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31 Preface

What this will become? I have all kind of ideas and ideals, but if they will ever be
ended, will become to what I want? No idea.
It is something that I want to do already many years and this is not the first attempt
of me. If it will be used? That question I can better not ask myself. I start without
seeing the finish, maybe I will never get over it?
My ideal is to write a novel about Complex Analysis, as basis I use the lecture notes
of Joop Boersma. I enjoy these lecture notes.

How I will write my novel? It’s also for me still a question.
It would be nice to work at some problem.
Then to see if a certain method works and then to ask ourself, if we can make a
theorem of it? And if that is the case, that we put the theorem and proof somewhere
else in our novel?
Let’s start and I hope that we have fun together.
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A short overview will be given of all kind of terms, which are used in the chapters
after this one. It is not my intention to give a complete overview of the analysis
in this chapter. There is assumed, that you are already familar with the complex
numbers: C. The main points will be repeated.

2.1 In the Past

People, in the past, tried to solve quadratic equations like:

x2 − 2x + 6 = 0. (2.1)

The easiest way to solve is by rewriting the given equation:

(x − 1)2 + 5 = 0, (2.2)

and that gives:

(x − 1)2 = −5, (2.3)

and the solutions are given by:

x1 = +1 +
√
−5 and x2 = +1 −

√
−5. (2.4)

That number
√
−5 was called an imaginary number . It works fine, if we use that

(
√
−5)2 = −5. With some manipulation you see that

√
−5 =

√
5
√
−1 and here

we have the
√
−1, which is often called i, so we get:

i =
√
−1. (2.5)

And the solution in 2.4 can be rewritten as

x1 = +1 + (
√

5) i and x2 = +1 − (
√

5) i, (2.6)

with:

i2 = −1. (2.7)
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2.2 Complex Numbers

We can also introduce the complex numbers as a couple of two numbers, just like
points in the 2-dimensional space R2. We leave the addition of two points as we
are used to. But in the 2-dimensional space R2 can be introduced the following
multiplication

(a, b) x (c, d) = (ac − bd, ad + bc). (2.8)

With that operation, we get a system of things (i.e. pairs of numbers), by which we
can calculate at the same way as we can do with the real numbers. These pairs of
numbers are called complex numbers .
It is useful to identify the complex numbers (a, 0) with the real numbers, so to write
a instead of (a, 0). For the number (0, 1) there is introduced the abbreviation i.
Due to this, every complex number z can be uniquely written as x + iy, the numbers
x and y are real numbers, called the real part and imaginary part of z.

If z = x + yi then x = Re(z) and y = Im(z) .

Notation 2.1

The complex numbers z with Re(z) = 0 lie on the imaginary axis and

those with Im(z) = 0 lie on the real axis . The number x − yi is called the
complex conjugate of z.

If z = x + yi then z = x − yi .

Notation 2.2
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The complex numbers can also be represented by the argument and the modulus
(absolute value), which one is led to if one enters polar coordinates in the complex
plane: r = the distance to the origin, φ = the angle of the radius vector with the
positive x−axis, the real axis. The direction of the increasing φ is counterclockwise.
The angle φ is determined by (x, y) except for integer multiples of 2 π and there
holds that

x = r cosφ, y = r sinφ. (2.9)

By the modulus , or the absolute value , of z is meant the non-negative value:

r = |z| =
√
x2 + y2 ≥ 0. (2.10)

The angle φ is called the argument of z:

φ = arg(z) = arctan (y
x

) + k π + n 2 π, (2.11)

with k ∈ {−1, 0, +1} and n ∈ Z.
A complex number can be written as

z = x + y i = r (cosφ + (sinφ) i) = r exp (i φ). (2.12)

Figure 2.1 Sketch coordinates

My hope is that you are already familar with these ways of writing (as in 2.12).
A new concept for you can be the principal value of z, written by Arg(z). As
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already noted, the argument of z is determined except for integer multipes of 2 π.
There is spoken about the principal value of z if the arg(z) is limited to an interval
of length 2 π. Very often there will be taken the following interval (left open, right
closed):

−π < arg(z) ≤ π. (2.13)

If nothing is said, there will be meant by arg(z) this principal value, see 2.13. The
importance of this will be discussed later.

In C we can do the same calculations as with real numbers.
But you can not compare complex numbers with each other!
Inside the complex system you don’t have a less or greater than.

Remark 2.1

2.2.1 Exponential function

A lot of people take the expression:

exp (i φ) = cosφ + (sinφ) i (2.14)

as a definition, with φ ∈ R. But if a calculator calculates exp (x) then the following
series is used:

exp (x) =
∞∑
n=0

xn

n! , (2.15)

filling in x = i φ that gives:

exp (i φ) =
∞∑
k=0

(−1)k φ
(2 k)

(2 k)! + i
∞∑
k=0

(−1)k φ(2 k+ 1)

(2 k + 1)! . (2.16)

The real part of this series gives the series of the cos-function and the imaginary
part the series of the sin-function, so we have found the expression 2.14.
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Important is the fact that:

| exp (i φ) | = 1, (2.17)

if φ is a real parameter then exp (i φ) describes the unit circle in
the complex plane C.
We can also calculate the exponential function of a complex number:

exp (z) = exp (x + i y) = exp (x) exp (i y), (2.18)

the radius of exp (z) becomes exp (x) and its argument y.
A short overview will be given of all kind of terms, which are used in the chapters
after this one. It is not my intention to give a complete overview of the analysis
in this chapter. There is assumed, that you are already familar with the complex
numbers: C. The main points will be repeated.

