
In set theory the axiom of choice is given by

For every family {Si}i∈I of nonempty sets there exists a family {xi}i∈I of el-
ements with xi ∈ Si for every i ∈ I.

Axiom 9.4

and a variant of it is given by

Any collection of nonempty sets has a choice function.

Axiom 9.5

where the definition of a choice function is given by

A choice function is a function f whose domain X is a collection of non-
empty sets such that for every S ∈ X, f(S) is an element of S.

Definition 9.1

There are a lot of variants, to have a nice overview of it, see the interest-
ing book of (Herrlich, 2006).

9.2 Strange Abbreviations
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Reading the literature there are sometimes used all kind of strange abbrevia-
tions. The author of such article or books thinks that everybody knows where
is spoken about, but this is not always true. Here follows some list of such
abbreviations, sometimes with an explanation, if not, there will be searched
for it.

1. ZF : This has to do with the modern set theory. This theory
based on axioms and one of these systems is named after the
mathematicians Ernst Zermelo and Abraham Fraenkel.

2. ZFC : This is the Zermelo-Fraenkel set theory with the axiom
of choice.

3. AC : Axiom of choice, see subsection 9.1.4.

9.3 Background Theorems

In these lecture notes is made use of important theorems. Some theorems are
proved, other theorems will only be mentioned.
In certain sections, some of these theorems are used and in other parts they
play an important rule in the background. They are not always mentioned,
but without these theorems, the results could not be proved or there should
be done much more work to obtain the mentioned results.
But as the time passes, the mind changes, so it can happen that there is given
a proof of some theorem within the written sections. See for instance Baire’s
category theorem, in section 7.7.1 is given a proof of one of the variants of
that theorem.

BcKTh 1: Lemma of Zorn , see Theorem 9.1 and for more information see
wiki-lemma-Zorn.

BcKTh 2: Baire’s category theorem , see wiki-baire-category.

9.3.1 Theorems mentioned in Section 9.3

http://en.wikipedia.org/wiki/Zorn's_lemma
http://en.wikipedia.org/wiki/Baire_category_theorem
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The theorems as mentioned in the foregoing section are given. It is sometimes
difficult to understand what is meant, because not every property is defined
in these lecture notes.

Lemma of Zorn:
If X 6= ∅ is a partially ordered set, in which every totally ordered subset
has an upper bound in X, then X has at least one maximal element.

Theorem 9.1

The Baire’s category theorem seems to have several variants, which are not
always equivalent. In some of these variants is also spoken about a Baire space.

A Baire space is a topological space with the property that for each count-
able collection of open dense sets Un, their intersection ∩Un is dense.

Definition 9.2

9.4 Useful Theorems

A nice book, where a lot of information can be found is written by Körner,
see (Körner, 2004).
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In most books the first application, which is given by the authors, is the
Banach fixed point thoerem or contraction theorem . The only thing, which
is really needed, is a complete metric space. With the mentioned theorem
can be proved the existence and uniqueness of the solution of some ordinary
differential equations, some integral equations and linear algebraic equations.
Other applications, such as partial differential equations, need soon more prior
knowledge.

10.1 Banach fixed point theorem

Let X be some set and T a map of the set X into itself, so T : X −→ X.

A fixed point of a mapping T : X −→ X is a point x ∈ X, which is
mapped onto itself,

T (x) = x.

The image T (x) coincides with x.

Definition 10.1

The Banach fixed point theorem gives sufficient conditions for the existence
of a fixed point of certain maps T . There will be looked at contractions . A
contraction can be used to calculate a fixed point.

Let (X, d) be a metric space. A mapping T : X −→ X is called a contraction
on X, if there exists some positive constant α < 1, such that for all x, y,∈ X

d(T (x), T (y)) ≤ α d(x, y).

Definition 10.2

With such a contraction it is sometimes possible to construct an approximation
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of a solution of some problem. The used procedure is called an iteration .
There is started with some arbitrary x0 in a given set and there is recusively
calculated a sequence x0, x1, . . . with the following relation

xn+1 = T (xn) for n = 0, 1, 2, . . . .

If the constructed sequence converges then it will converge to a fixed point of
the map T . The Banach fixed point theorem gives sufficient conditions such
that the constructed sequence converges and that the fixed point is unique.

Banach fixed point theorem
Let (X, d) be a complete metric space, where X 6= ∅ and let the mapping
T : X −→ X be a contraction on X. Then T has an unique fixed point.

Theorem 10.1

Proof of Theorem 10.1

The idea of the proof is to construct a Cauchy sequence {xn}n∈{N∪ 0} in the
complete space X. The limit x of the constructed Cauchy sequence is a fixed
point of T and it is the only fixed point of T .
Let’s start with an arbitrary x0 ∈ X and construct the iterative sequence
{xn}n∈{N∪ 0} by

xn+1 = T (xn) for n = 0, 1, 2, . . . .

So is obtained a sequence of images of x0 under repeated application of the
mapping T . Is that constructed sequence {xn}n∈{N∪ 0} a Cauchy sequence?
Let n > m and let’s look to the distance between xn and xm.
First is looked at the difference between two consecutive terms out of the
constructed sequence. Since T is a contraction

d(xm+1, xm) = d(T (xm), T (xm−1))
≤ α d(xm, xm−1)
≤ α d(T (xm−1), T (xm−2))

≤ α2 d(xm−1, xm−2) ≤ . . .

≤ αm d(x1, x0)

By the triangle inequality is obtained that
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d(xm, xn) ≤ d(xm, xm+1) + . . . + d(xn−1, xn)

≤ (αm + . . . + αn−1) d(x0, x1)

αm (1− αn−m
1− α ) d(x0, x1) for n > m.

From α is known that 0 < α < 1, so

d(xm, xn) ≤ αm

1− α d(x0, x1) (n > m). (10.1)

The right-hand side of (10.1) can be made as small as wanted, because
d(x0, x1) is fixed and 0 < α < 1. So the constructed sequence {xn}n∈{N∪ 0}
is a Cauchy sequence and since the space X is complete, that Cauchy sequence
converges, to the limit is given some name limn→∞ xm = x.
The next problem is to prove that x is a fixed point of the mapping T .
Again is used the triangle inequality and the fact that T is a contraction

d(x, T (x)) ≤ d(x, xm) + d(xm, T (x)) ≤ d(x, xm) + d(T (xm−1), T (x))
≤ d(x, xm) + α d(xm−1, x).

Since limn→∞ xm = x, it is easily seen that

lim
n→∞

d(x, T (x)) ≤ lim
n→∞

(d(x, xm) + α d(xm−1, x)) = 0.

So d(x, T (x)) = 0 and out that follows that T (x) = x and it is shown that x
is a fixed point of the mapping T .
The next question is, if x is the only fixed point of the mapping T? This is
relative easy to prove by contradiction. Assume that there is some other fixed
point x̂ of the mapping T , so T (x̂) = x̂, with x̂ 6= x. Since x and x̂ are fixed
points

d(x, x̂) = d(T (x), T (x̂)) ≤ α d(x, x̂),

since 0 < α < 1, there follows that d(x, x̂) = 0. So x = x̂ and that is in
comparison with the assumption. This means that the fixed point x of the
mapping T is unique. The theorem is completely proved. �

May be that later on there will be given some other theorems about fixed points
of operators. Important in these theorems is the continuity of the operator.

A contraction T on a metric space (X, d) is a continuous mapping.

Theorem 10.2



297

Proof of Theorem 10.2

If ε > 0 is given, there is easily find some δ(ε) > 0, etc.. �

10.2 Fixed Point Theorem and the Ordinary Differential Equations

Can the given fixed point theorem of Banach, see Theorem 10.1, be used to
prove the existence and uniqueness of a solution of some ordinary differential
equation?
Let’s consider an explicit ordinary differential equation of order one, with some
initial condition. For instance the following problem{

d
dtx = f(t, x), (10.2)
x(t0) = x0, (10.3)

(10.4)

where x is an unknown function of the variable t, f is a given function and t0
and x0 are known values.
There are several theorems to prove the existence and uniqueness of a solution
x of the given problem. Here Picard’s theorem will be proved and there will
also be given a method to obtain an approximation of the solution x of (10.4).
The function f is assumed to be continuous at a rectangle

R = {(t, x) | | t − t0 | ≤ a, | x − x0 | ≤ b},

where a(> 0) and b(> 0) are known positive constants. Sometimes the conti-
nuity of f is enough to prove the existence of a solution x of (10.4). But in
the theorem of Picard there will be assumed more than that. With this extra
assumption, about f , the uniqueness of the solution x is obtained.
The rectangle R is compact, so the function f is bounded on R. This means
that there exists some positive constant c(> 0) such that

| f(t, x) | ≤ c for all (x, t) ∈ R.
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Picard’s existence and uniqueness theorem ODE
Suppose that the function f , besides the continuity on the rectangle R, also
satisfies the following Lipschitz condition . There exists a constant k such
that

| f(t, x) − f(t, v) | ≤ k | x − v |,

for all (t, x), (t, v) ∈ R.
Then the initial value problem (10.4) has an unique solution. This solution
exists on the interval t0 − β ≤ t ≤ t0 − β with β < min{a, bc ,

1
k}.

Theorem 10.3

Proof of Theorem 10.3

The idea is to use the Banach fixed point theorem, so there is needed a met-
ric space. Let C(I) be that metric space, the space of real-valued continous
functions on the interval I = [t0 − β, t0 + β] with the metric

d(x, y) = sup
t∈I
| x(t) − y(t) |.

The space (C(I), d) is complete, see Theorem 5.4.
There is some problem, that is there will be searched for a solution in some
subspace Ĉ of C(I). Ĉ are those functions x out of C(I), which satisfy the
condition

| x(t) − x0 | ≤ cβ.

If {yi}i∈N is a convergent sequence in Ĉ, it is also a Cauchy sequence in C(I).
The space (C(I), d) is complete, so the sequence {yi}i∈N converges in C(I),
define

lim
i→∞

yi = y,

with y ∈ C(I). because of the fact that

| yi(t) − x0 | ≤ cβ ∀i,

there follows that

| y(t) − x0 | ≤ cβ,
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so f ∈ Ĉ. This means that the subspace Ĉ is closed in C(I) and also complete,
see Theorem 3.7.
�
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It is always a conflict where to place something about the history, at the be-
ginning of the lectures notes or at the end? The end has been chosen because
otherwise such a chapter can not be written. Every strange mathematical ex-
pression has to be defined, before it can be used.
So this chapter is written with the idea that everyone has read the chapters
before. If not, the hope is that every strange mathematical word can be found
in the Index, or can be found on the Internet.
To write this chapter was because of the question, where the word "functional"
comes from? It is easy to point to the linear functionals, but if that is really the
case? No idea, but after reading this chapter may be something becomes clear.

11.1 History

An very helpful article, to read something about the history, was written by
(Carothers, 1993). The "Examensarbete" from (Lindstrom, 2008) is also a nice
piece of work with much more mathematical details, as given in (Carothers,
1993). Further are given nice short biografies of important people, which have
contributed to the functional analysis, in the book of (Saxe, 2002). At the
very least may not be forgotten the book of (Dieudonné, 1981). It is not so
readable, may be because of the use of a typewriter, but that was common in
the time that book was written. That has also to do with history!
Names of people very much mentioned in the Functional Analysis are Fred-
holm, Lebesgue, Hilbert, Fréchet, Riesz, Helly, Banach and Hahn. These peo-
ple lived around 1900, the time that the functional analysis started to become
a discipline. There are more people who have contributed to the functional
analysis, such as Fourier, d’Alembert, Poisson and Poincaré and go so on.
They lived in the 18th− 19th century and had may be no idea that there work
would become of great importance, or better would become a great source of
inspiration, for the functional analysis in the 20th century and later.
A nice book about the history of Functional Analysis is written by (Pietsch,
2007). It is focused on Banach Spaces and linear operators. It is not easy
to read, but a lot of information is given, about proofs and all kind of other
things. It is an interesting book. The writer of the book sees it’s book as a
historical supplement to the two books of (Johnson and Lindenstrauss, 2001)
and (Johnson and Lindenstrauss, 2003).
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Be careful in reading the definitions of the different spectra, for more details
see textbooks as (Müller, 2007), (Bonsall, 1973) and (Kreyszig, 1978).

