Question 1. Let $f: \mathbb{C} \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be a holomorphic function, where z_{0} is a pole of order m for f. Show that

$$
\operatorname{res}_{z_{0}}\left(\frac{f^{\prime}}{f}\right)=-m
$$

Solution. \quad Since f has a pole of order m in z_{0}, there is an entire function g such that $f(z)=$ $g(z) /\left(z-z_{0}\right)^{m}$. Hence,

$$
f^{\prime}(z)=-\frac{m g(z)}{\left(z-z_{0}\right)^{m+1}}+\frac{g^{\prime}(z)}{\left(z-z_{0}\right)^{m}}=\left(z-z_{0}\right)^{-m}\left(-\frac{m g(z)}{\left(z-z_{0}\right)}+g^{\prime}(z)\right)
$$

and therefore,

$$
\frac{f^{\prime}(z)}{f(z)}=-\frac{m}{\left(z-z_{0}\right)}+\frac{g^{\prime}(z)}{g(z)}
$$

Notice that $g^{\prime}(z) / g(z)$ is holomorphic in z_{0}. Thus the right-hand side is a Laurent series of f^{\prime} / f around z_{0} with principal part $-m /\left(z-z_{0}\right)$. By definition of the residue, we find $\operatorname{res}_{z_{0}}=-m$.

Question 2. Let $f(z)=\frac{1}{\sin ^{2}(z)}-\frac{\alpha}{z}-\frac{\beta}{z^{2}}, \alpha, \beta \in \mathbb{C}$. Determine the values of α and β such that $z_{0}=0$ is a removable singularity of f. Determine $f(0)$.

Solution. We begin by determining the Laurent series expansion of $1 / \sin ^{2}(z)$ at the point $z=0$. Since

$$
\begin{aligned}
\sin (z) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}=z-\frac{1}{3!} z^{3}+g(z) \\
\sin ^{2}(z) & =\left(z-\frac{1}{6} z^{3}+g(z)\right)\left(z-\frac{1}{6} z^{3}+g(z)\right)=z^{2}\left(1-\frac{1}{3} z^{2}+h(z)\right)
\end{aligned}
$$

where g and h are holomorphic functions in $z=0$ with $g / z^{5}, h / z^{4}$ bounded in a ball around $z=0$, therefore

$$
\begin{aligned}
\frac{1}{\sin ^{2}(z)} & =\frac{1}{z^{2}} \frac{1}{1-\left(\frac{1}{3} z^{2}-h(z)\right)}=\frac{1}{z^{2}} \sum_{n=0}^{\infty}\left(\frac{1}{3} z^{2}-h(z)\right)^{n} \\
& =\frac{1}{z^{2}}\left(1+\frac{1}{3} z^{2}-h(z)\right)=\frac{1}{z^{2}}+\frac{1}{3}+k(z)
\end{aligned}
$$

where k is a holomorphic function with k / z^{2} bounded in a ball around $z=0$. Choosing $\alpha=0$ and $\beta=1$, we obtain

$$
f(z)=\frac{1}{\sin ^{2}(z)}-\frac{\alpha}{z}-\frac{\beta}{z^{2}}=\frac{1}{3}+k(z)
$$

Thus, $z=0$ is a removable singularity of f with $f(0)=1 / 3$.
Question 3. Given that $(1+z)^{n}=\sum_{k=0}^{n}\binom{n}{k} z^{k}$ for all $z \in \mathbb{C}$, where $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.
(a) For $k \leq n$, show that $\int_{\partial B_{1}(0)} \frac{(1+w)^{n}}{w^{k+1}} d w=2 \pi i\binom{n}{k}$.
(b) Show that $\sum_{n=0}^{\infty} \frac{(1+z)^{2 n}}{z^{n+1}} \frac{1}{6^{n}}$ converges absolutely and uniformly for $z \in \partial B_{1}(0)$, and that

$$
\sum_{n=0}^{\infty} \frac{(1+z)^{2 n}}{z^{n+1}} \frac{1}{6^{n}}=-\frac{6}{z^{2}-4 z+1}
$$

(c) Use (a) and (b) to find $\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{6^{n}}$.

Solution.

(a) Set $f(z)=(1+z)^{n}$. Then from the generalised Cauchy integral formula, we obtain

$$
\frac{1}{2 \pi i} \int_{\partial B_{1}(0)} \frac{(1+z)^{n}}{z^{k+1}} d z=\frac{f^{(k)}(0)}{k!}=\left.\frac{1}{k!} \frac{d^{k}}{d z^{k}}(1+z)^{n}\right|_{z=0}=\frac{n(n-1) \cdots(n-k-1)}{k!}=\frac{n!}{(n-k)!k!}
$$

(b) From (a), we see that

$$
\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{6^{n}}=\frac{1}{2 \pi i} \sum_{n=0}^{\infty} \frac{1}{6^{n}} \int_{\partial B_{1}(0)} \frac{(1+z)^{2 n}}{z^{n+1}} d z
$$