2.3 Sets of Complex Numbers

First all kind of notations, used in these lecture notes, will be defined (explained).
After that there will be given two important theorems with their proofs.

The notations are:

V := {z | .....}, a ∈ V , a /∈ V , A ⊂ B, B ⊃ A, A ∩B, A ∪B, Ac = C \ A, A.

Notation 2.3

The set of all complex numbers we have given already some name: C. A subset A
out of C can often be described by some prescription or there can be mentioned
properties of the elements z out of that subset. A frequently used notation is
A := {z | ........} at which the place of the dots the prescription is written where
z has to satisfy. So is {z | |z| < 1} the inner part of the unit circle in C. The
imaginary axis is {z | z = i y, y real}. In the remainder of these lecture notes we
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make no distinction between the following three expressions "z is a complex number",
"z is an element out of the set C" and "z is a point in the complex plane".

Let V be some subset of complex numbers. To express that a certain complex
number a belongs to V , we use the notation a ∈ V ; we also say: "a is an element of
V ". If we want to express that a does not belong to V then we write a /∈ V .
Finite set : is a set with a finite number of elements.
Infinite set : is a set with an infinite number of elements.
Bounded set : a set V is called bounded if we can find some real number M such
that |z| < M for all z ∈ V . Such a set we can cover with a circle around the
origin and a finite radius; it is also possible to cover it with some square with finite
dimensions.
Subset : A is a subset of B if every element of A is an element of B. The notation
for this is A ⊂ B (A is contained in B) or B ⊃ A (B includes A). The possiblity
that A = B, is not excluded by this notation A ⊂ B. If A 6= B then A is a
proper subset of B.

Intersection of A and B is the set of elements which belong to both A and B.
The notation is A ∩ B. If A ∩ B = ∅ (∅ = empty set), then A and B are called
disjoint .

Union of A and B is the set of elements which belong to A, to B, or both. The
notation is A ∪B.

The concepts of intersection and union can be applied to an arbitrary collection of
sets.

Complement of A: set of complex numbers that not belongs to A. Notation for
complement of A is Ac (also C \ A).

Next there will be given several descriptions of sets, which will often be used by
proofs of theorems and so on.

Neighbourhood
Let a be a complex number and ρ positive (so ρ ∈ R). The numbers z with the
property |z − a| < ρ lie inside the circle with midpoint a and radius ρ. If ρ is small,
then they say that z lies in the neigbourhood of a.
Neighbourhood of a is the set of numbers z which satisfy |z − a| < ρ.
The neighbourhood depends on a and ρ.
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Therefore: ρ-neighbourhood of a . The point a belongs to every of its neigh-

bourhoods. One speaks of a reduced neigbourhood if a is explicitly excluded. So:
reduced ρ-neighbourhood of a is the set of numbers z with 0 < |z − a| < ρ.
Accumulation point
The number a is called an accumulation point of V if in every reduced neigbourhood
of a infinitely many elements are of V .

An accumulation point of V is not necessarily a point of V .

Remark 2.2

Closed set
A set V is called closed if every accumulation point of V is also a point of V . A
closed set contains all its accumulation points.
Interior point
The number a is an interior point of V if there exist some neighbourhood of a which
belongs entirely to V . An interior point of V belongs to V .
Open set
A set consisting solely out of interior points, is called an open set.
Connected set
A set V is called connected if every pair of points P, Q of V can be connected by a
curve, which lies inside V (definition of curve, see page 15).
Region
This is for us an important concept. A region G in the complex plane is a set of
complex numbers which

(1) is not empty,
(2) is open,
(3) is connected.

Every point of G is an interior point of G, because a region is open by defintion.
Two arbitrary point of G can be connected by a polygoon draw, which ly completely
in G, because G is connectes. An accumnulation point of G belongs to G or doesn’t
belong to G. In the first case it is an accumulation point of G and so an interior
point of G. In the second case the accumulation point is called a boundary point
of G. The set of accumulation points of G, which not belong to G together form
an edge of G. (The edge of a set V is defined by the set of points where is every
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neighbourhood ly a point of V and V c.) The union of G with its edge is a closed
set, which is notated by G. G is called a closed region . For this we will choose

the word domain , so domain = region + edge.

2.3.1 Two important theorems.

Two important theorems are:
the covering theorem of Heine and Borel (theorem 2.1) and

the theorem of Bolzano and Weierstrass (theorem 2.2).

(H.B.) If a bounded and closed set A of complex numbers is contained in the union
of a collection of open sets, the is A can be covered by a finite number of these
open sets.