12.1 Complexified Operator

If there is done something with spectra, most of the time there are used Vector
Spaces over the field of the complex numbers, C. The real operators have to
be adjusted, they have to be complexified.

Let (X, ‖ · ‖) be a complex Normed Space. Let T be a linear operator with
domain D(T ) ⊂ X and range R(T ) ⊂ X. The scalar field may be either real
or complex.
If the operator T is defined on a real Normed Space X, such an operator is
to adjust for the complex case, but it is not as easy as it looks. A problem is
to get an isometric isomorphism between certain Normed Vector Spaces, see
SubSection 12.6.1.

Let X is a real Normed Space and let be T ∈ L(X,X) a real bounded
operator. The operator T can be complexified to the operator T ‘ at the
complex Normed Space XC := X ×X = X ⊕ iX.

If x+ i y ∈ XC then T ‘(x+ iy) := T (x) + iT (y), see Theorem 12.4.

Remark 12.1

12.2 Definition of the Spectrum
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Very often people are interested in finding invariant subspaces of a linear
operator.

Given a linear vector space X over a complex field C and a linear operator
T : X −→ X, a subspaces M of X is called an invariant subspace of the
operator T , if for every x ∈ M holds that T (x) ∈ M , so T (M) ⊆ M .

Definition 12.1

The operator can be a matrix transformation, a linear integral operator, a
linear differential operator and any other kind of a linear transformation.

The equation

T (x) − λx = y (12.1)

and the respective homogeneous equation

T (x) = λx (12.2)

play an important rule in the theory of linear operators; λ is a complex para-
meter, y is a given element of the space X and x is the unknown element of X.
The equation 12.2 has a trivial solution x = 0 for every λ, but it may have
also a solution different from zero at certain values of the parameter λ. These
values play an exceptional role in the linear operator theory, the eigenvalues
of T and the corresponding eigenvectors of the operator T , seeDefinition 7.4.

Given a linear vector space X over a complex field C and a linear operator
T : X −→ X. Let the set {xα} be the set of eigenvectors of the operator T ,
corresponding to the eigenvalue λ. The span, see Definition 3.10, of these
eigenvectors is called the eigensubspace of the operator T , correspond-
ing to the eigenvalue λ. This eigenspace, corresponding to the eigenvalue λ
of the operator T , is notated by E(λ), or E(T )(λ), if there is spoken about
more operators then T alone.

Definition 12.2

An eigensubspace is an invariant subspace of X, but an invariant subspace
may be not an eigensubspace.
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A litte example to show that an invariant subspace has not to be an eigen-
subspace. Let M1 and M2 be invariant subspaces of T , then
M1 + M2 = {x1 + x2 | x1 ∈M1, x2 ∈M2}.
Let λ1 and λ2 be two different eigenvalues of T and let M := E(λ1) + E(λ2).
It is clear that M is an invariant subspace of T , but T restricted to M is not
a multiple of the identity operator on M . If x1 ∈ E(λ1) and x2 ∈ E(λ2)
then M 3 T (x1 + x2) = λ1 x1 + λ2 x2 6= µ (x1 + x2).

Example 12.1

Busy with Functional Analysis, the attention will go to the infinite dimen-
sional spaces. There will be often searched to the largest invariant subspace,
but be careful. Certainly with the dimension of these spaces, if the set of
eigenvectors {xα} is infinite, then the eigensubspace is an infinite dimensional
subspace of X.
But also in thinking about, what is meant with the "largest" invariant sub-
space. Given an eigenvalue λ of T , then E(λ) is the largest subspace M of
X such that T restricted to M is λ times the identity operator on M . A
nice question to be answered is: "Is E(λ) the largest subspace M of X that
is invariant under T and such that T restricted to M has λ as the only eigen-
value?". The following example will give the answer to that question.
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Let M(λ) be a two dimensional Vector Space X. Let B := {φ1, φ2} be a
basis of X. And let T : X → X be a linear operator defined by the following
equations: T (φ1) = λφ and T (φ2) = φ1 + λφ2, with λ some scalar. It is
obvious that φ1 is an eigenvector of T and φ2 is not an eigenvector of T .
The space M(λ) := span(φ1, φ2) is invariant under T . It is easy to see that
φ1 = (T − λI)φ2 and since φ1 is an eigenvector of T , associated with λ,
(T − λI)2φ2 = 0. Hence

E(T )(λ) = N (T − λI)  N ((T − λI)2) = M(λ).

Let S : X → X be a linear operator defined by the following equations:
S(φ1) = λφ and S(φ2) = λφ2, with λ some scalar. It is obvious that φ1 and
φ2 are eigenvectors of S and on the other hand

E(S)(λ) = N (S − λI) = N ((S − λI)2).

Example 12.2

If a parameter λ is an eigenvalue of the operator T , then the solution of the
equation, given in 12.1, can not be unique.

Theorem 12.1

Proof of Theorem 12.1

Assume that the equation, given in 12.1, has a solution x0. Let φ be an eigen-
vector corresponding to the eigenvalue λ. Then x1 = x0 + cφ is also a solution
of the equation given in 12.1, with c some arbitrary constant.
So equation 12.1 has no solutions, or it has infinitely many solutions. The
operator T − λI, with I the identity operator, has no inverse, if λ is an eigen-
value of the operator T .
�

Here just some more examples of invariant subspaces.
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Let’s define the operator T : X −→ X, with X = C∞(R), by

T : x −→ d

dt
x, for x ∈ X.

1. If no other conditions are imposed on x ∈ C∞(R), then every
λ ∈ C is called an eigenvalue of T . The function φ : t −→
exp (λ t) is called an eigenvector of T corresponding to the
eigenvalue λ.

2. If there is looked at the linear space of all bounded functions
in C∞(R). Since φ : t −→ c exp (λ t) defines a bounded func-
tion if and only if Re(λ) = 0, the set of eigenvalues of T is
defined by {λ ∈ C | Re(λ) = 0}.

Example 12.3

Let’s define the operator T : X −→ X, with X = C∞(R), by

T : x −→ d

dt
x, for x ∈ X.

If there is looked at the linear space of functions x ∈ C∞(R), such that:
x(t) = 0 if | t |≥ 1, then T has no eigenvalues at all.
If λ ∈ C and φ ∈ C∞(R) then φ : t −→ c exp (λ t) for some constant c 6= 0.
But the condition: x(t) = 0 if | t |≥ 1, implies that c = 0.
The described subspace is not empty, the linear subspace contains:

x(t) =
{

exp ( −1
1− t2 ) if | t |< 1,

0 otherwise.

Example 12.4

In the finite dimensional case there is an equivalence between injectivity and
surjectivity. If there is looked at a linear map of a finite dimensional linear
space to a space of the same dimension, there holds that the linear map is
injective if and only if it is surjective. This equivalence doesn’t hold in infinite
dimensional linear spaces.
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An injective or a surjective operator has not to be bijective. To illustrate
this fact, here a simple example. Let X = `2 and let {ek}k∈B be the stan-
dard basis for X. For x =

∑∞
k=1 xk ek, define

T1(x) =
∞∑
k=1

xk ek+1 and

T2(x) =
∞∑
k=1

xk+1 ek

The operator T1 is injective but not surjective, while the operator T2 is sur-
jective but not injective.

Example 12.5

And busy with shift operators T1 and T2 in Example 12.5, it is also illus-
trative to do a similar thing in the L2(R).

Define for some fixed value h ∈ R, the operator Th on L2(R by

Thf(x) = f(x− h), for all x ∈ R.

The linearity of the operator T is obvious and

‖ Th(f) ‖22 =
∫ ∞
−∞
| f(x− h) |2 dx =

∫ ∞
−∞
| f(x) |2 dx = ‖ f ‖22 .

So the operator T is bounded and ‖ Th ‖= 1.
The operator Th is also regular for all h ∈ R, since

(Th)−1f(x) = f(x+ h) = T−hf(x), for all x ∈ R.

and also ‖ (Th)−1 ‖= 1.

Example 12.6

Let’s define some frequently used expressions for operators. With I is meant
the identity operator on X, or D(T ). With the operator Tλ is associated the
operator

Tλ = (T − λ I), (12.3)
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where λ ∈ C. If Tλ has an inverse, that is denoted by Rλ(T ), so

Rλ(T ) = T−1
λ = (T − λ I)−1, (12.4)

this operator is called the the resolvent operator of T . Sometimes only Rλ
is written for the resolvent operator, if it is clear to what operator T is referred.

The definition of Tλ and Rλ(T ) is not unique. Other ways of writing are
Tλ = (λ I − T ) or Tλ = (I − λT ), and Rλ(T ) = (λ I − T )−1 or
Rλ(T ) = (I − λT )−1. Before reading publications, about spectral theory, is
important to check what kind of definitions an author has used.
In these lecture notes are used the definitions 12.3 and 12.4.

Remark 12.2

The term regular is already used in Example 12.6, but a definition was not
given.

Let (X, ‖ · ‖) be a complex Normed Space, with X 6= {0} and let T :
D(T ) → X be a linear operator with domain D(T ) ⊂ X. A regular value
λ of T is a complex number such that

(R1) Rλ(T ) exists,
(R2) Rλ(T ) is bounded,
(R3) Rλ(T ) is defined on a set which is dense in X.

Definition 12.3

With Definition 12.3, the definition of the spectrum of T can be given.

The set of all the regular values of T is the resolvent set ρ(T ) and its

complement ρ(T )c = C \ ρ(T ) = σ(T) is the spectrum of T .

Definition 12.4

An element of σ(T ) is called a spectral value of T .
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Look at the operator of multiplication by the independent variable in the
space C[a, b]

T (x)(t) = tx(t).

This operator has no eigenvalues, because there is not a function x 6= 0 that
satisfies the equation

tx(t) = λx(t), for all t ∈ [a, b],

at some λ.
On the other hand, if λ ∈ [a, b] then the equation

tx(t) − λx(t) = y(t)

has the solution

x(t) = y(t)
(t − λ)

for all those functions y(t) which are representable in the form

y(t) = (t− λ)z(t), with z ∈ C[a, b].

Important to mention is that the set of functions, with a zero at t = λ are
not dense in C[a, b].
All the values of λ 6∈ [a, b] are regular values. The resolvent operator is re-
presented by a multiplication,

Rλ(T )x(t) = 1
(t− λ)x(t) (∈ C[a, b]).

Example 12.7

Example 12.7 makes clear that the spectrum σ(T ) can also exist out of other
values than only eigenvalues.

It is possible to divide the spectrum σ(T ) into three mutually exclusive parts.

12.3 Spectrum ( with state of an operator)
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In this section the decomposition of the spectrum is done with the method
used in (Taylor, 1958).

12.3.1 The states of an operator

In this section is considered a linear operator T : X → Y , whose domain D(T )
is a dense subspace of a normed linear space X and whose range R(T ) is in a
normed linear space Y . There will be made a ninefold classification of what is
called the state of an operator .
First is listed three possibilities for R(T ):

I. R(T ) = Y .

II. R(T ) = Y , but R(T ) 6= Y .

III. R(T ) 6= Y .

As regards T−1, there are also listed three possibilities:

1. T−1 exists and is continuous.

2. T−1 exists but is not continuous.

3. T−1 does not exist.

If these possibilities are combined there are nine different situations. State
II2 for T means that R(T ) = Y , but R(T ) 6= Y and T−1 exists but is not
continuous, also can be said that T is in state II2.

