
On Laurent and Taylor series
Complex Analysis (2WA80)

Question 1. Let f : C \ {z0} → C be a holomorphic function, where z0 is a pole of order m for f .
Show that
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, α,β ∈ C. Determine the values of α and β such that

z0 = 0 is a removable singularity of f . Determine f(0).
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(a) For k ≤ n, show that
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(b) Show that
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(c) Use (a) and (b) to find
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Question 4. Consider the complex function f(z) =
z3

(z − 1)2(z + 1)2
.

(a) Find the Laurent expansion of f around z = 0 with the convergence ring {z ∈ C : |z| > 1}.
Hint: Begin by writing f as f(z) = z3/(z2 − 1)2.

(b) Determine the integral
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f(z) dz. Hint: Use (a).

1