Theorem 2.1

Proof of Theorem 2.1

If the collection itself is finite, there is nothing to prove.
Further by contradiction. A is bounded, so A can be covered by a square V0
(boundary included) entirely located in the finite z-plane.
Suppose the statement was incorrect. Divide the square V0 into quarters. Then one
of these quarters (say V1, boundary included) has the property that the part of A
located in V1 can not be covered by finite number out of the collection of open sets
referred to.
Repeat:
V1 is divide into four quarters. At least one of these quarters (V2, boundary included)
has the property that A ∩ V2 can not be covered by a finite of these conscious open
sets. And so on.
We get so a sequence of squares: V0, V1, V2, ....., with V0 ⊃ V1 ⊃ ......., which shrinks
to a point P . This point P belongs to every Vn, and is a accumulation point of A.
Because A is closed, belongs P to A.
In the given collection of open sets there is at least one which contains P , and thus
internally contained. So there is a ρ-neigbourhood of P (if ρ is taken small enough)
with the property that the intersection with A is completely covered by this only
open set.
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This leads to a contradiction. In the lang run (n great enough) all the Vn ly inside
that ρ-neighbourhood. On the one hand, Vn could not be covered by a finite number,
on the other hand it is covered (from a certain number n) by one of the open sets.
Out of this contradiction follows that the theorem is correct.
�

(B.W.) A bounded infinite set has at least one accumulation point.

Theorem 2.2

Proof of Theorem 2.2

Hint: Use the square-method, used in the proof of theorem (2.1) once more.
�

2.3.2 Convergence criteria.

A sequence of numbers {zn} (n = 1, 2, 3, ...; there may be equals among them) has
the limit a (converges to a) if for every ε > 0 there can be found a rank number
N(ε) such that |z − an| < ε for every n > N(ε).

Definition 2.1
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A convergence criterium, where the limit a does not occur, reads:
(Cauchy) A sequence {zn} has a limit if to every ε > 0 there exists a N(ε) such
that for every n,m > N(ε) holds that |zn − zm| < ε.

Definition 2.2

Proof of Theorem 2.2

There is someM such that for all m > M |zm − zM+1| < 1. Let a be an accumula-
tion point of the zm (use B.W.!). Then is |zn − a| ≤ |zn − zm|+ |zm − a| ≤ ε

2 + ε

2 .

�

If {an} is a sequence of real numbers, then we define:

lim sup
n→∞

an =


L if for every ε > 0 only finitely elements of the sequence

are > L+ ε, while infinitly elements are > L− ε,
∞ if the sequence is not bounded from above,
−∞ if {an → −∞} for n→∞

Definition 2.3

Figure 2.2 Limsup and liminf
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Just in words, the lim sup of a sequence is the limit of the lowest upper bound.
(And so lim inf, the limit is of the greatest lower bound.)

If a sequence {an} has a limit L then lim supn→∞ an = L.

Remark 2.3

Every real sequence {an} has a lim sup.

Theorem 2.3

Proof of Theorem 2.3

Hint: If lim sup 6= ±∞ then all an < C and ∞ may > D; divide [D,C].....
�

2.4 Arc, curve, path in the complex plane

By a smooth arc a ≤ t ≤ b the functions x(t) and y(t) have continuous de-
rivatives then we call the set of point z = f(t) = x(t) + i y(t) (a ≤ t ≤ b) a
smooth arc. The point z1 = f(a) is called the beginpoint of the arc, z2 = f(b)

endpoint . The variable t is called the parameter and z = f(t) = x(t) + i y(t) a
parameter representation of the arc. The same arc can have different parameter
representations.
(Usually we still demand that {x′(t)}2 + {y′(t)}2 > 0.)
If we write arc in the sequel, we still mean: a smooth arc.
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A curve is a concatenation of a finite number of arcs; so it has a begin and an
endpoint. A simple curve is a curve without double points. If the beginpoint and

endpoint fall together we speak about a closed curve .
A Jordan curve is a simple closed curve.

A Jordan curve divides the complex plane into two disjoint pieces, the inner area
and the outer area. Both pieces are regions, which have the curve as boundary.
The Jordan curve is called positive oriented if we moving in the direction of the
arrow have the inner area on our left (counterclockwise).

Properties 2.1

Later on we need the term path in the complex plane. A path is a concatenation
of a sequence of arcs in a not necessarily finite number. A path can run to infinity,
or come from there (for instance out of a certain direction), etc..

Let K be some arc with parameter representation z = x(t) + i y(t), (a ≤ t ≤ b).

The length L of K is equal to: L =
∫ b
a

√
(dx
dt

)2 + (dy
dt

)2dt =
∫ b
a |
dz

dt
|dt.

Theorem 2.4

A region G is called connected if two different points P and Q in G can be
connected to each other by a curve in G.
A region G is called simply connected if with every Jordan curve J which belongs
to G also the inner region of J belongs to G. So every Jordan curve J which belongs
to G can be subtracted, in a continuous way, to a point of G.
If G is connected but not simply connected, then G is called multiply connected .



16

(1) {z | |z| < 1} is simply connected.

(2) {z | |z| > 1} is multiply connected.

(3) {z | 1 < |z| < 2} is multiply connected.