In defining the different parts of the spectrum of an operator T , the state of
the operator Tλ can be used.

12.3.2 Decomposition of Spectrum
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With the use of the state of the operator Tλ, see Section 12.3.1, it is possible
to divide the spectrum of the operator T into three mutually exclusive parts.

Let X be some Banach Space and let T ∈ BL(X, X).
The resolvent set, denoted by ρ(T ) :
λ ∈ ρ(T ) if and only if Tλ is in class I1 or II1.

The spectrum, denoted by σ(T ) :
σ(T ) = ρ(T )c = C \ ρ(T )

The continuous spectrum, denoted by Cσ(T ) :
Tλ is in class I2 or II2.

The residual spectrum, denoted by Rσ(T ) :
Tλ is in class III1 or III2.

The point spectrum, denoted by Pσ(T ) :
Tλ is in class I3, II3 or III3.

Definition 12.5

The mentioned subsets are disjoint and their union is the whole complex plane:

C = σ(T ) ∪ ρ(T ) = Pσ(T ) ∪ Rσ(T ) ∪ Cσ(T ) ∪ ρ(T ).

12.4 Decomposition of Spectrum

In the literature is made use of all kind of decompositions of the spectrum. A
little overview will be given, but not every part can be spoken into detail.
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First is given the most common decomposition, as for instance given in (Kreyszig,
1978), with the help of Definition 12.3.

Let X be a complex Normed Space and T ∈ L(X, X).
The resolvent set of T is the set

ρ(T ) = {λ ∈ C |Rλ(T ) exists and satisfies (R2) and (R3) }

and the spectrum of T is the set

σ(T ) = C \ ρ(T ) = Pσ(T ) ∪ Cσ(T ) ∪ Rσ(T ),

Definition 12.6

with the point spectrum Pσ(T ):

Pσ(T ) = {λ ∈ C |Rλ(T ) does not exist },

Definition 12.7

the residual spectrum Rσ(T ):

Rσ(T ) = {λ ∈ C |Rλ(T ) exists, but does not satisfy (R3) }.

Definition 12.8

and the continuous spectrum Cσ(T ):

Cσ(T ) = {λ ∈ C |Rλ(T ) exists and satisfies (R3), but not (R2) },

Definition 12.9

The mentioned subsets are disjoint and their union is the whole complex plane:

C = ρ(T ) ∪ σ(T ) = ρ(T ) ∪ Pσ(T ) ∪ Rσ(T ) ∪ Cσ(T ).
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The conditions of the different spectra are summarized in the following table.
In short: ((R1): Rλ exists, (R2) Rλ bounded, (R3): Rλ defined on dense set
in X).

Satisfied Not satisfied λ belongs to:

(R1), (R2), (R3) ρ(T )

(R1) Pσ(T )

(R1) (R3) Rσ(T )

(R1), (R3) (R2) Cσ(T )

Table 12.1 Conditions different spectra.

See also the flowchart at page 314.

12.4.1 Differences between classifications

There are a lot of differences in the way the authors classify the points of the
spectrum. But most of the time the given classifications are equivalent. Here
follows a list of differences and also given some alternative conditions.

a. Busy with linear Functional Analysis the operators are linear,
but often is given the extra assumption, that these operators
have to be continuous. Or there is spoken in the definition about
bounded linear operators. Continuity and boundedness are equi-
valent for linear operators at a Normed Space. So speaking about
L(X,X) with the assumption that the operators have to be con-
tinuous or speaking about BL(X,X) makes no difference.

b. A great difference is, if there is taken an operator at a Normed
Space or a Banach Space. Possible consequence? A Normed
Space is not necessarily complete, but the continuous dual space
of a normed space over a complete field is necessarily complete.
In the case of a Banach Space both are complete.

c. The condition that an operator is bijective. Be careful what
is meant, bijective at the whole space or at the range of the
corresponding operator? The range of an operator has not to be
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the whole space. And is the operator defined at its domain or
at the whole space?

d. Injectivity of Tλ, also called one-to-one, that can be done at
several ways:
i. N (Tλ) = {0}, so only(!) the 0-element of X than Tλ is

injective. But be careful, is meant injectivity at D(Tλ) or
at the whole space X?

ii. Rλ exist and is bounded if and only if Tλ is bounded from
below, see Theorem 7.10.
But if this is given is this way, again the difficult question,
what is meant: Tλ : D(Tλ) → R(Tλ) or Tλ : X → X? Is
there looked at the whole space or only at subsets, sub-
spaces of it?

Most of the time T : X → R(T ), so Tλ : X → R(Tλ) and
Rλ : R(Tλ) → X. Rλ is not always defined at the whole space
X.
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T ∈ L(X,X),
Tλ is injective

Yes
No

R(Tλ) is dense in X

Yes
No

λ ∈ Pσ(T )
point spectrum

Rλ is bounded
on R(Tλ)

Yes
No

λ ∈ Rσ(T )
residual spectrum

λ ∈ ρ(T )
resolvent set

λ ∈ Cσ(T )
continuous spectrum

Figure 12.1 A flowchart of the spectrum.
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12.5 Spectral Properties of Bounded Linear Operators

In this chapter the power series ofChapter 7.4.1 will be used. Theorem 12.2
has been already been proved, in certain sense, in Theorem 7.13.

Let X be a complex Banach Space, T : X → X a linear operator and λ ∈
ρ(T ). Assume that

a. T is closed or

b. T is bounded.

Then Rλ(T ) is defined on the whole space X and is bounded.

Lemma 12.1

Proof of Theorem 12.1

a. If T is closed, so is Tλ by Theorem 7.18. Hence Rλ(T ) is
closed and Rλ(T ) is also bounded, see (R2) in Definition 12.3.
Hence D(Rλ(T )) is closed, use Theorem 7.22, and so follows
with (R3) of Definition 12.3 that
D(Rλ(T )) = D(Rλ(T ))) = X.

b. Since D(T ) = X is closed, there follows that T is closed, see
Theorem 7.21, and with part ii.a of this Lemma, the state-
ment follows.

�
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The resolvent set ρ(T ) of a bounded linear operator T on a complex Banach
Space X is open; hence the spectrum σ(T ) is closed.

Theorem 12.2

Proof of Theorem 12.2

Let’s start with the last part of the proposition.
If ρ(T ) is open, then its complement ρc(T ) = C \ ρ(T ) = σ(T ) is closed.
If ρ(T ) = ∅, it is open. ( There will be proved that ρ(T ) 6= ∅, see ??)
So let ρ(T ) 6= ∅ and let λ0 ∈ ρ(T ). For any λ ∈ C, there can be written

Tλ = Tλ0 − (λ− λ0)I = Tλ0(I − (λ− λ0)T−1
λ0

), (12.5)

so formula 12.5 can be written in the form

Tλ = Tλ0V where V = I − (λ− λ0)Rλ0(T ). (12.6)

Since λ0 ∈ ρ(T ) and T is bounded, follows with Lemma 12.1,part ii.b that
Rλ0(T ) is bounded.
With Theorem 7.12, the Neumann series, the inverse of V is given by

V −1 =
∞∑
n=0

((λ− λ0)Rλ0(T ))n =
∞∑
n=0

(λ− λ0)nRλ0(T )n.

Furthermore V −1 is bounded, for all λ with ‖ (λ− λ0)Rλ0(T ) ‖< 1, so for all
λ with

|(λ− λ0)| < 1
‖ Rλ0(T ) ‖ . (12.7)

SinceRλ0(T ) is bounded, there follows that for every λ, which satisfies inequality 12.7,
Tλ has a bounded inverse

Rλ(T ) = T−1
λ = (Tλ0 V )−1 = V −1Rλ0(T ).

So inequality 12.7 gives a neighbourhood of λ0, consisting of regular values
λ of T . λ0 ∈ ρ(T ) was arbitrary chosen, so ρ(T ) is open.
�



317

The spectrum σ(T ) of a bounded linear operator T on a complex Banach
Space X is compact.

Theorem 12.3

Proof of Theorem 12.3

If |λ| > ‖ T ‖ then ‖ T ‖
|λ|

< 1 and the operator Tλ = âĹŠÎż(IâĹŠT
λ

) has the
inverse

Rλ(T ) = T−1
λ = −

∞∑
n=0

λ(−n−1)Tn,

use Theorem 7.12 and therefore

σ(T ) ⊂ {z ∈ C | |z| ≤ ‖ T ‖}.

So σ(T ) is bounded and in Theorem 12.2 is proved that σ(T ) is closed, so

σ(T ) is compact. �

12.6 Banach Algebras

Reading about Spectral Theory and very fast there will be the confrontation
with the Banach Algebras. Speaking about a spectrum of an operator T , that
operator will be an linear operator from some space X to the same space X.
Otherwise there can not be spoken about eigenvectors, eigenspaces, invariant
subspaces and so on.
The space L(X,X) is the Vector Space of all linear operators of X into itself
and that means that if S, T ∈ L(X,X), there can also be spoken about a
product between the operators S and T , see Definition ??.
Combining the linearity of the space L(X,X) and the possibility to define
products between linear operators gives the possibility to speak about an al-
gebra.
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An algebra over K is a linear space A over K together with a mapping
(x, y)→ xy of A× A into A, that satisfies for every x, y, z ∈ A and
for all α ∈ K:

Alg 1: x(yz)= (xy)z,

Alg 2: x(y+z)=xy+yz, (x+y)z=xz+yz,

Alg 3: (αx)y=α(xy)=x(αy).

Definition 12.10

Let X be a linear space over K and for L(X,X), see Definition 7.8 and
take Y = X.
L(X,X) with the product, defined by the composition

(ST )(x) = S(T (x)), for every x ∈ X,

is an algebra, also denoted by L(X).

Example 12.8

Be careful in the next definition when reading 0. There can be meant the
scalar 0 of the field K, or there is meant the 0-element of the algebra A. From
the text should be clear what is meant.

Let A be an algebra over K. An algebra seminorm is a mapping
p : A→ R such that for all x, y ∈ A and α ∈ K:

ASN 1: p(x) ≥ 0,

ASN 2: p(αx) = | α | p(x),

ASN 3: p(x + y) ≤ p(x) + p(y),

ASN 4: p(xy) ≤ p(x)p(y).

Definition 12.11
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Let A be an algebra over K. By an algebra norm is meant a mapping
‖ · ‖: A→ R such that:

AN 1: (A, ‖ · ‖) is a Normed Space over K,

AN 2: ‖ xy ‖≤‖ x ‖‖ y ‖ for all x, y ∈ A.

Definition 12.12

A Normed Algebra is a pair (A, ‖ · ‖), where A is non-zero algebra and
‖ · ‖ is a given algebra-norm on A.

A Banach Algebra is Normed Algebra that is complete in its norm ( i.e.
it is Banach Space).

By an Unital Normed (or Banach) Algebra is meant a Normed ( respec-
tively Banach) Algebra with an identity element IA such that

UA 1: ‖ IA ‖= 1.

Definition 12.13
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An important class of Banach Algebras is made up C[a, b], the continuous
functions on the compact interval [a, b].
The algebraic operations are the usual pointwise addition and the multipli-
cation of functions

1. (f+ g)(t)= f(t)+ g(t),

2. (f·g)(t)= f(t) · g(t).
The norm is defined by ‖ f ‖∞= supx∈[a.b] | f(t) |, note that:

‖ f · g ‖∞≤‖ f ‖∞ · ‖ g ‖∞ .

