Question 1. Use Liouville's theorem to determine the meromorphic function f satisfying
(i) f has a pole of order 3 in $z=0$, simple poles in $z=i$ and $z=-i$, and holomorphic otherwise.
(ii) $z f(z) \rightarrow 1$ as $|z| \rightarrow \infty$.
(iii) f is an odd function, i.e., $f(-z)=-f(z)$ for all $z \in \mathbb{C}$.
(iv) The Laurent series corresponding to f with convergence ring $K=\{z \in \mathbb{C}| | z \mid>1\}$ has coefficients $\left(c_{n}\right)$ satisfying $c_{-3}=-1$ and $c_{-5}=2$.

Solution. From (i) we know that

$$
f(z)=\frac{g(z)}{z^{3}(z-i)(z+i)}
$$

for an entire function g. From (ii), we see that $z f(z)=\frac{g(z)}{z^{2}(z-i)(z+i)} \rightarrow 1$ as $|z| \rightarrow \infty$. In particular, there is some $R_{0}>0$ for which

$$
\left|\frac{g(z)}{z^{2}(z-i)(z+i)}\right| \leq 2 \quad \text { for all }|z| \geq R_{0}
$$

and consequently, $|g(z)| \leq 4|z|^{4}$ for all $|z| \geq R_{1}$ for some $R_{1}>0$. Liouville's theorem then says that $g(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}$ with $a_{i} \in \mathbb{C}$. From the limit, we further deduce $a_{4}=1$. From (iii), we obtain

$$
\frac{g(-z)}{-z^{3}(z+i)(z-i)}=\frac{g(-z)}{-z^{3}(-z-i)(-z+i)}=f(-z)=-f(z)=-\frac{g(z)}{z^{3}(z-i)(z+i)},
$$

i.e., $g(-z)=g(z)$. Therefore, $a_{1}=0, a_{3}=0$. We are now left to determine a_{0} and a_{2}.

The obtain the appropriate Laurent series, we write

$$
\begin{aligned}
f(z) & =\frac{g(z)}{z^{3}\left(z^{2}+1\right)}=\frac{g(z)}{z^{5}\left(1+1 / z^{2}\right)}=\frac{g(z)}{z^{5}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{2 n}} \\
& =\frac{a_{0}+a_{2} z^{2}+z^{4}}{z^{5}}\left(1-\frac{1}{z^{2}}+\frac{1}{z^{4}}-\cdots\right) \\
& =\frac{a_{0}}{z^{5}}+\frac{a_{2}}{z^{3}}+\frac{1}{z}-\frac{a_{0}}{z^{7}}-\frac{a_{2}}{z^{5}}-\frac{1}{z^{3}}+\frac{1}{z^{5}} \cdots=\frac{a_{0}-a_{2}+1}{z^{5}}+\frac{a_{2}-1}{z^{3}}+\cdots
\end{aligned}
$$

Therefore, $a_{2}=0$ and $a_{0}+1=2$, i.e., $a_{0}=1$. To conclude, we obtain

$$
f(z)=\frac{1+z^{4}}{z^{3}(z-i)(z+i)}
$$

Question 2. Use Liouville's theorem to determine the meromorphic function f satisfying
(i) f has a simple pole in $z=1$, and a pole of order 2 in $z=0$, and holomorphic otherwise.
(ii) $\operatorname{res}_{0}(f)=0$.
(iii) $f(z) \rightarrow-2$ as $|z| \rightarrow \infty$.
(iv) $f(-1)=0$.
(v) $\int_{|z|=2} z f(z) d z=0$.

On Entire Functions

Complex Analysis (2WA80)
Solution. From (i) we obtain an entire function g such that $f(z)=\frac{g(z)}{z^{2}(z-1)}$.
From (ii) we find that

$$
0=\operatorname{res}_{0}(f)=\left.\frac{1}{1!} \frac{d}{d z} \frac{g(z)}{z-1}\right|_{z=0}=\left.\frac{g^{\prime}(z)(z-1)-g(z)}{(z-1)^{2}}\right|_{z=0}=-g^{\prime}(0)-g(0) \quad \Longrightarrow \quad g^{\prime}(0)=-g(0)
$$

From (iii) we obtain from Liouville's theorem that g is a polynomial of degree at most 3, i.e., $g(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$ with $a_{3}=-2$. Together with (ii), we get

$$
a_{1}=g^{\prime}(0)=-g(0)=-a_{0} \quad \Longrightarrow \quad g(z)=a_{0}(1-z)+a_{2} z^{2}-2 z^{3} .
$$

From (iv) we get

$$
0=f(-1)=-\frac{g(-1)}{2}=-\frac{2 a_{0}+a_{2}+2}{2} \quad \Longrightarrow \quad 2 a_{0}+a_{2}=-2
$$

while (v) gives

$$
\begin{aligned}
0 & =\int_{|z|=2} z f(z) d z=\int_{|z|=2} \frac{g(z)}{z(z-1)} d z=2 \pi i\left(\operatorname{res}_{0} \frac{g(z)}{z(z-1)}+\operatorname{res}_{1} \frac{g(z)}{z(z-1)}\right) \\
& =2 \pi i(-g(0)+g(1))=2 \pi i\left(-a_{0}+a_{2}-2\right) \quad \Longrightarrow \quad-a_{0}+a_{2}=2
\end{aligned}
$$