(4) Leave the line segment {z |Re(z) < 0 en Im(z) = 0} out of the area
described in (3), then arises a simply connected region.

Example 2.1

(3) multiply connected (4) simple connected
Figure 2.3 Connectedness
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Below are some more examples with corresponding drawing.

multiply connected simple connected
Figure 2.4 Connectedness, other examples

The "islands" that not belong to G can also be points: just as in (3) is for instance
{z | 0 < |z| < 1} multiply connected.
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3.1 Functions of a complex variable

Let be given:

(1) a set A of complex numbers,
(2) a prescription with which to every z ∈ A some complex number w is

added.

We write w = f(z) and represent the with: f (sometimes is written f(z)) is an
(one-valued) complex function of z defined on A. It is essential to mention the set
at which the function is defined. Compare with the former term of "permissible"
values of the independent variable.
If we propose z = x + i y and w = u + i v, we can splits f(z) into a real and an
imaginary part: f(z) = u(x, y)+ i v(x, y).The functions u and v are real functions of
two real variables, defined for (x, y) ∈ A. A complex functions is nothing more than
an ordered pair of two real functions of two real variables. It is clear that we have
to narrow the functions concept to get something of interest; otherwise we would
just do real function theory.

Concept of Limit:

The definition of limit is formal the same as given in the real analysis.

A function f defined on A has a limit L for z → a if for every ε > 0 there exists a
δ > 0 such that for 0 < |z − a| < δ and z ∈ A holds that |f(z)− L| < ε.
We write:

lim
z→a

f(z) = L, or also f(z)→ L (z → a).

Definition 3.1

Another definition of limit is given by:
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The function f has a limit L for z to a if

lim
n→∞

f(zn) = L, for every sequence {zk} with zk ∈ A and zk → a (k →∞).

Definition 3.2

The definitions in 3.1 and 3.2 are equivalent.

Theorems about the sum, difference, product and quotient of limits are the same as
in the real analysis.

Concept of Continuity:

The function f is called continuous in the point a ∈ A if

f(a) = lim
z→a

f(z).

Definition 3.3

An equivalent definition of continuity is given by:

f is continuous in a ∈ A if to every ε > 0 there exists δ > 0 such that
|f(z)− f(a)| < ε for |z − a| < δ and z ∈ A.

Definition 3.4

The function f is called continuous on (or in) A if f(z) is continuous in every
point of A. Most of the time is A a region, a domain, or a curve.
Out of the real analysis we know the concepts of left- or right- continuity:

lim
x↑a

f(x) = f(a) resp. lim
x↓a

f(x) = f(a).
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In the complex plane there are far more possibilities to approach a point a.
Let f be defined on A and let B a subset of A. Then is called f continuous in the
point a with respect to B ⊂ A if

(1) a ∈ B,

(2) to every ε > 0 there exists a δ > 0 such that
|f(z)− f(a)| < ε for |z − a| < δ and z ∈ B.

Define f(z) = 1
z
− 1
z

(z 6= 0), f(0) = 0 is defined on A = the whole complex plane;
f is continuous in 0 with respect to the real axis.

Example 3.1

If there is spoken about "continuity in a" without question, then there is assumed
that the function is defined in a full neighbourhood of a.

Remark 3.1

Sum, difference, product and quotient of continuous funktions are continuous
functions (with the known exception not dividing by zero), just as in the real
function theory.

Remark 3.2

If f(z) is a continuous function of z, then the real functions u(x, y) and v(x, y),
defined by f(z) = u(x, y) + i v(x, y), contnuous functions of x and y. The reverse
holds also. To get really interesting problems in the complex function theory we
have to require more then only continuity.
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If f is continuous, then also Re(f), Im(f) and |f | continuous functions of z. The
principal value arg(z) is not continuous in the neighbourhood of the negative real
axis; it is continuous on that axis with respect to that axis (there is arg(z) equal
to π).

Remark 3.3

Let f be defined and continuous on a bounded and closed set A, then is
f bounded on A, and |f(z)| has both a maximum and a mimimum on A.

Theorem 3.1

3.2 Differentiable functions

We have already noticed that we don’t get far with continuous functions. Therefore
we will require differentiability . A priori it is not clear if there will come something
of interest. Because in the real analysis we have also functions which depend on two
variables x and y, which can be differentiated to these variables.
We shall define the derivative f ′ of f define at a way completely analoguous as the
derivative in the real analysis is defined of a function of one real variable. The results
will be very surprising. It turns out that if a function is once differentiable, it is
automatically arbitrary often differentiable.
We shall define the derivative only for an interior point of the domain A of the
function. The set of all interior point of A is an open set. One can prove that
an open set is the union of a collection of disjoint regions. Therefore it is enough,
to define differentiability of a function, which is defined in een region (open +
connected).
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A function f, defined in a region G, is called differentiable in the point a of G if
the differential quotient

f(a+ h)− f(a)
h

(h 6= 0)

has a limit for h→ 0.

Definition 3.5

For |h| small enough lies a + h also in G. The above mentioned limit L(a) we
indicate with f ′(a), and f ′(a) is called the derivative of f(z) in the point a. This
is completely analogous to the case in the real analysis. (remember, however, that
h is complex here!)

