

Question 1. Let $f: \mathbb{C} \setminus \{z_0\} \to \mathbb{C}$ be a holomorphic function, where z_0 is a pole of order m for f. Show that

$$\operatorname{res}_{z_0}\left(\frac{f'}{f}\right) = -m.$$

Question 2. Let $f(z) = \frac{1}{\sin^2(z)} - \frac{\alpha}{z} - \frac{\beta}{z^2}$, $\alpha, \beta \in \mathbb{C}$. Determine the values of α and β such that $z_0 = 0$ is a removable singularity of f. Determine f(0).

Question 3. Given that $(1+z)^n = \sum_{k=0}^n \binom{n}{k} z^k$ for all $z \in \mathbb{C}$, where $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. (a) For $k \le n$, show that $\int_{\partial B_{+}(0)} \frac{(1+w)^n}{w^{k+1}} dw = 2\pi i \binom{n}{k}$.

(b) Show that $\sum_{n=0}^{\infty} \frac{(1+z)^{2n}}{z^{n+1}} \frac{1}{6^n}$ converges absolutely and uniformly for $z \in \partial B_1(0)$, and that

$$\sum_{n=0}^{\infty} \frac{(1+z)^{2n}}{z^{n+1}} \frac{1}{6^n} = -\frac{6}{z^2 - 4z + 1}.$$

(c) Use (a) and (b) to find $\sum_{n=0}^{\infty} {\binom{2n}{n}} \frac{1}{6^n}$.

Question 4. Consider the complex function $f(z) = \frac{z^3}{(z-1)^2(z+1)^2}$.

- (a) Find the Laurent expansion of f around z = 0 with the convergence ring $\{z \in \mathbb{C} : |z| > 1\}$. Hint: Begin by writing f as $f(z) = z^3/(z^2 - 1)^2$.
- (b) Determine the integral $\int_{\partial B_2(0)} f(z) dz$. Hint: Use (a).