Solving the linear system

$$
\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)\binom{a_{0}}{a_{2}}=\binom{-2}{2} \quad \Longrightarrow \quad\binom{a_{0}}{a_{2}}=\frac{1}{3}\left(\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right)\binom{-2}{2}=\frac{1}{3}\binom{-4}{2}
$$

gives $a_{0}=-4 / 3$ and $a_{2}=2 / 3$. To conclude, we obtain $f(z)=\frac{2}{3} \frac{-2(1-z)+z^{2}-3 z^{3}}{z^{2}(1-z)}$.
Question 3. Use Liouville's theorem to determine the meromorphic function f satisfying
(i) f has a pole of order 3 in $z=0$ and simple poles in $z=-1$ and $z=1$ respectively, and holomorphic otherwise.
(ii) $z f(z)$ is bounded for $|z|>1$.
(iii) f is odd, i.e., $f(-z)=-f(z)$.
(iv) $\operatorname{res}_{0}\left(z^{2} f(z)\right)=-1$.
(v) The Laurent series corresponding to f with convergence ring $K=\{z \in \mathbb{C}|0<|z|<1\}$ has coefficients $\left(c_{n}\right)$ satisfying $c_{-1}=0$ and $c_{1}=-2$.

Solution. From (i) we find some entire function g such that

$$
f(z)=\frac{g(z)}{z^{3}(z-1)(z+1)} .
$$

From (ii), we have that

$$
|z f(z)|=\left|\frac{g(z)}{z^{2}(z-1)(z+1)}\right| \leq c \quad \text { for all }|z|>1
$$

Hence, we some real positive constants R and M such that

$$
|g(z)| \leq M|z|^{4} \quad \text { for all }|z| \geq R
$$

The generalized Liouville's theorem then deduces that g is a polynomial of at most degree 4, i.e., $g(z)=a z^{4}+b z^{3}+c z^{2}+d z+e$, for constants $a, b, c, d \in \mathbb{C}$.

From (iii), we see that g must be even, and thus $b=d=0$. Furthermore, (iv) gives

$$
-1=\operatorname{res}_{0}\left(z^{2} f(z)\right)=\operatorname{res}_{0}\left(\frac{g(z)}{z(z-1)(z+1)}\right)=\lim _{z \rightarrow 0} \frac{g(z)}{(z-1)(z+1)}=-e
$$

i.e., $e=1$. The Laurent series expansion of f satisfying (v) is given by

$$
\begin{aligned}
f(z) & =-\frac{g(z)}{z^{3}} \frac{1}{1-z^{2}}=-\frac{a z^{4}+c z^{2}+1}{z^{3}} \sum_{n=0}^{\infty} z^{2 n} \\
& =-\frac{a z^{4}+c z^{2}+1}{z^{3}}-\frac{a z^{4}+c z^{2}+1}{z}-z+O\left(z^{3}\right) \\
& =-z^{-3}-(1+c) z^{-1}-(a+c+1) z+O\left(z^{3}\right) .
\end{aligned}
$$

Consequently, we have that $c=-1$ and $2=a+c+1=a$, i.e., $a=2$. To conclude, we obtain

$$
f(z)=\frac{2 z^{4}-z^{2}+1}{z^{3}(z-1)(z+1)}
$$

Question 4. Use the (generalised) Liouville theorem to determine the meromorphic function f satisfying
(i) f has a pole of order 2 in $z=0$ and simple poles in $z=-i$ and $z=i$ respectively, and holomorphic otherwise.
(ii) $z^{2} f(z) \longrightarrow a$ as $|z| \rightarrow \infty$ for some real constant $a>0$.
(iii) $\operatorname{res}_{0}(f(z))=-1$.
(iv) f has a zero of order 2 in $z=1$.

Explain clearly where and to which function you apply the (generalised) Liouville theorem.
Solution. From (i) we have an entire function g such that $f(z)=\frac{g(z)}{z^{2}\left(z^{2}+1\right)}$.
From (ii), we obtain

$$
|g(z)| \leq M|z|^{2} \quad \text { for all }|z|>1
$$

Hence, the generalised Liouville's theorem states that g is a polynomial of degree at most 2, i.e., $g(z)=a z^{2}+b z+c$ for constants $b, c \in \mathbb{C}$.

From (iii), we have that

$$
-1=\operatorname{res}_{0}(f)=\left.\frac{1}{1!} \frac{d}{d z}\left(\frac{a z^{2}+b z+c}{z^{2}+1}\right)\right|_{z=0}=b
$$

From (iv): Rewriting $g(z)=a z^{2}-z+c$, and comparing with $(z-1)^{2}=z^{2}-2 z+1$, we deduce $c=a=1 / 2$, since a and c must coincide.