Further is C[a, b], in the given norm, a Banach Space, so A = (C[a, b], ‖
· ‖∞) is a Banach Algebra.
The constant function 1 is the identity of A, so it is also a Unital Banach
Algebra.

Example 12.9

12.6.1 Complexification of real Normed Algebras

The theory of Banach Algebras is most of the time concerned with algebras
over the complex numbers. The study of real algebras can be reduced to a
study of complex algebras. The real algebra A will be embedded isometrically
and isomorphically in a certain complex algebra AC.
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The complex algebra AC is the cartesian product A×A with the algebraic
operations similar as in the field C, the element (x, y) behaves like x + i y, so

a. (x, y)+ (u, v)= (x+u, y+v),
b. (α+iβ)(x, y)= (α x -β y,α y+β x),
c. (x, y)·(u, v)= (x u - y v, x v+yu),

for all x, y, u, v ∈ A and α, β ∈ R.
The mapping x→ (x, 0) is an isomorphism of A into AC.
The algebra AC is the complexification of A.

Definition 12.14

There is a little problem with the requirement of an isometric embedding,
but that will be solved. That problem is may illustrative for the fact that
sometimes is required that the norm of the identity has to be one, see in the
definition of a normed algebra ii: 1.
Let’s define

| (x, y) |= ‖ x ‖ + ‖ x ‖, (12.8)

and define

‖ (x, y) ‖= sup
θ

(| exp (iθ) (x, y) |), (12.9)

Now the AC becomes a complex Normed Algebra, with ‖ (x, y) ‖ as norm. If
the algebra A has the identity 1 with norm 1, then (1, 0) is an identity for AC,
but ‖ (1, 0) ‖= supθ(| cos (θ) | + | sin (θ) |) =

√
2 6= 1.

Now first a theorem about the comlexification of an arbitrary real Normed
Vector Space X and after that the complexification of an real Normed Alge-
bra A.
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Let XC be the complexification of an arbitrary real Normed Vector Space X.
Then XC can be given a norm ‖ (x, y) ‖ so that is a complex Normed Vector
Space wit the following properties:

i. The isomorphism x→ (x, 0) of X into XC is an isometry.
ii. XC is a Banach Space if and only if X is a Banach Space.
iii. Let T ∈ BL(X,X) and define T ‘(x, y) = (T (x), T (y)) for

(x, y) ∈ XC, then the mapping T → T ‘ is an isometric iso-
morhism of the algebra BL(X,X) into BL(XC, XC).

Theorem 12.4

Proof of Theorem 12.4

The properties (i) and (ii):
XC is the Cartesian product X × X, with the same operations as defined in
ii.a and ii.b. With the use of 12.8, XC becomes a real Normed Vector Space
with | (x, y) | as norm. It is easy to observe that XC is complete if and only
if X is complete in its norm.
Now define

‖ (x, y) ‖= 1√
2

sup
θ

(| exp (iθ) (x, y) |),

so XC becomes a complex Normed Vector Space, with as norm ‖ (x, y) ‖. (
The same in the case of Banach Spaces.) Since ‖ x ‖= | (x, 0) |= ‖ (x, 0) ‖
the embedding x → (x, 0) of X into XC becomes an isometry. The norms
| (x, y) | and ‖ (x, y) ‖ are equivalent since

1√
2
| (x, y) | ≤ ‖ (x, y) ‖≤ | (x, y) | .

Propertie (iii):
That T ‘ is complex linear on XC is easy to check, evenas the fact that T → T ‘

is a real isomorphism of BL(X,X) into the algebra of BL(XC, XC).
In the following inequality is only spoken about T

‖ T ‖= sup
x

‖ T (x) ‖
‖ x ‖

≤ sup
x,y

‖ T (x) ‖ + ‖ T (y) ‖
‖ x ‖ + ‖ y ‖ ≤‖ T ‖,

since
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| T ‘ |= sup
(x,y)

| T ‘(x, y) |
| (x, y) | = sup

x,y

‖ T (x) ‖ + ‖ T (y) ‖
‖ x ‖ + ‖ y ‖ ,

there is obtained that ‖ T ‖= | T ‘ |. Furthermore

‖ T ‘(x, y) ‖= 1√
2

sup
θ

(| exp (iθ))T ‘(x, y) |) = 1√
2

sup
θ

(| T ‘(exp (iθ))(x, y)) |)

≤ | T
‘ |√
2

sup
θ

(| exp (iθ)(x, y) |) = ‖ T ‖ ‖ (x, y) ‖ .

Hence ‖ T ‘ ‖≤‖ T ‖, but also ‖ T (x) ‖= ‖ T ‘(x, 0) ‖≤‖ T ‘ ‖ ‖ x ‖, so that

‖ T ‖≤‖ T ‘ ‖. Therefore ‖ T ‖= ‖ T ‘ ‖. �

12.7 Examples of Spectra

In this chapter there will be given examples of spectra of all kind of linear
operators.

12.7.1 Right-, Left-Shift Operators

Let’s define the right-shift operator RS : `p → `p, with 1 ≤ p <∞, by

RS(x1, x2, x3, · · ·) = (0, x1, x2, x3, · · ·),

sometimes also called the forward-shift operator. Since (`p)′ = `q, with
1
p

+ 1
q

= 1, see Theorem 5.15, the duality is defined by

(x, y) =
∞∑
i=1

xi yi

for all x ∈ `p and y ∈ `q. It is easy to verify that
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(RS(x), y) =
∞∑
1
xi yi+1 = (x,RS∗(y)).

That means that the adjoint operator RS∗ is defined by

RS∗(y1, y2, y3, · · ·) = (y2, y3, · · ·) = LS(y1, y2, y3, · · ·).

The adjoint operator RS∗ is also known as the left-shift operator, or the
backward-shift operator.

Let 1 < p <∞:

i. Point spectrum of RS:
Since RS(x) = λx ⇐⇒ (0, x1, x2, · · ·) = λ (x1, x2, · · ·) ⇐⇒
x = (0, 0, · · ·), so the point spectrum of RS is empty,
Pσ(RS) = ∅.

ii. Point spectrum of LS:
Since LS(x) = λx ⇐⇒ (x2, x3, · · ·) = λ (x1, x2, · · ·) ⇐⇒
xi+1 = λxi for all i ∈ N ⇐⇒ x = (x1, x2, x3, · · ·) = (1, λ, λ2, · · ·)
with λ ∈ C, x ∈ `q if | λ |< 1.
If | λ |= 1, it can not be an eigenvalue of LS = RS∗.

iii. Spectral radius of RS:
Since ‖ (RS)n(z) ‖p=‖ z ‖p,

r(RS) = lim
n→∞

‖ (RS)n ‖(
1
n ) = ‖ RS ‖= 1.

That means that σ(RS) = σ(LS) = {λ ∈ C | | λ |≤ 1}
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It has to become a chapter with exercises of all kind, most of the time also
with a solution. Problems can be solved on different ways. So sometimes there
are given several ways to solve.
First there has to be thought about how to solve an exercise. If the solution
of an exercise is read, before solving such an exercise, the step about how an
exercise should be resolved is beaten. In practice the solution of a problem
will never be earlier than the problem is asked. But in a lot of lecture notes
and most eductional books, they exist unfortunately at the same time.
The most important thing of solving problems is to understand the problem
and to know what can be done to solve such a problem. In an exercise is usu-
ally given the information needed to solve such an exercise. But for problems
in practice that is most of the time not the case.

13.1 Lecture Exercises

Ex-1:

If f(x) = f(y) for every bounded linear functional f on a Normed
Space X.
Show that x = y.

Ex-2:

Define the metric space B[a, b], a < b, under the metric

d(f, g) = sup
x∈[a,b]

{| f(x) − g(x) |},

by all the bounded functions on the compact interval [a, b].
If f ∈ B[a, b] then there exists some constant M < ∞ such that
| f(x) | ≤M for every x ∈ [a, b].
Show that (B[a, b], d) is not separable.
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Ex-3:

Let (X, d) be a Metric Space and A a subset of X. Show that
x0 ∈ A⇔ d(x0, A) = 0.

Ex-4:

Let X be a Normed Space and X is reflexive and separable. Show
that X ′′ is separable.

Ex-5:

Given is some sequence {un}n∈N.
Prove the following theorems:

a. First Limit-Theorem of Cauchy:
If the

lim
n→∞

(un+1 − un)

exists, then the limit

lim
n→∞

un
n

exists and

lim
n→∞

un
n

= lim
n→∞

(un+1 − un).

b. Second Limit-Theorem of Cauchy:
If un > 0 and the limit

lim
n→∞

un+1
un

exists, then the limit

lim
n→∞

n√un

exists and

lim
n→∞

n√un = lim
n→∞

un+1
un

.
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Ex-6:

Given is some sequence {un}n∈N and limn→∞ un = L exists then
also

lim
n→∞

1
n

n∑
i=1

ui = L.

Ex-7:

X and Y are Normed Spaces.
Let T : X → Y be a linear operator.
Then the following are equivalent:

i. For every bounded set S of X, T (S) is bounded in Y .

ii. The set {T (x) | ‖ x ‖= 1} is bounded in Y .

iii. There exists a c > 0 such that ‖ T (x) ‖≤ c ‖ x ‖ for all
x ∈ X.

iv. T is uniformly continuous.

v. T is continuous at 0.
Solution, see Sol- ii: 7.
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13.2 Revision Exercises

Ex. 1:
What is a "norm"?
For solution, see Sol. ii:1.

Ex. 2:
What does it mean if a Metric Space is "complete"?
For solution, see Sol. ii:2.

Ex. 3:
Give the definition of a "Banach Space" and give an example.
For solution, see Sol. ii:3.

Ex. 4:
What is the connection between bounded and continuous linear maps?
For solution, see Sol. ii:4.

Ex. 5:
What is the Dual Space of a Normed Space?
For solution, see Solution ii:5.

Ex. 6:
What means "Hilbert space"? Give an example.
For solution, see Sol. ii:6.
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13.3 Exam Exercises

Ex-1: Consider the normed linear space (c, ‖ · ‖∞) of all convergent se-
quences, i.e., the space of all sequences x = {λ1, λ2, λ3, . . .} for
which there exists a scalar Lx such that λn → Lx as n → ∞.
Define the functional f on c by

f(x) = Lx.

a. Show that |Lx | ≤‖ x ‖∞ for all x ∈ c.

b. Prove that f is a continous linear functional on (c, ‖ · ‖∞).

Solution, see Sol- ii: 1.

Ex-2: Consider the Hilbert space L2[0,∞) of square integrable real-valued
functions, with the standard inner product

〈f, g〉 =
∫ ∞

0
f(x)g(x)dx = lim

R→∞

∫ R

0
f(x)g(x)dx.

Define the linear operator T : L2[0,∞)→ L2[0,∞) by

(Tf)(x) = f(x5 ) where f ∈ L2[0,∞) and x ∈ [0,∞).

a. Calculate the Hilbert-adjoint operator T ∗.
Recall that 〈Tf, g〉 = 〈f, T ∗(g)〉 for all f, g ∈ L2[0,∞).

b. Calculate the norm of ‖ T ∗(g) ‖ for all g ∈ L2[0,∞) with
‖ g ‖= 1.

c. Calculate the norm of the operator T .

Solution, see Sol- ii: 2.

Ex-3: Let A : [a, b] → R be a continuous function on [a, b]. Define the
operator T : L2[a, b]→ L2[a, b] by

(Tf)(t) = A(t)f(t).

a. Prove that T is a linear operator on L2[a, b].

b. Prove that T is a bounded linear operator on L2[a, b].
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Solution, see Sol- ii: 3.