Equivalent definitions:

(1) f(z) defined in G has a derivative L(a) in the point a ∈ G if for every ε > 0,
there is some δ > 0 such that∣∣∣∣f(z)− f(a)

z − a
− L(a)

∣∣∣∣ < ε

for every z with 0 < |z − a| < δ.

(2) If in the neighbourhood of a holds:

f(z) = f(a) + (z − a)L(a) + (z − a)η(z, a),

with η(z, a)→ 0 for z → a, then we can L(a) define as the derivative of f(z) in
the point a.

If f is differentiable in the point a, then is f continuous in a.

Theorem 3.2

Proof of Theorem 3.2
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f is differentiable in a, so f is defined in a full neighbourhood of a.
We can find numbers L = f ′(a) and δ1 such that (take ε = 1∣∣∣∣f(z)− f(a)

z − a
− L

∣∣∣∣ < 1 for all z with 0 < |z − a| < δ1].

So also
|f(z)− f(a)− (z − a)L| ≤ |z − a| for 0 < |z − a| < δ1].

Under these conditions

|f(z)− f(a)| = |f(z)− f(a)− L(z − a) + L(z − a)|
≤ |f(z)− f(a)− L(z − a)|+ |L| |z − a|

≤ (1 + |L|)|z − a| ≤ (1 + |L|)δ1.

Let ε > 0 be given. Choose δ = min(δ1,
ε

(1 + |L|)δ1
). Then holds that

|f(z)− f(a)| < ε provided that |z − a| < δ. So f is continuous in a.

�

We have written here the proof in all accuracy. The insight that the statement is cor-
rect, we get faster: if z → a has f(z)− f(a)

z − a
a finite limit. Because the denominator

approaches 0 the numerator has also to approach 0.

Of course, the reversal of the above statement does not hold.

Remark 3.4

Re(z) is a continuous function, but it has no point where it is differentiable. The
function f(z) = z = z − i y is not differentiable.

Example 3.2
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The known rules for differtiation of the sum, product and quotient
(numerator not zero) of functions just go on.

Remark 3.5

The chain rule:
If φ(z) is differentiable in z0, f(φ) differentiable in φ0 = φ(z0),
then is F (z) = f(φ(z)) differentiable in z0 and

F ′(z0) = f ′(φ0)φ′(z0).

Theorem 3.3

Typically u and v are the real and the imaginary parts of a complex-valued
function of a single complex variable z = x + i y, so f(z) = u(x, y) + i v(x, y).
Suppose that u and v are real differentiable in an open subet of C, considered as
functions of R2 to R. Then is f complex differentiable in that point if and only if
the partial derivatives lf u and v satisfy the Cauchy-Riemann equations:

(a) ∂u
∂x

= ∂v

∂y
,

(b) ∂u
∂y

= −∂v
∂x

.

Theorem 3.4

Proof of Theorem 3.4

Not the whole proof is given, but an essential part out of it. Let h ∈ R, if f is
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complex differentiable then the limit of the differential quotient will always give the
same value:

f ′(z) = lim
h→0

f(x+ h, y)− f(x, y)
(x+ h+ i y)− (x+ i y) = ∂u

∂x
+ i

∂v

∂x
,

= lim
h→0

f(x, y + h)− f(x, y)
(x+ i (y + h))− (x+ i y) = −i ∂u

∂y
+ ∂v

∂y
.

�

Consider f(z) = x2 y + i y2, this function is differentiable in z = 0, but f(z) is not
analytic in z = 0.

Example 3.3

If f is defined in a region G, and f is differentiable in every point of G, then f is
called differentiable in G . Then f is called an (one-valued) analytic function ,

or also holomorphic function , in G. Also the term regular function is often
used in stead of holomorphic.

Definition 3.6

Analytic in a point, on a curve:

Analtyic in an point = differentiable in that point and differentiable in a full
neighbourhood of that point.

Analytic on a curve = analytic in every point of that curve.
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By analytic in a point or on a curve, the point or the curve has to be imbedded in
a region and require that the function is differentiable in that region.

Remark 3.6

The real function defined by

f(x) =
{ 0 if x = 0,
x2 sin (1

x
) if x 6= 0.

is for all x differentiable, but f ′ is in x = 0 not continuous, therefore not differen-
tiable. Something like that is not possible in the complex function theory. This is
shown by the following:

Fundamental Property:
If f(z) holomorphic in G, then is also f ′(z) holomorf in G.

Properties 3.1

The proof is postponed. We refer to this result by calling it: property-(3.1).
Due to property-(3.1): if (z) holomorf in G, then all of its derivatives exist
f ′(z), f ′′(z), ....., in G and they are all holomorphic in G.
Although we don’t use it yet, it is good to understand that differentiability of a
function is such a heavy requirement, that the function has a lot more beautiful
properties.



27

Examples of analytic functions:

f(z) = constant, f ′(z) = 0.
f(z) = z, f ′(z) = 1.

f(z) = zn, f ′(z) = n z(n−1) (n whole number).

f(z) =
m∑
n=0

an z
n, f ′(z) =

m∑
n=1

n an z
(n−1) (polynomial).

