Question 1. Let $f: \mathbb{C} \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be a holomorphic function, where z_{0} is a pole of order m for f. Show that

$$
\operatorname{res}_{z_{0}}\left(\frac{f^{\prime}}{f}\right)=-m
$$

Question 2. Let $f(z)=\frac{1}{\sin ^{2}(z)}-\frac{\alpha}{z}-\frac{\beta}{z^{2}}, \alpha, \beta \in \mathbb{C}$. Determine the values of α and β such that $z_{0}=0$ is a removable singularity of f. Determine $f(0)$.

Question 3. Given that $(1+z)^{n}=\sum_{k=0}^{n}\binom{n}{k} z^{k}$ for all $z \in \mathbb{C}$, where $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.
(a) For $k \leq n$, show that $\int_{\partial B_{1}(0)} \frac{(1+w)^{n}}{w^{k+1}} d w=2 \pi i\binom{n}{k}$.
(b) Show that $\sum_{n=0}^{\infty} \frac{(1+z)^{2 n}}{z^{n+1}} \frac{1}{6^{n}}$ converges absolutely and uniformly for $z \in \partial B_{1}(0)$, and that

$$
\sum_{n=0}^{\infty} \frac{(1+z)^{2 n}}{z^{n+1}} \frac{1}{6^{n}}=-\frac{6}{z^{2}-4 z+1}
$$

(c) Use (a) and (b) to find $\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{6^{n}}$.

Question 4. Consider the complex function $f(z)=\frac{z^{3}}{(z-1)^{2}(z+1)^{2}}$.
(a) Find the Laurent expansion of f around $z=0$ with the convergence ring $\{z \in \mathbb{C}:|z|>1\}$. Hint: Begin by writing f as $f(z)=z^{3} /\left(z^{2}-1\right)^{2}$.
(b) Determine the integral $\int_{\partial B_{2}(0)} f(z) d z$. Hint: Use (a).