Ex-4: Show that there exist unique real numbers a0 and b0 such that for
every a, b ∈ R holds∫ 1

0
|t3 − a0t− b0|2dt ≤

∫ 1

0
|t3 − at− b|2dt.

Moreover, calculate the numbers a0 and b0.
Solution, see Sol- ii: 4.

Ex-5: Consider the inner product space C[0, 1] with the inner product

(f, g) =
∫ 1

0
f(t)g(t)dt.

The sequence of functions {fn}n∈N is defined by

fn(t) =


1 if 0 ≤ t ≤ 1

2
1− n(t− 1

2) if 1
2 < t < 1

2 + 1
n

0 if 1
2 + 1

n ≤ t ≤ 1

a. Sketch the graph of fn.

b. Calculate the pointwise limit of the sequence {fn} and show
that this limit function is not an element of C[0, 1].

c. Show that the sequence {fn} is a Cauchy sequence.

d. Show that the the sequence {fn} is not convergent.

Solution, see Sol- ii: 5.

Ex-6: Define the operator A : `2 → `2 by

(Ab)n = (3
5)n bn

for all n ∈ N and bn ∈ R and b = (b1, b2, · · ·) ∈ `2.

a. Show that A is a linear operator on `2.

b. Show that A is a bounded linear operator on `2 and determine
‖ A ‖. (The operator norm of A.)
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c. Is the operator A invertible?

Solution, see Sol- ii: 6.

Ex-7: Given is the following function f : R3 → R

f(a, b, c) =
∫ π

−π
| sin ( t2)− a− b cos (t)− c sin (t)|2dt,

which depends on the real variables a, b and c.

a. Show that the functions f1(t) = 1, f2(t) = cos (t) and f3(t) =
sin (t) are linear independent on the interval [−π, π].

b. Prove the existence of unique real numbers a0, b0 and c0 such
that

f(a0, b0, c0) ≤ f(a, b, c)

for every a, b, c ∈ R. (Don’t calculate them!)

c. Explain a method, to calculate these coefficients a0, b0 and
c0. Make clear, how to calculate these coefficients. Give the
expressions you need to solve, if you want to calculate the
coefficients a0, b0 and c0.

Solution, see Sol- ii: 7.

Ex-8: Consider the space C[0, 1], with the sup-norm ‖ . ‖∞,

‖ g ‖∞= sup
x∈[0,1]

|g(x)| (g ∈ C[0, 1]).

The sequence of functions {fn}n∈N is defined by

fn(x) = arctan(nx), x ∈ [0, 1].

a. Sketch the graph of fn.
For n→∞, the sequence {fn} converges pointwise to a function f .

b. Calculate f and prove that f is not an element of C[0, 1].
Let’s now consider the normed space L1[0, 1] with the L1-norm

‖ g ‖1=
∫ 1

0
|g(x)|dx (g ∈ L1[0, 1]).
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c. Calculate

lim
n→∞

∫ 1

0
|f(t) − fn(t)|dt

(Hint:
∫

arctan (a x) dx = x arctan (a x)− 1
2 a ln (1 + (a x)2) +

C, with C ∈ R (obtained with partial integration))

d. Is the sequence {fn}n∈N a Cauchy sequence in the space L1[0, 1]?

Solution, see Sol- ii: 8.

Ex-9: Consider the normed linear space `2. Define the functional f on `2
by

f(x) =
∞∑
n=1

(3
5)(n−1)xn,

for every x = (x1, x2, · · ·) ∈ `2.

a. Show that f is a linear functional on `2.

b. Show that f is a continous linear functional on `2.

Solution, see Sol- ii: 9.

Ex-10: Consider A : L2[−1, 1]→ L2[−1, 1] given by

(Af)(x) = x f(x).

a. Show that (Af) ∈ L2[−1, 1] for all f ∈ L2[−1, 1].

b. Calculate the Hilbert-adjoint operator A∗. Is the operator A
self-adjoint?

Solution, see Sol- ii: 10.

Ex-11: Define the operator T : C[−1, 1] −→ C[0, 1] by

T (f)(t) =
∫ t

−t
(1 + τ2) f(τ) dτ

for all f ∈ C[−1, 1].
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a. Take f0(t) = sin (t) and calculate T (f0)(t).

b. Show that T is a linear operator on C[−1, 1].

c. Show that T is a bounded linear operator on C[−1, 1].

d. Is the operator T invertible?

Solution, see Sol- ii: 11.

Ex-12: Define the following functional

F (x) =
∫ 1

0
τ x(τ) dτ,

on (C[0, 1], ‖ · ‖∞).

a. Show that F is a linear functional on (C[0, 1], ‖ · ‖∞).

b. Show that F is bounded on (C[0, 1], ‖ · ‖∞).

c. Take x(t) = 1 for every t ∈ [0, 1] and calculate F (x).

d. Calculate the norm of F .

Solution, see Sol- ii: 12.

Ex-13: Let x1(t) = t2, x2(t) = t and x3(t) = 1.

a. Show that {x1, x2, x3} is a linear independent set in the space
C[−1, 1].

b. Orthonormalize x1, x2, x3, in this order, on the interval [−1, 1]
with respect to the following inner product:

< x, y >=
∫ 1

−1
x(t) y(t) dt.

So e1 = αx1, etc.

Solution, see Sol- ii: 13.
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Ex-14: Let H be a Hilbert space, M ⊂ H a closed convex subset, and (xn)
a sequence in M , such that ‖ xn ‖→ d, where d = infx∈M ‖ x ‖,
this means that ‖ x ‖≥ d for every x ∈M .

a. Show that (xn) converges in M .
( Hint: (xn + xm) = 2 (1

2xn + 1
2xm))

b. Give an illustrative example in R2.

Solution, see Sol- ii: 14.

Ex-15: Some questions about `2 and `1.

a. Give a sequence a ∈ `2, but a 6∈ `1.

b. Show that `1 ⊂ `2.

Solution, see Sol- ii: 15.

Ex-16: Define the operator A : `2 → `2 by

(Aa)n = 1
n2 an for all n ∈ N, an ∈ C and a = (a1, a2, · · ·) ∈ `2.

a. Show that A is linear.

b. Show that A is bounded; find ‖ A ‖.

c. Is the operator A invertible? Explain your answer.

Ex-17: Given are the functions fn : [−1,+1]→ R, n ∈ N,

fn(x) =
√

( 1
n

+ x2).

a. Show that fn : [−1,+1] → R is differentiable and calculate
the derivative ∂fn

∂x .

b. Calculate the pointwise limit g : [−1,+1]→ R, i.e.

g(x) = lim
n→∞

fn(x),

for every x ∈ [−1,+1].
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c. Show that

lim
n→∞

‖ fn − g ‖∞= 0,

with ‖ · ‖∞, the sup-norm on C[−1,+1].

d. Converges the sequence {∂fn∂x }n∈N in the normed space (C[−1,+1], ‖
· ‖∞)?

Ex-18: Let C[−1, 1] be the space of continuous functions at the interval
[−1, 1], provided with the inner product

〈f, g〉 =
∫ +1

−1
f(τ) g(τ) dτ

and ‖ f ‖=
√
〈f, f〉 for every f, g ∈ C[−1, 1].

Define the functional hn : C[−1, 1]→ R, n ∈ N by

hn(f) =
∫ +1

−1
(τn) f(τ) dτ.

a. Show that the functional hn, n ∈ N is linear.

b. Show that the functional hn, n ∈ N is bounded.

c. Show that

lim
n→∞

‖ hn ‖= 0.

Solution, see Sol- ii: 17.

Ex-19: Let (ej) be an orthonormal sequence in a Hilbert space H, with
inner product 〈·, ·〉.

a. Show that if

x =
∞∑
j=1

αj ej and y =
∞∑
j=1

βj ej

then
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〈x, y〉 =
∞∑
j=1

αj βj ,

with x, y ∈ H.

b. Show that
∑∞

j=1 |αj βj | converges.

Ex-20: In L2[0, 1], with the usual inner product 〈·, ·〉, is defined the linear
operator T : f → T (f) with

T (f)(x) = 1
4
√

(4x)
f(
√
x ).

a. Show that T is a bounded operator and calculate ‖ T ‖.

b. Calculate the adjoint operator T ∗ of T .

c. Calculate ‖ T ∗ ‖.

d. Is T ∗ T = I, with I the identity operator?

Solution, see Sol- ii: 16.

Ex-21: For n ∈ N , define the following functions gn, hn, kn : R→ R gn(x) =
√
n if 0 < x < 1

n and 0 otherwise,
hn(x) = n if 0 < x < 1

n and 0 otherwise,
kn(x) = 1 if n < x < (n + 1) and 0 otherwise.

a. Calculate the pointwise limits of the sequences (gn)(n∈N), (hn)(n∈N)
and (kn)(n∈N).

b. Show that none of these sequences converge in L2(R).
The norm on L2(R) is defined by the inner product
〈 f, g〉 =

∫∞
−∞ f(x) g(x) dx.

Ex-22: Consider the space R∞ of all sequences, with addition and (scalar)
multiplication defined termwise.
Let S : R∞ → R∞ denote a shift operator, defined by S((an)(n∈N) =
(an+ 1)(n∈N) for all (an)(n∈N) ∈ R∞. The operator S working on the
sequence (a1, a2, a3, . . .) has as image the sequence (a2, a3, a4, . . .).
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a. Prove that S2 is a linear transformation.

b. What is the kernel of S2?

c. What is the range of S2?

Ex-23: Let L2[−1, 1] be the Hilbert space of square integrable real-valued
functions, on the interval [−1,+1], with the standard inner product

〈 f, g〉 =
∫ 1

−1
f(x) g(x) dx

Let a, b ∈ L2[−1, 1], with a 6= 0, b 6= 0 and let the operator
T : L2[−1, 1] −→ L2[−1, 1] be given by

(T f)(t) = 〈f, a〉 b(t)

for all f ∈ L2[−1, 1].

a. Prove that T is a linear operator on L2[−1, 1].

b. Prove that T is a continuous linear operator on L2[−1, 1].

c. Compute the operator norm ‖ T ‖.

d. Derive the null space of T , N (T ) = {g ∈ L2[−1, 1] |T (g) =
0} and the range of T , R(T ) = {T (g) | g ∈ L2[−1, 1]}.

e. What condition the function a ∈ L2[−1, 1] ( a 6= 0) has to
satisfy, such that the operator T becomes idempotent, that is
T 2 = T .

f. Derive the operator S : L2[−1, 1] −→ L2[−1, 1] such that

〈T (f), g〉 = 〈 f, S(g)〉

for all f, g ∈ L2[−1, 1].

g. The operator T is called self-adjoint, if T = S. What has
to be taken for the function a, such that T is a self-adjoint
operator on L2[−1, 1].

h. What has to be taken for the function a ( a 6= 0), such that
the operator T becomes an orthogonal projection?
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Ex-24: a. Let V be a vectorspace and let {Vn|n ∈ N} be a set of linear

subspaces of V . Show that
∞⋂
n=1

Vn is a linear subspace of V .

b. Show that c00 is not complete in `1.

Ex-25: In L2[0, 1], with the usual inner product (·, ·), is defined the linear
operator S : u→ S(u) with

S(u)(x) = u(1− x).

Just for simplicity, the functions are assumed to be real-valued.
The identity operator is notated by I. (I(u) = u for every u ∈
L2[0, 1].)
An operator P is called idempotent, if P 2 = P .

a. Compute S2 and compute the inverse operator S−1 of S.

b. Derive the operator S∗ : L2[0, 1] −→ L2[0, 1] such that

(S(u), v) = (u, S∗(v))

for all u, v ∈ L2[0, 1]. The operator S∗ is called the adjoint
operator of S. Is S selfadjoint? ( selfadjoint means that:
S∗ = S.)

c. Are the operators 1
2(I + S) and 1

2(I − S) idempotent?

d. Given are fixed numbers α, β ∈ R with α2 6= β2. Find the
function u : [0, 1]→ R such that

αu(x) + β u(1− x) = sin(x).