Since $|1+z|^{2 n} \leq(1+|z|)^{2 n}=2^{2 n}$ for $z \in B_{1}(0)$, we have

$$
\left|\binom{2 n}{n}\right| \leq \frac{1}{2 \pi} \int_{B_{1}(0)}\left|\frac{(1+z)^{2 n}}{z^{n+1}}\right| d z \leq \frac{1}{2 \pi} 2 \pi 2^{2 n}=4^{n},
$$

and therefore the series $\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{6^{n}}$ converges absolutely and uniformly.
Furthermore,

$$
\sum_{n=0}^{\infty} \frac{(1+z)^{2 n}}{z^{n+1}} \frac{1}{6^{n}}=\sum_{n=0}^{\infty}\left(\frac{(1+z)^{2}}{(6 z)}\right)^{n} \frac{1}{z}=\frac{1}{1-\frac{(1+z)^{2}}{(6 z)}} \frac{1}{z}=-\frac{6}{z^{2}-4 z+1}
$$

(c) Due to (a) and (b), we can interchange the summation with the integral to obtain

$$
\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{6^{n}}=\sum_{n=0}^{\infty} \frac{1}{6^{n}} \int_{\partial B_{1}(0)} \frac{(1+z)^{2 n}}{z^{n+1}} d z=-6 \int_{\partial B_{1}(0)} \frac{1}{\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right)} d z
$$

where $\lambda_{1}=2+\sqrt{3}, \lambda_{2}=2-\sqrt{3}$. Only $\lambda_{2} \in B_{1}(0)$, and therefore,

$$
\int_{\partial B_{1}(0)} \frac{1}{\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right)} d z=2 \pi i \operatorname{res}_{\lambda_{2}} \frac{1}{\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right)}=2 \pi i \frac{1}{\lambda_{2}-\lambda_{1}}=-\frac{\pi i}{\sqrt{3}}
$$

Altogether, we obtain

$$
\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{6^{n}}=\frac{1}{2 \pi i}(-6)\left(-\frac{\pi i}{\sqrt{3}}\right)=\sqrt{3}
$$

Question 4. Consider the complex function $f(z)=\frac{z^{3}}{(z-1)^{2}(z+1)^{2}}$.
(a) Find the Laurent expansion of f around $z=0$ with the convergence ring $\{z \in \mathbb{C}:|z|>1\}$.

Hint: Begin by writing f as $f(z)=z^{3} /\left(z^{2}-1\right)^{2}$.
(b) Determine the integral $\int_{\partial B_{2}(0)} f(z) d z$. Hint: Use (a).

Solution.

(a) We write $f(z)=\frac{z^{3}}{\left(z^{2}-1\right)^{2}}=\frac{z}{\left(1-1 / z^{2}\right)^{2}}=\frac{g(z)}{(h(z))^{2}}$ with $g(z)=z$ and $h(z)=1-1 / z^{2}$.

Since,

$$
\frac{1}{(1-\xi)^{2}}=\frac{d}{d \xi} \frac{1}{1-\xi}=\frac{d}{d \xi} \sum_{n=0}^{\infty} \xi^{n}=\sum_{n=1}^{\infty} n \xi^{n-1}=\sum_{n=0}^{\infty}(n+1) \xi^{n}
$$

we have, with $\xi=1 / z^{2}$, that

$$
\frac{1}{\left(1-1 / z^{2}\right)^{2}}=\sum_{n=0}^{\infty}(n+1)\left(\frac{1}{z^{2}}\right)^{n}=\sum_{n=0}^{\infty}(n+1)\left(\frac{1}{z^{2 n}}\right)
$$

Hence,

$$
f(z)=\frac{z^{3}}{(z-1)^{2}(z+1)^{2}}=z \sum_{n=0}^{\infty}(n+1)\left(\frac{1}{z^{2 n}}\right)=\frac{1}{z}+\sum_{n=1}^{\infty}(n+1)\left(\frac{1}{z^{2 n+1}}\right)=f^{-}(z)
$$

is the Laurent expansion with positive part $f^{+} \equiv 0$.
(b) From (a), we have the representation

$$
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}(n+1)\left(\frac{1}{z^{2 n+1}}\right) \quad \text { for all } z \in \partial B_{2}(0)
$$

Since

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n+1}{2^{2 n+1}}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n+1}{2 \cdot 4^{n}}}=\frac{1}{4}<1
$$

we have that the Laurent series is absolutely and uniformly convergent on $\partial B_{2}(0)$. Therefore,

$$
\int_{\partial B_{2}(0)} f(z) d z=\int_{\partial B_{2}(0)} \frac{1}{z} d z+\sum_{n=1}^{\infty}(n+1) \int_{\partial B_{2}(0)} \frac{1}{z^{2 n+1}} d z=2 \pi i
$$

where we used the fact that the terms in the sums have primitives, and their integrals vanish.