A polynomial is an analytic function in G = whole z−plane.

Example 3.4

3.3 Function defined by power series

Power series are extremely important in the complex analysis.

A power series around the point z0 is of the form
∞∑
n=0

an (z − z0)n.

A power series around the origin is
∞∑
n=0

an z
n.
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Root test:
The power series

∑∞
n=0 an z

n is absolute and uniform convergent if 0 < ρ < R
and divergent for |z| > R. Here is R a number that is determined by the sequence
{an}, according to Cauchy-Hadamard:

1
R

= lim sup
n→∞

( n
√
|an|).

(Thereby is R = 0 if lim supn→∞( n
√
|an|) =∞ and

R =∞ if this lim sup is equal to 0.)

Theorem 3.5

Proof of Theorem 3.5

First the rival case that R = 0:
For z = 0 the power series always converges, with the sum equal to a0. That is in de
case R = 0 also the only point of convergence, because under these circumstances
the general term of the power series doesn’t even go to zero (what is needed for
convergfence). After all: (z 6= 0)

lim sup
n→∞

( n
√
|an zn|) = |z| lim sup

n→∞
( n
√
|an|) = ∞.

So an zn does not approach to zero if n→∞.
Second case, R > 0:

Take 0 < ρ < R and ρ < r < R. Then is 1
R

= lim supn→∞( n
√
|an|) <

1
r
. So lie to

the right of 1
r
only a finite number of numbers n

√
|an|. In other words: there is a N

such that n
√
|an| <

1
r
for n > N . So if n > N and for all z with |z| < ρ

|an zn| <
(ρ
r

)n
.

Because the term
(ρ
r

)n
does not depend on z and

∑∞
n=0

(ρ
r

)n
converges is

∑∞
n=0 an z

n

absolute and uniform convergent for |z| ≤ ρ.

If |z| > R then is lim sup( n
√
|an zn|) = |z|

R
> 1, such that the general term of the

series goes not to zero if n→∞. That means that the series diverges.
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Herewith the theorem has been fully proven.
�

The value R is called the radius of convergence ; the points z with |z| = R the

circle of convergence .

Remark 3.7

R = 0 :
∞∑
n=0

n!zn.

R =∞ :
∞∑
n=1

zn

n! .

R = 1 :
∞∑
n=0

zn,
∞∑
n=1

zn

n2 ,
∞∑
n=1

zn

n
.

Example 3.5

The behaviour of the power series on the circle of convergence can be anything.
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∞∑
n=0

zn divergent for |z| = R = 1.

∞∑
n=1

zn

n2 absolute and uniform convergent |z| = R = 1.

∞∑
n=1

zn

n
convergent for z = −1, divergent for z = 1.

Example 3.6

The function f(z) =
∑∞

n=0 an z
n is inside the circle of convergence |z| < R a

holomorphic function of z, and its derivative can be found by termswise differenti-
ation: f ′(z) =

∑∞
n=0 n an z

(n−1).The last series has the same radius of convergence
as the first series.

Theorem 3.6

Proof of Theorem 3.6

lim supn→∞( n
√
n|an|) = lim supn→∞( n

√
|an|), because n

√
n → 1 for n → ∞. The

series
∑∞

n=0 n an z
n has the same radius of convergence as

∑∞
n=0 an z

n. So also∑∞
n=0 n an z

(n−1) has this radius of convergence.
Is the just obtained function g(z) =

∑∞
n=0 n an z

(n−1) really the derivative of f(z)?
Take z inside the circle of convergence of those two series. Choose ρ > 0 such that
all points ζ of the circle |ζ−z| ≤ ρ lie inside the circle of convergence. Let ζ = z+h,
with |h| ≤ ρ, and h 6= 0, then has the following sense:

f(z + h)− f(z)
h

− g(z) =
∞∑
n=0

an

[
(z + h)n − zn

h
− n z(n−1)

]
.

Now is
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∣∣∣∣(z + h)n − zn
h

− n z(n−1)
∣∣∣∣ = |h|

∣∣∣∣(n2
)
z(n−2) +

(
n

3

)
h z(n−3) + ...+

(
n

n

)
h(n−2)

∣∣∣∣
≤ |h|

((
n

2

)
|z|(n−2) +

(
n

3

)
ρ |z|(n−3) + ...+

(
n

n

)
ρ(n−2)

)
≤ |h|
ρ2

((
n

2

)
ρ2 |z|(n−2) +

(
n

3

)
ρ3 |z|(n−3) + ...+

(
n

n

)
ρn
)

≤ |h|
ρ2

(
|z|n +

(
n

1

)
ρ |z|(n−1) +

(
n

2

)
ρ2 |z|(n−2) + ...+

(
n

n

)
ρn
)

= |h|
ρ2 (|z|+ ρ)n

Therefore ∣∣∣∣f(z + h)− f(z)
h

− g(z)
∣∣∣∣ ≤ |h|ρ2

∞∑
n=0
|an| (|z|+ ρ)n

Since |z|+ ρ < R the series at the right site converges and its value is indepedent of

h. The right hand side goes zero for h → 0. So the limit of f(z + h)− f(z)
h

exist
and is equal to g(z). So f is differentiable and its derivative is g. With this, the
proof is ready.
�

This proof and many that follow all have the following form. From a function f
we have the suspicion that f ′ = g. Take a point z. Write then

f(z + h)− f(z)
h

− g(z) = hφ(z, h).