( Suggestion(s): Let v ∈ L2[0, 1]. What is 1
2(I + S)v? What

is 1
2(I − S)v? What is 1

2(I + S)v + 1
2(I − S)v? What do you

get, if you take v(x) = sin(x)?)
Solution, see Sol- ii: 20.

Ex-26: The functional f on (C[−1, 1], ‖ · ‖∞) is defined by
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f(x) =
∫ 0

−1
x(t) dt −

∫ 1

0
x(t) dt

for every x ∈ C[−1, 1].

a. Show that f is linear.

b. Show that f is continuous.

c. Show that ‖ f ‖= 2.

d. What is N (f)?
N (f) = {x ∈ C[−1, 1] | f(x) = 0} is the null space of f .

Solution, see Sol- ii: 19.

Ex-27: Some separate exercises, they have no relation with each other.

a. Show that the vector space C[−1, 1] of all continuous functions
on [−1, 1], with respect to the ‖ · ‖∞-norm, is the direct sum
of the set of all even continuous functions and the set of all
odd continuous functions on [−1, 1].

b. Given are the functions fn : [−1,+1]→ R, n ∈ N,

fn(t) =


1 for −1 ≤ t ≤ − 1

n

−nx for − 1
n
< t <

1
n

−1 for 1
n
≤ t ≤ 1.

Is the sequence {fn}n∈N a Cauchy sequence
in the Banach space (C[−1, 1], ‖ · ‖∞)?

Solution, see Sol- ii: 18.

Ex-28: Just some questions.

a. What is the difference between a Normed Space and a Banach
Space?

b. For two elements f and g in an Inner Product Space holds that
‖ f +g ‖2=‖ f ‖2 + ‖ g ‖2. What can be said about f and g?
What can be said about f and g, if ‖ f + g ‖=‖ f ‖ + ‖ g ‖?
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c. What is the difference between a Banach Space and a Hilbert
Space?

Ex-29: The sequence x = (xn)n∈N and the sequence y = (yn)n∈N are
elements of c, with c the space of all convergent sequences, with
respect to the ‖ · ‖∞-norm. Assume that

lim
n→∞

xn = α and lim
n→∞

yn = β.

Show that

(αx+ β y) ∈ c.

Solution, see Sol- ii: 21.

Ex-30: Let F(R) be the linear space of all the functions f with f : R→ R.
Consider f1, f2, f3 in F(R) given by

f1(x) = 1, f2(x) = cos2 (x), f3(x) = cos ( 2x).

a. Prove that f1, f2 and f3 are linear dependent.

b. Prove that f2 and f3 are linear independent.
Solution, see Sol- ii: 22.

Ex-31: Consider the operator A : `2 → `2 defined by

A(a1, a2, a3, · · ·) =
(a1 + a3, a2 + a4, a3 + a5, · · · , a2k−1 + a2k+1 , a2k + a2k+2, · · ·),

with `2 = {(a1, a2, a3, · · ·) | ai ∈ R and
∑∞

i=1 a
2
i < ∞}.

a. Prove that A is linear.

b. Prove that A is bounded.

c. Find N(A).
Solution, see Sol- ii: 23.
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Ex-32: The linear space P2 consists of all polynomials of degree ≤ 2. For
p, q ∈ P2 is defined

(p, q) = p(−1)q(−1) + p(0)q(0) + p(1)q(1).

a. Prove that (p, q) is an inner product on P2.

b. Prove that q1, q2 and q3, given by

q1(x) = x2 − 1, q2(x) = x2 − x, q3(x) = x2 + x

are mutually orthogonal.

c. Determine ‖ q1 ‖, ‖ q2 ‖, ‖ q3 ‖.
Solution, see Sol- ii: 24.

13.4 Solutions Lecture Exercises

Sol-1: f(x) − f(y) = f(x− y) = 0 for every f ∈ X ′ , then

‖ x− y ‖= sup
{f∈X ′ , f 6=0}

{|f(x− y)|
‖ f ‖

} = 0,

see theorem 4.13. Hence, x = y. �

Sol-2: For each c ∈ [a, b] define the function fc as follows

fc(t) =
{

1 if t = c
0 if t 6= c

.

Then fc ∈ B[a, b] for all c ∈ [a, b]. Let M be the set containing
all these elements, M ⊂ B[a, b]. If fc, fd ∈ M with c 6= d then
d(fc, fd) = 1.
Suppose that B[a, b] has a dense subset D. Consider the collection
of balls B 1

3
(m) with m ∈ M . These balls are disjoint. Since D is

dense in B[a, b], each ball contains an element of D and D is also
countable, so the set of balls is countable.
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The interval [a, b] is uncountable, so the set M is uncountable and
that is in contradiction with the fact that the set of disjoint balls is
countable.
So the conclusion is that B[a, b] is not separable.

Sol-3: Has to be done.

Sol-4: The Normed Space X is separable. So X has a countable dense
subset S.
If f ∈ X there is a countable sequence {fn}n∈N, with fn ∈ S, such
that

lim
n→∞

‖ fn − f ‖= 0.

X is reflexive, so the canonical map C : X → X
′′ is injective and

onto. Let z ∈ X ′′ , then there is some y ∈ X, such that z = C(y).
X is separable, so there is some sequence {yi}i∈N ⊂ S such that
limi∈N ‖ yi − y ‖= 0. This means that

0 = lim
i→∞

‖ yi − y ‖= lim
i→∞

‖ C(yi − y) ‖= lim
i→∞

‖ C(yi) − z ‖ .

S is countable, that means that C(S) is countable. There is found
a sequence {C(yi)}i∈N ⊂ C(S) in X ′′ , which converges to z ∈ X ′′ .
So C(S) lies dense in X ′′ , since z ∈ X ′′ was arbitrary chosen, so X ′′

is separable.

Sol-5: Every proof wil be done in several steps.
Let ε > 0 be given.

ii.5.a

1. The limit limn→∞(un+1 − un) exist, so there is some L
such that limn→∞(un+1 − un) = L. This means that
there is some N(ε) such that for every n > N(ε):

L − ε < un+1 − un < L + ε.

2. Let M be the first natural natural number greater then
N(ε) such that

L − ε < uM+1 − uM < L + ε.

then
L − ε < u(M+1+i) − u(M+i) < L + ε,
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for i = 0, 1, 2, · · · , n− (M + 1), with n > (M + 1).
Summation of these inequalities gives that:

(n − M) (L − ε) < un − uM < (n − M) (L + ε),

so

(L− ε) + uM − M (L − ε)
n

<
un
n

< (L+ ε) + uM − M (L + ε)
n

.

3. um, M and ε are fixed numbers, so

lim
n→∞

uM − M (L − ε)
n

= 0

and

lim
n→∞

uM − M (L + ε)
n

= 0.

That means that there are numbers N1(ε) and N2(ε) such
that

|uM − M (L − ε)
n

| < ε

and

|uM − M (L + ε)
n

| < ε.

Take N3(ε) > max(N(ε), N1(ε), N2(ε)) then

(L − 2 ε) < un
n

< (L + 2 ε),

for every n > N3(ε), so

lim
n→∞

un
n

= L.

ii.5.b
It can be proven with ε and Ni(ε)’s, but it gives much work.
Another way is, may be, to use the result of part ii.5.a?
Since un > 0, for every n ∈ N, ln (un) exists.
Let vn = ln (un) then limn→∞(vn+1− vn) = limn→∞ ln (un+1

un
)

exists, because limn→∞
un+1
un

exists. The result of part ii.5.a

can be used.
First:
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lim
n→∞

vn
n

= lim
n→∞

ln (un)
n

= lim
n→∞

ln n√un,

and second:

lim
n→∞

(vn+1 − vn) = lim
n→∞

(ln (un+1) − ln (un))

= lim
n→∞

ln (un+1
un

),

and with the result of ii.5.a:

lim
n→∞

ln n√un = lim
n→∞

ln (un+1
un

),

or,

lim
n→∞

n√un = lim
n→∞

un+1
un

.

Sol-6: Define

sn =
n∑
i=1

ui,

then is

lim
n→∞

(sn+1 − sn) = lim
n→∞

(
n+1∑
i=1

ui −
n∑
i=1

ui) = lim
n→∞

un+1 = L.

Using the result of exercise ii.5.a gives that

lim
n→∞

sn
n

= lim
n→∞

1
n

n∑
i=1

ui = L.

Sol-7: a. (i)=⇒(ii):
Let S = {x ∈ X | ‖ x ‖= 1} then S is bounded and so
T (S) = {T (x) | ‖ x ‖= 1} is bounded.

b. (ii)=⇒(iii):

Let x ∈ X then ‖ x

‖ x ‖
‖= 1. So there is some c > 0,

independent of x, such that ‖ T ( x

‖ x ‖
) ‖≤ c. Since T is

linear operator, there follows that ‖ T (x) ‖≤ c ‖ x ‖.
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c. (iii)=⇒(iv):

Let ε > 0 and take δ = ε

2 c ,
then for every x, y ∈ X with ‖ x − y ‖< δ
‖ T (x) − T (y) ‖= ‖ T (x − y) ‖≤ c ‖ x − y ‖< ε.

d. (iv)=⇒(v):
T is uniform continuous, so T is continuous in x = 0.

e. (v)=⇒(i):
Let S be a bounded set in X, then there is some c > 0 such
that ‖ x ‖≤ c for all x ∈ S.
T is continuous in x = 0.
Take ε = 1, then there exists some δ(ε) > 0 such that for all
x ∈ X with ‖ x − 0 ‖< δ(ε), ‖ T (x) − T (0) ‖< ε, because
of the continuity of T in x = 0.

Let x ∈ S then ‖ x
c

δ(ε)
2 ‖< δ(ε) and ‖ T (x

c

δ(ε)
2 ‖< ε. This

means that T (S) is bounded, because ‖ T (x) ‖< 2 ε

δ(ε) c for
all x ∈ S.

Go back to exercise Ex. ii: 7.
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13.5 Solutions Revision Exercises

Sol. 1:
See definition 3.23.
Go back to exercise Ex. ii:1.

Sol. 2:
A Metric Space is complete if every Cauchy sequence converges in that
Metric Space.
Go back to exercise Ex. ii:2.

Sol. 3:
A Banach Space is a complete Normed Space, for instance C[a, b] with
the ‖ · ‖∞ norm.
Go back to exercise Ex. ii:3.

Sol. 4:
Bounded linear maps at Normed Spaces are continuous and continuous
maps at Normed Spaces are bounded, see theorem 7.2. Be careful,
use the mentioned theorem in a good way, be aware of the Normed
Spaces!
Go back to exercise Ex. ii:4.

Sol. 5:
See the section 4.5.
Go back to exercise Ex. ii:5.

Sol. 6:
For the definition, see 3.34. An example of a Hilbert Space is the `2,
see 5.2.4.
Go back to exercise Ex. ii:6.
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13.6 Solutions Exam Exercises
Some of the exercises are worked out into detail. Of other exercises the outline
is given about what has to be done.

Sol-1: a. Let x = {λ1, λ2, λ3, . . .} ∈ c, then |λi| ≤‖ x ‖∞ for all i ∈ N,
so |Lx| ≤‖ x ‖∞.

b. |f(x)| = |Lx| ≤‖ x ‖∞, so
|f(x)|
‖ x ‖∞

≤ 1,

the linear functional is bounded, so continuous on ‖ x ‖∞.

Sol-2: a. 〈Tf, g〉 = limR→∞
∫ R

0 f(x5 )g(x)dx = limR→∞
∫ R

5
0 f(y)g(5 y) 5dy =

〈f, T ∗g〉, so T ∗g(x) = 5 g(5x).

b. ‖ T ∗(g) ‖2 = limR→∞
∫ R

0 |5 g(5x)|2dx, so ‖ T ∗(g) ‖2 = 25 limR→∞
∫ 5R

0
1
5 |g(y)|2dy =

5 ‖ g ‖2 and this gives that ‖ T ∗ ‖=
√

5.

c. ‖ T ‖= ‖ T ∗ ‖.

Sol-3: a. Let f, g ∈ L2[a, b] and α ∈ R then T (f + g)(t) = A(t)(f +
g)(t) = A(t)f(t) +A(t)g(t) = T (f)(t) +T (g)(t) and T ((α f))(t) =
A(t)(α f)(t) = αA(t)(f)(t) = αT (f)(t).

b. ‖ (Tf) ‖≤‖ A ‖∞ ‖ f ‖, with ‖ · ‖∞ the sup-norm, A is
continuous and because [a, b] is bounded and closed, then ‖
A ‖∞= maxt∈[a,b] |A(t)|.

Sol-4: Idea of the exercise. The span of the system {1, t} are the poly-
nomials of degree less or equal 1. The polynomial t3 can be pro-
jected on the subpace span(1, t). Used is the normal inner product
〈f, g〉 =

∫ 1
0 f(t) g(t) dt. The Hilbert Space theory gives that the

minimal distance of t3 to the span(1, t) is given by the length of the
difference of t3 minus its projection at the span(1, t). This latter
gives the existence of the numbers a0 and b0 as asked in the exer-
cise.
The easiest way to calculate the constants a0 and b0 is done by
〈t3 − a0 t − b0, 1〉 = 0 and 〈t3 − a0 t − b0, t〉 = 0, because the
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difference (t3 − a0 t − b0) has to be perpendicular to span(1, t).

Sol-5: a. See figure 13.1.

Figure 13.1 fn certain values of n

b. Take x fixed and let n→∞, then

f(t) =
{

1 if 0 ≤ t ≤ 1
2

0 if 01
2 < t ≤ 1.

It is clear that the function f makes a jump near t = 1
2 , so

the function is not continuous.

c. There has to be looked to ‖ fn − fm ‖ for great values of
n and m. Exactly calculated this gives |m−n|√

(3m2 n)
. Remark:

it is not the intention to calculate the norm of ‖ fn − fm ‖
exactly!
Because of the fact that |fn(t) − fm(t)| ≤ 1 it is easily seen
that∫ 1

0
|fn(t) − fm(t)|2dt ≤

∫ 1

0
|fn(t) − fm(t)|dt ≤ 1

2( 1
n
− 1
m

)
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for all m > n. The bound is the difference between the areas
beneath the graphic of the functions fn and fm.
Hence, ‖ fn − fm ‖→ 0, if n and m are great.

d. The functions fn are continuous and the limit function f is
not continous. This means that the sequence {fn}n∈N does
not converge in the Normed Space (C[0, 1], ‖ · ‖), with ‖ g ‖
=
√
〈g, g〉.

Sol-6: a. Take two arbitrary elements c,d ∈ `2, let α ∈ R, show that{
A(c + d) = A(c) + A(d)
A(αc) = αA(c).

by writing out these rules, there are no particular problems.

b. Use the norme of the space `2 and

‖ A(b) ‖2 = (3
5)2(b1)2 + (3

5)4(b2)2 + (3
5)6(b3)2 + · · · ≤ (3

5)2 ‖ b ‖2,

so ‖ A(b) ‖≤ 3
5 ‖ b ‖.

Take p = (1, 0, 0, · · ·), then ‖ A(p) ‖= 3
5 ‖ p ‖, so ‖ A ‖=

3
5 ( the operator norm).

c. IfA−1 exists then (A−1(b))n = (5
3)n (b)n. Take b = (1, 1

2 ,
1
3 , · · ·) ∈

`2 and calculate ‖ A−1(b) ‖, this norm is not bounded, so
A−1(b) /∈ `2. This means that A−1 does not exist for every
element out of the `2, so A−1 does not exist.

Sol-7: a. Solve λ1 f1(t) + λ2 f2(t) + λ3 f3(t) = 0 for every t ∈ [−π, π].
If it has to be zero for every t then certainly for some partic-
ular t’s, for instance t = 0, t = π

2 , t = π and solve the linear
equations.

b. Same idea as the solution of exercise Ex- ii: 4. Working in
the Inner Product Space L2[−π, π]. Project sin( t2) on the
span(f1, f2, f3). The length of the difference of sin( t2) with
the projection gives the minimum distance. This minimizing
vector exists and is unique, so a0, b0, c0 exist and are unique.
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c. (sin ( t2)−a0−b0 cos (t)−c0 sin (t)) is perpendicular to f1, f2, f3,so
the inner products have to be zero. This gives three linear
equations which have to be solved to get the values of a0, b0
and c0.
The solution is rather simple a0 = 0, b0 = 0 and c0 = 8

3π .
Keep in mind the behaviour of the functions, if they are even
or odd at the interval [−π, π].

Sol-8: a. See figure 13.2.

Figure 13.2 fn certain values of n

b. Take x = 0 then fn(0) = 0 for every n ∈ N. Take x > 0 and
fixed then limn→∞ fn(x) = π

2 , the pointwise limit f is defined
by

f(x) =
{ 0 if x = 0
π

2 if 0 < x ≤ 1,

it is clear that the function f makes a jump in x = 0, so f is
not continuous at the interval [0, 1].

c.
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lim
n→∞

(
∫ 1

0
|π2 − arctan (nx)|dx) = lim

n→∞
( log (1 + n2) − 2n arctan (n) + π n

2n ) = 0.

d. The sequence {fn}n∈N converges in the space L1[0, 1] and
every convergent sequence is a Cauchy sequence.

Sol-9: a. Take x,y ∈ `2 and α ∈ R and check if{
f(x + y) = f(x) + f(y),
f(αx) = α f(x).

There are no particular problems.

b. The functional can be read as an inner product and the in-
equality of Cauchy-Schwarz is useful to show that the linear
functional f is bounded.

|f(x)| ≤

√√√√(
∞∑
n=1

(3
5)2(n−1)) ‖ x ‖=

√
( 1
1− 9

25
) ‖ x ‖

A bounded linear functional is continuous.

Sol-10: a. Since |x| ≤ 1, it follows that ‖ (Af) ‖2 =
∫ 1
−1(x f(x))2 dx ≤∫ 1

−1(f(x))2 dx = ‖ f ‖2, so (Af) ∈ L2[−1, 1].

b.

〈Af, g〉 =
∫ 1

−1
x f(x) g(x) dx =

∫ 1

−1
f(x)x g(x) dx = 〈f, A∗g〉,

so (A∗g)(x) = x g(x) = (Ag)(x), so A is self-adjoint.

Sol-11: a. (T f0)(t) = 0 because (1 + t2) f0(t) is an odd function.

b. Take f, g ∈ C[−1, 1] and α ∈ R and check if{
T (f + g) = T (f) + T (g),
T (αf) = αT (f).

There are no particular problems.
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c. The Normed Space C[0, 1] is equiped with the sup-norm ‖
· ‖∞, so

|(T f)(t)| ≤ 2 ‖ (1 + t2) ‖∞ ‖ f ‖∞= 4 ‖ f ‖∞,

the length of the integration interval is ≤ 2. Hence, ‖ (T f) ≤
4 ‖ f ‖∞ and the linear operator T is bounded.

d. Solve the equation (Tf) = 0. If f = 0 is the only solution of
the given equation then the operator T is invertible. But there
is a solution 6= 0, see part ii.11.a, so T is not invertible.

Sol-12: a. Take f, g ∈ C[0, 1] and α ∈ R and check if{
F (f + g) = F (f) + F (g),
F (αf) = αF (f).

There are no particular problems.

b. |F (x)| ≤ 1 ‖ x ‖∞, may be too coarse. Also is valid |F (x)| ≤∫ 1
0 τ dτ ‖ x ‖∞= 1

2 ‖ x ‖∞.

c. F (1) = 1
2 .

d. With part ii.12.b and part ii.12.c it follows that ‖ F ‖=
1
2 .

Sol-13: a. Solve λ1 x1(t) + λ2 x2(t) + λ3 x3(t) = 0 for every t ∈ [−1, 1].
λi = 0, i = 1, 2, 3 is the only solution.

b. Use the method of Gramm-Schmidt: e1(t) =
√

5
2 t

2, e2(t) =√
3
2 t and e3(t) =

√
9
8 (1 − 2

√
5

3
√

2 e1(t)). Make use of the fact
that functions are even or odd.

Sol-14: a. A Hilbert Space and convergence. Let’s try to show that the
sequence (xn) is a Cauchy sequence. Parallelogram identity:
‖ xn − xm ‖2 + ‖ xn + xm ‖2 = 2 (‖ xn ‖2 + ‖ xm ‖2) and
(xn + xm) = 2 (1

2xn + 1
2xm). So ‖ xn − xm ‖2 = 2 (1

2xn +
1
2xm) − 4 ‖ 1

2 xn + 1
2 xm ‖

2.M is convex so 1
2 xn + 1

2 xm ∈M
and 4 ‖ 1

2 xn + 1
2 xm ‖

2≥ 4 d2.
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Hence, ‖ xn − xm ‖2≤ 2 (d2− ‖ xn ‖2) + 2 (d2− ‖ xm ‖2
)→ 0 if n,m→∞.
The sequence (xn) is a Cauchy sequence in a Hilbert Space
H, so the sequence converge in H, M is closed. Every conver-
gent sequence in M has it’s limit in M , so the given sequence
converges in M .

b. See figure 3.6, let x = 0, δ = d and draw some xi con-
verging to the closest point of M to the origin 0, the point
y0.

Sol-15: a. a = (1, 1
2 ,

1
3 , · · · ,

1
n , · · ·).

∫∞
1

1
t dt does not exist,

∫∞
1

1
t2dt ex-

ists, so a ∈ `2, but a /∈ `1.

b. Take an arbitrary x ∈ `1, since ‖ x ‖1 =
∑∞

i=1 |xi| <∞ there
is some K ∈ N such that |xi| < 1 for every i > K. If |xi| < 1
then |xi|2 < |xi| and

∑∞
i=(K+1) |xi|2 ≤

∑∞
i=(K+1) |xi| < ∞

since x ∈ `1, so x ∈ `2.

Sol-16: a. Use the good norm!

‖ Tf ‖2 =
∫ 1

0
|(Tf)(x)|2dx =

∫ 1

0

1√
(4x)

f2(x) dx,

take y =
√

(x) then dy = 1
2
√
x
dx and

‖ Tf ‖2 =
∫ 1

0
f2(y)dy = ‖ f ‖2,

so ‖ T ‖= 1.

b. The adjoint operator T ∗, see the substitution used in Sol- ii.16.a,

〈TF, g〉 =
∫ 1

0

1
4
√

(4x)
f(
√
x ) g(x) dx =

∫ 1

0
f(y)

√
2√y g(y2) dy = 〈f, T ∗g〉,

so T ∗g(x) =
√

2
√
x g(x2).

c. ‖ T ‖= ‖ T ∗ ‖.

d. T ∗((Tf)(x)) = T ∗( 1
4
√

(4x)
f(
√
x )) =

√
2
√
x ( 1√

2
√
x
f(
√
x2)) =

f(x) = (If)(x).
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Sol-17: a. Take f, g ∈ C[−1, 1] and α ∈ R and check if{
hn(f + g) = hn(f) + hn(g),
hn(αf) = αhn(f).