Show that |φ(z, h)| is bounded for |h| small enough, such that the righthand site
→ 0 if |h| → 0. Then is, with the definition of the derivative, proved that f ′(z) =
g(z). Because z was arbitrary chosen the proof is ready.

Remark 3.8
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A power series defines a function which is holomorphic in the circular region of
convergence. For these special holomorphic functions the existence of all higher
order derivative clear. These derivatives are obtainded by termswise differentia-
tion; all these series have the same radius of convergence. For power series is with
this the fundamental property proven, see property: (3.1) (at page: 26).
Later on we shall see that a function, which is holomorphic in a neighbourhood
of z0 the sum is of a power series

∑∞
n=0 an (z − z0)n which converges in a circle

around z0.

Remark 3.9
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3.4 Exponential Function

exp (z) = 1 + z + z2

2! + ... =
∞∑
n=0

zn

n! .

The radius of convergence is infinitely large.
So the exp (z) is holomorphic on the whole z−plane.

Definition 3.7

lim
n→∞

(1 + z

n
)n = lim

n→∞

n∑
k=0

(
n

k

)( z
n

)k
= lim

n→∞

n∑
k=0

zk

k! = exp (z).

The usual notation is ez instead of exp (z).

Theorem 3.7

Proof of Theorem 3.7

If k fixed and n increasing:
(
n

k

)(
1
n

)k
= 1
k!

(n− k + 1)...n
n...n

↑ 1
k! . Take |z| < R

(arbitrary). Determine K such that |
∞∑
k=K

(
(
n

k

)( z
n

)k
− zk

k! )| < 2
∞∑
k=K

Rk

k! < ε.

Subsequently
K−1∑
k=0

(
(
n

k

)( z
n

)k
→

K−1∑
k=0

zk

k! if n→∞.

�
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Properties of exp (z):

(1) (exp (x))′ = exp (x).
(2) addition theorem: exp (z1 + z2) = exp (z1) exp (z2)

(follows out of (1)).
(3) exp (z) has no zeros

(follows out of (2)).

Properties 3.2

The trigoniometric functions are defined by

sin (z) =
∞∑
n=0

(−1)n z(2n+1)

(2n+ 1)!

cos (z) =
∞∑
n=0

(−1)n z(2n)

(2n)!

Definition 3.8

They were everywhere analytic. They have the following properties everywhere in
the z-plane:
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sin (z) = e(i z) − e(−i z)

2 i , cos (z) = e(i z) + e(−i z)

2 ,

(sin (z))′ = cos (z), (cos (z))′ = − sin (z),

e(i z) = cos (z) + i sin (z); |ei z| = e−Im(z) 6= 1, unless z is real.

Properties 3.3

This is fully consistent with the elementary theory. We say: the exponential and
the trigoniometric functions of a real variable we have analytical continued to the
complex plane. (See Chapter (5)).

Relation with the hyperbolic functions.
For all z: cos (i z) = cosh (z), sin (i z) = i sinh (z), (cosh (z))2 − (cosh (z))2 = 1.
Pay attention: For a lot of values of z holds | cos (z)| > 1 and | sin (z)| > 1!

For instance is cos (i) = e−1 + e

2 > 1.
From

sin (z) = sin (x + i y) = sin (x) cos (i y) + cos (x) sin (i y)
= sin (x) cosh (y) + i cos (x) sinh (y)

follows that

| sin (z)| = ((sin (x))2 (cosh (y))2 + (cos (x))2 (sinh (y))2)
1
2 = ((sin (x))2 + (sinh (y))2)

1
2 .

So | sin (z)| = 1 if sinh (y) = cos (x) or sinh (y) = − cos (x).

This leads to two cures in the z−plane

y1 = log (
√

1 + (cos (x))2 + cos (x)) and

y2 = log (
√

1 + (cos (x))2 − cos (x)) = −y1.

There is | sin (x)| = 1; in between | sin (x)| < 1 and everywhere else | sin (x)| > 1.
Analogous for | cos (x)|, curves shifted over π

2 .
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Figure 3.1 |sin(x)|

Figure 3.2 |cos(x)|



374 Integration Complex Plane

4.1 Complex Integration

We start from the definition of a definite integral of real functions, which we assume
known out of other lectures and the following theorem:

If g(x) is continuous for a ≤ x ≤ b then exists
∫ b
a g(x) dx.

Theorem 4.1

Let K be a smooth arc with parameterization z = φ(t) (a ≤ t ≤ b). We remind
that in section (2.4) there was required that φ′(t) is continuous. Let further f(t) be
a contnuous function of z at the arc K. Then we define

∫
K
f(z) dz =

∫ b

a
f(φ(t))φ′(t)dt.

Definition 4.1

(Notice: the integral is a complex function of the real variable t.)
Because of theorem (4.1) exist the integral at the right hand side. (You see that it
had reason to demand that arcs are always continuous differentiable.)
We define the integral of f(z) over the arc K as the sum of the integrals over the
arcs, which makes up K. The above given definition is independent of the choice of
the parametertrization.
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(a) f(z) = 1, K given by φ(t), a ≤ t ≤ b with beginpoint A = φ(a), endpoint
B = φ(b).∫
K f(z) dz =

∫ b
a 1φ′(t) dt = φ(b) − φ(B) = B − A.

(b) f(z) = z, K as in (a).∫
K f(z) dz =

∫ b
a φ(t)φ′(t) dt =

[
φ2(t)

2

]b
a

= B2

2 −
A2

2 .

Example 4.1

In the examples 4.1(a) and 4.1(b) the value of the integral is dependent of the
begin- and end-point of K but independent of the chosen path from A to B. This is
not always the case, see the examples 4.2(a) and 4.2(b) (and this will become one
of the main points of these lectures).

(a) f(z) = |z| is nowhere analytic. Let K be the curve consisting of the line seg-
ment [0, 1] and the circular arc from 1 tot i. Let K ′ be the line segment from 0
to i. It is easy to calculate that∫
K |z|dz = 1

2 + (i− 1) and
∫
K′ |z|dz = 1

2i.

(b)Choose f(z) = 1
z and A = 1 and B = −1 and for the curves K and K ′ we take

|z| = 1, Im(z) ≥ 0, respectively |z| = 1, Im(z) ≤ 0. After some calculation
follows that:∫
K

1
zdz = π i and

∫
K

1
zdz = −π i.

Example 4.2

The next property is of great importance to memorize.
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Let K be some circle with midpoint z0 and radius R. For K we can choose the
following parametrization z = z0 + R exp (i t) (0 ≤ t ≤ 2 π). Let m be a whole
number. Then is

1
2π i

∫
K

(z − z0)mdz =
{

0 if m 6= (−1)
1 if m = −1.

Just use the definition (4.1).

Properties 4.1

The value of the integral, given in property (4.1) is independent of
the radius R of the circle.

Remark 4.1

The known theorems about integrals of real functions can be directly transfered
to the complex integrals. We call just one example∫

K
(λ f(z) + µ g(z))dz = λ

∫
K
f(z)dz + µ

∫
K
g(z)dz

It is common in the sequel that rough estimates are required for the values of an
integral. Therefore we use the ML-lemma .

If |f(z)| ≤ M for z ∈ K and if L is the length of the curve K then holds (assumed
that the integral exists)

|
∫
K
f(z)dz| ≤ M L.

Lemma 4.1

Proof of Lemma 4.1

�



405 Holomorphic Functions; Series

A short overview will be given of all kind of terms (***)



416 Application of the Residues

A short overview will be given of all kind of terms Use-Residues.



427 Analytic Continuation

A short overview will be given of all kind of terms Analytic-Continuation.



438 Miscellaneous

A short overview will be given of all kind of terms Miscellaneous-v0.



449 List of figures

2.1 Sketch coordinates 6

2.2 Limsup and liminf 13

2.3 Connectedness 16

2.4 Connectedness, other examples 17

3.1 |sin(x)| 36

3.2 |cos(x)| 36



4510 Index

a
analytic, curve 25
analytic, point 25
arc 14
arc, beginpoint 14
arc, endpoint 14
arc, length 15
arc, parameter representation 14
argument 6

c
Cauchy-Hadamard, root test 28
Cauchy-Riemann equations 24
Cauchy, convergence criterium 13
complex conjugate 5
complex exponential function 8
complex multiplication 5
continuity, with respect to 20
curve 15
curve, closed 15
curve, Jordan 15
curve, simple 15

d
derivative, chain rule 24
derivative, definition 22
differentiable quotient 22
domain 11

e
edge 10
exponential function (series) 7

f
function, analytic 25
function, def. continuity 19
function, def. limit 18
function, differentiable 22
function, equiv. def. continuity 19
function, equiv. def. limit 19

function, holomorphic 25
function, regular 25
function, trigonimetric 34

i
imaginary axis 5
imaginary part 5

m
ML-lemma 39
modulus 6

n
neighbourhood 9
neighbourhood, reduced 10

o
orientation, positive 15

p
path 15
point, accumulation 10
point, boundary 10
point, interior 10
power series, differentiate 30
power series, root test 28
presentation of exp (i φ) 7
presentations of z 6
principal value 7

r
radius ofconvergence 29
real axis 5
real part 5
region 10
region, closed 11
region, connected 15
region. multiply connected 15
region, simply connected 15



46

s
set, bounded 9
set, closed 10
set, complement 9
set, connected 10
set, finite 9
set, infinite 9
set, open 10
sets, disjoint 9
sets, intersection 9
sets, union 9
subset 9

subset, proper 9

t
theorem, Bolzano-Weierstrass 12
theorem, Heine-Borel 11

u
unit circle exp (i φ) 8

x
x,y in polar coordinates 6



4711 References