There are no particular problems.

b. It is a linear functional and not a function, use Cauchy-Schwarz

|hn(f)| = |
∫ +1

−1
(τ)n f(τ) dτ | ≤ (

∫ +1

−1
(τ)2ndτ)

1
2 (
∫ +1

−1
f2(τ) dτ)

1
2

= ( 2
2n + 1)

1
2 ‖ f ‖ .

c.

lim
n→∞

‖ hn ‖≤
√

2√
(n + 1)

→ 0

if n→∞, so limn→∞ ‖ hn ‖= 0.

Sol-18: a. f(t) = 1
2(f(t)−f(−t))+ 1

2(f(t)+f(−t)), the first part is odd
(g(−t) = −g(t)) and the second part is even (g(−t) = g(t)).
Can there be a function h which is even and odd? h(t) =
−h(−t) = −h(t)⇒ h(t) = 0!

b. If the given sequence is a Cauchy sequence, then it converges
in the Banach space (C[−1, 1], ‖ · ‖∞). The limit should be a
continuous function, but limn→∞ fn is not continuous, so the
given sequence is not a Cauchy sequence.

Sol-19: a. Take x, y ∈ C[−1, 1]) and α ∈ R and let see that f(x + y) =
f(x) + f(y) and f(αx) = αx, not difficult.

b.

|f(x)| = |
∫ 0

−1
x(t) dt −

∫ 1

0
x(t) dt| ≤ |

∫ 0

−1
x(t) dt |+ |

∫ 1

0
x(t) dt|

≤ ‖ x ‖∞ + ‖ x ‖∞= 2 ‖ x ‖∞,
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so f is bounded and so continuous.

c. Take xn : [−1,+1]→ R, n ∈ N,

xn(t) =


1 for −1 ≤ t ≤ − 1

n

−nx for − 1
n
< t <

1
n

−1 for 1
n
≤ t ≤ 1.

then f(xn) = 2− 1
n
. Therefore the number 2 can be approxi-

mated as close as possible, so

‖ f ‖= 2.

d. Even functions are a subset of N (f), but there are more func-
tions belonging to N (f). It is difficult to describe N (f) other-
wise then for all functions x ∈ C[−1, 1] such that

∫ 0
−1 x(t)dt =∫ 1

0 x(t)dt.

Sol-20: a. S2(u)(x) = S(u(1 − x)) = u(1 − (1 − x)) = u(x) = I(u)(x),
so s−1 = S.

b. (S(u), v) =
∫

0 1u(1 − x)v(x) dx = −
∫ 0

1 u(y)v(1 − y) dy =
(u, Sv), so S∗ = S.

c. 1
2(I − S)1

2(I − S) = 1
4(I − IS − SI + S2) = 1

2(I − S), so
idempotent, evenso 1

2(I + S).
Extra information: the operators are idempotent and self-
adjoint, so the operators are (orthogonal) projections and
1
2(I − S)1

2(I + S) = 0!

d. Compute 1
2(I − S)(sin(x)) and compute 1

2(I − S)(αu(x) +
β u(1−x)). The last one gives 1

2(αu(x)+β u(1−x)−(αu(1−
x)+β u(x))) = 1

2((α−β)u(x)−(α−β)u(1−x)). Do the same
with the operator 1

2(I+S). The result is two linear equations,
with the unknowns u(x) and u(1−x), compute u(x) out of it.
The linear equations become:

sin (x)− sin (1− x) = (α− β)(u(x)− u(1− x))
sin (x) + sin (1− x) = (α + β)(u(x) + u(1− x)).
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( Divide the equations by (α− β) and (α + β)!)

Sol-21: The question is if xnα + ynβ converges in the ‖ · ‖∞-norm for
n→∞?
And it is easily seen that

‖ (xnα+ynβ)−(α2+β2) ‖∞≤‖ (xn−α) ‖∞| α | + ‖ (yn−β) ‖∞| β |→ 0

for n→∞. It should be nice to write a proof which begins with:
Given is some ε > 0 · · ·.
Because limn→∞ xn = α, there exists a N1(ε) such that for all
n > N1(ε), | xn−α |< ε

2 |α | . That gives that ‖ (xn−α) ‖∞| α |< ε
2

for all n > N1(ε).
Be careful with ε

2 |α | , if α = 0 ( or β = 0).
The sequence (yn)n∈N gives aN2(ε). TakeN(ε) = max(N1(ε), N2(ε))
and make clear that | (xnα+ynβ)−(α2 +β2) |< ε for all n > N(ε).
So limn→∞(xnα + ynβ) exists and (xnα + ynβ)n∈N ∈ c.

Sol-22: a. The easiest way is cos(2x) = 2 cos2 (x)− 1. Another way is to
formulate the problem α 1 + β cos2 (x) + γ cos (2x) = 0 for
every x. Fill in some nice values of x, for instance x = 0, x = π

2
and x = π, and let see that α = 0, β = 0 and γ = 0 is not the
only solution, so the given functions are linear dependent.

b. To solve the problem: β cos2 (x) + γ cos (2x) = 0 for every
x. Take x = π

2 and there follows that γ = 0 and with x = 0
follows that β = 0. So β = 0 and γ = 0 is the only solution of
the formulated problem, so the functions f2 and f3 are linear
independent.

Sol-23: a. Linearity is no problem.

b. Boundednes is also easy, if the triangle-inequality is used

‖ A(a1, a2, a3, · · ·) ‖≤
‖ (a1, a2, a3, · · ·) ‖ + ‖ (a3, a4, a5, · · ·) ‖≤

2 ‖ (a1, a2, a3, · · ·) ‖
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c. The null space of A is, in first instance, given by the span S,
with S = span((1, 0,−1, 0, 1, 0,−1, · · ·), (0, 1, 0,−1, 0, 1, 0, · · ·)).

Solve: A(a1, a2, a3, · · ·) = (0, 0, 0, 0, · · ·).
But be careful: S * `2, so N(A) = {0} with respect to the
domain of the operator A and that is `2.

Sol-24: a. Just control the conditions given in Definition 3.29. The
most difficult one is may be condition 3.29(IP1). If (p, p) = 0
then p(−1)p(−1)+p(0)p(0)+p(1)p(1) = 0 and this means that
p(−1) = 0, p(0) = 0 and p(1) = 0. If p(x) = α 1 + β x+ γ x2,
p has at most degree 2, then with x = 0 → α = 0 and with
x = 1, x = −1 there follows that β = 0 and γ = 0, so p(x) = 0
for every x.

b. Just calculate (q1, q2), (q1, q3) and (q2, q3) and control if there
comes 0 out of it.

c. ‖ q1 ‖= 1, ‖ q2 ‖= 2, ‖ q3 ‖= 2.
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AC 292
accumulation point 12
additive function 181
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276
additive set function, finitely 276
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238
algebra 318
algebra, Banach 319
algebra, complex 321
algebra, complexification 321
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algebra norm 319
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algebra seminorm 318
algebra, unital 319
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Banach fixed point theorem 294,
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Banach Limit 182, 183
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Bessel’s inequality 86
bidual space 148
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Bolzano-Weierstrass Property 198
Borel σ-algebra 272
Borel sets 272
bounded functional 131
bounded linear operator 217
bounded sesquilinear form 103
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c
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Cauchy-Schwarz (functions) 176
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contraction theorem 294
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equivalent norms 65
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Euclidean norm 65
extended functional 137

f
Fatou’s Lemma 173
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fixed point 294
Fourier expansion 98
functional analysis 8
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function,simple 280
function spaces 158
fundamental set 72

g
generated outer measure 271
glb, greatest lower bound 290
Gram-Schmidt proces 87
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Hahn-Banach 137
Hahn-Banach (Lemma of) 139
Hahn-Banach (Theorem of) 139
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Hölder’s inequality 195
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idempotent 236
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inner product 75
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interior point 57
inverse 10
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iteration 295
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Jensen’s inequality 195

k
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linear subspaces 40
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Lipschitz condition 298
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m
mapping 9
mapping (open) 247
maximal 51
maximal element 26
maximum 19
meager 248
measurable set 270
measurable space 270
measure 166, 170, 270
measure, signed 277
measure space 270
metric 54, 55
metric, Chebychev 56
metric, discrete 56
metric, Euclidean 55
metric, Minkowsky 56
metric, quotient 107
metric space 55
Metric Space, Compact 22
metric, taxicab 55
minimal element 26

minimum 19
Minkowski’s inequality 195
Monotone Convergence Theorem

174

n
natural embedding 130, 149
neighbourhood,λ− 200
Neumann series 231
nonmeager 248
norm 63
normal 241
normed space 63
norm linear functional 131
norm of a sesquilinear form 103
norm of operator 217
norm, quotient 107
norm, variational 276
nullspace 9
numbers, complex 12
numbers, natural 12
numbers, real 12
numbers, whole 12

o
one-to-one 10
onto 10
open 11
open ball 11
open ball (Metric Space) 56
open cover 16
operator 9
operator (algebraic inverse) 225
operator, bounded from below 229
operator (closed) 243
operator (closure of) 247
operator (compact) 261
operator (completely continuous)

261
operator (finite rank) 260
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36717 Busy With

Here is written, where I’m busy with the writing of these lecture notes:

a. Write about: compact operator⇒ completely continuous operator.
In general completely continuous operator; compact operator,
see 7.20, ( start: 140117, oke: ??).

b. Writing about spectral properties of bounded linear operators,
see Chapter 12.5,
( start: 131230, oke: ??).

c. Writing weak and weak* convergence, see 4.9.

d. Writing completely continous and compact operators, see 7.8.

e. Writing example of spectra, shift-operators, see 12.7.1.

f. Writing relation between residual spectrum T and point spec-
trum T ∗.

What to do?

a. Have forgotten, see 5.2.4, 5.2.5, 5.2.6?? May be more forgot-
ten, have to search for: todo,
( start: 14017, oke: ??).

b. Uniform Boundedness Theorem.

c. Totally bounded ↔ precompact or relatively compact, are there
differences or not?

What has been done?

a. Dual space of `2 and `p, see 5.15, comment: 1 < p < ∞ has
been done, so also p = 2,
p = 1 has already been done,
( start: 140117, oke: 140120).

b. Writing about Schur’s property, see 4.9, see 4.19, see 4.18,
(start: 140117, oke: 140118).

c. Complete Bounded Inverse Theorem, see SubSection 7.7.4,
(start 140101, oke: 140101).
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d. Proved is σ(T ) is closed, or ρ(T ) is open, see Theorem 12.2,
( start:131230, oke: 140101).

e. Closedness does not imply boundedness of a linear operator.
Boundedness does not imply closededness of a linear operator.
Have no idea what I have written in Section 7.7.2,
( start: 131230, oke: 131231).

f. Had no idea what I had written in Section 7.7.2, but now some
things rewritten,
( start: 131230, oke: 131231).

g. Worked at closed operators, see Theorem ??,
( start: 131230, oke: 131230).

h. Writing the theorem and proof of INV is continuous, see 7.13,
(start: 131227, oke: 131227).

i. Busy with proof of 7.12, last step has to be done,
( oke: 131226).

j. Solution Sol- ii: 7, oke.

k. Writing relations between nullspace and range operator at Hilbert
space, see 7.16. R⊥⊥ = R?? Oke.

In doubt about?

a. What have I done at the beginning of Chapter 7.7 and in
Section 7.7.2?
( start:131230, oke: ??).

Ideas?

a. Hilbert-Schmidt operators? ( start: 140118, oke: ??).


